第七章电力系统简单不对称故障的分析计算
不对称故障的分析与计算

《电力系统分析》
不对称故障的分析与计算
水利与建筑工程学院
电气与动力实验室
1、不对称短路分析与计算
一、实验目的
1、掌握运用Matlab进行电力系统仿真实验的方法;
2、理解导纳矩阵、阻抗矩阵及其求解方法;
3、掌握不对称短路的分析和计算方法;
4、学会编写程序分析不对称故障。
二、预习与思考
1、用Matlab对基本的矩阵进行运算。
2、导纳矩阵、阻抗矩阵有何关系,如何求取阻抗矩阵?
3、不对称短路有哪些,它们的边界条件分别是什么,如何形成它们的复合序网络图?
4、如何用程序实现不对称短路的计算?
三、系统网络及参数
图1 系统网络图
表1 元件参数及阻抗
四、实验步骤和要求
1、根据以上网络和参数,编写程序进行下列故障情况下的故障电流、节点电压和线路电流的计算。
(1)通过故障阻抗Z f=j0.1p.u., 节点3发生三相短路;
(2)通过故障阻抗Z f=j0.1p.u.,节点3发生单相接地短路;
(3)通过故障阻抗Z f=j0.1p.u.,节点3发生相间短路;
(4)通过故障阻抗Z f=j0.1p.u.,节点3发生两相接地短路。
五、实验报告
1、完成下表2-表9。
表2 节点3发生三相对称短路时的故障电流
表3 节点3发生三相对称短路时各节点电压
表4 节点3发生单相短路时的故障电流
表5 节点3发生单相短路时各节点电压
表6 节点3发生相间短路时的故障电流
表7 节点3发生相间短路时各节点电压
表8 节点3发生两相接地短路时的故障电流
表9 节点3发生两相接地短路时各节点电压
2、书面解答本实验的思考题。
电力系统故障分析

Ika 1 Ika 0
0
Ika 2
(1) (2)
U ka1 U ka 2 (3)
Uka
Ikc
Uka2 Uka1
Ikc1 Ika2
Ukc1
Ukc2
Ikb1
Ukb2
U kc Ukb
Ukb1
Ikc2
Ika1 Ika=0
Ikb2
(a)
Ikb (b)
图3—4 两相短路时短路处的电压电流相量图
(
Ika
Ikb
Ikc )
0
Ika1
1 3
( Ik a
Ikb
2 Ikc )
jIkb 3
Ika2
1 3
(
Ik
a
2 Ikb Ikc )
jIkb 3
Ik a1 Ik a2
UUkkcb
Uka0 Uka0
2Uka1 Uka2 Uka1 2Uka2
Ukb Ukc
Uka1 Uka2
所以有以序分量表示的边界条件-三个方程:
Ik1aZ1E Z a 21 Z0Ik2aIk0a
UUkkaa02
Ika2Z2 Ika0Z0
Ika1Z2 Ika1Z0
Uka1 (Uka2 Uka0)
Ika1(Z2 Z0) Ea1 Ika1Z1
所以短路处的各相的电流、电压为:
IIk k= b a I(k1 + a 2 Ik2 a + 1 I)k Ik 0 a1 a 3IIk k1 c a 0 3Ik2 a3Ik0 a
对称分量法 在三相电路中,对于任意一组不对称的三相相
量可以分解为三相对称的三组相量,这就是“三相相 量对称分量法”。当选择a相作为基准相时,三相相 量与其对称分量之间的关系(如电压)为:
暂态第八章(小结及例题)

第七章 电力系统简单不对称故障分析
二、主要内容讲解
1、对称分量法 实际电力系统中的短路故障大多数是不对称的, 为了保证电力系统和它的各种电气设备的安全运 行,必须进行各种不对称故障的分析和计算。简 单不对称故障,是仅在电力系统中的一处发生不 对称短路或断相的故障。对称分量法是分析计算 不对称故障的常用的方法。
第七章 电力系统简单不对称故障分析
7、对称分量法求解不对称故障的一般做法 应用对称分量法分析不对称故障,求解故障时 各序电压和电流可分别用三个序网描述,它们的 电压方程式如下:
U
D1
U
D0
Z D1 I D1
U
D2
Z D 2 I D2 Z D0 I D0
(7-1)
U
D0
第七章 电力系统简单不对称故障分析
5、输电线路各序电抗 三相线路流过正序或负序电流时,由于三相电 流之和为零,所以三相线路互为回路,空间磁场 之取决于三相导线本身。当三相线路流过零序电 流时,由于三相电力相同,它们之和为各相电流 的三倍,必须另有回路才能流通。
第七章 电力系统简单不对称故障分析
6、零序网络的制定 零序网络是三序网络中最应值得注意的。零序 网络中各发电机没有零序电动势,只有在不对称 故障点加有等效的零序电压源,由它提供零序电 流。由于三相中的零序电流完全相同,只能流过 星型接法且有中性点接地的元件,并从大地返回。 变压器的接法和中性点接地方式,对网络中零序 电流的分布及零序网络的结构有决定性的影响。 另外,不同地点发生不对称故障,零序电流分布 和零序网络结构不相同。因此,一般情况下零序 网络结构和正序、负序网络不一样,而且元件参 数不相同。
电力系统不对称故障的分析计算

电力系统不对称故障的分析计算1. 引言电力系统是现代社会中不可或缺的根底设施之一。
然而,由于各种原因,电力系统可能会发生不对称故障,导致电力系统的正常运行受到严重影响甚至导致短路事故。
因此,对电力系统不对称故障进行分析和计算是非常重要的。
本文将分析电力系统不对称故障的原因、特点以及进行相应计算的方法,并使用Markdown文本格式进行输出。
2. 不对称故障的原因和特点不对称故障是指电力系统中出现相序不对称的故障。
其主要原因包括:单相接地故障、双相接地故障以及两相短路故障等。
不对称故障的特点如下:1.电流和电压的相位不同:在不对称故障中,电流和电压的相位不同,通常表现为电流和电压波形的不对称。
2.非对称系统功率:由于不对称故障,电力系统中的功率将变得非对称。
正常情况下,三相电流和电压的功率应该平衡,但在不对称故障中,这种平衡被破坏。
3.对称分量的存在:在不对称故障中,由于相序的不同,电流和电压中会存在对称正序分量、对称负序分量和零序分量。
3. 不对称故障的分析计算方法对于不对称故障的分析计算,一般可以采用以下步骤:3.1 系统参数获取首先,需要获取电力系统的各项参数,包括发电机、变压器、线路和负载的参数等。
这些参数将用于后续的计算。
3.2 故障状态建模根据故障的类型和位置,对故障状态进行建模。
常见的故障状态包括单相接地故障、双相接地故障和两相短路故障等。
3.3 网络方程建立基于故障状态的建模,可以建立电力系统的节点方程或潮流方程。
通过求解节点方程或潮流方程,可以得到电流和电压的分布情况。
3.4 不对称故障计算根据网络方程的求解结果,可以计算不对称故障中电流、电压和功率的各项指标,包括正序分量电流、负序分量电流、零序电流等。
3.5 故障保护和控制根据不对称故障的计算结果,可以对故障保护和控制系统进行设计和优化。
通过故障保护和控制系统的响应,可以及时检测和隔离故障,保证电力系统的平安运行。
4. 结论电力系统不对称故障的分析计算是确保电力系统平安运行的重要步骤。
[工学]第七章电力系统不对称故障分析
![[工学]第七章电力系统不对称故障分析](https://img.taocdn.com/s3/m/a3642c3f657d27284b73f242336c1eb91b373355.png)
153第七章 电力系统不对称故障分析电力系统是三相输电系统,由于各相之间存在电磁耦合,因此各相之间存在互阻抗和互导纳。
例如如图7-1所示的三相系统,各相除了具有损耗r a 、r b 、r c ,自感L a 、L b 、L c ,以及对地电容外C a 、C b 、C c 外,相间还存在互感m ab 、m bc 、m ca 和互电容C ab 、C bc 、C ca 。
图7-1 三相电磁耦合系统根据电路理论可知,如果三相系统的自阻抗和自导纳参数相等,相间的互阻抗、互导纳参数也分别相等,那么这样的三相系统称为三相“平衡系统”。
只有在三相平衡系统中,当电源电压对称时系统中各个节点或支路的电压和电流才是对称的。
以7-1系统为例,假设三相的自感相等,相间互感也相等,自阻抗用Z s 表示,互阻抗用Z m 表示,则三相电压与电流的关系为:⎪⎩⎪⎨⎧++=++=++=cs b m a m c c m b s a m b c m b m a s a I Z I Z I Z E I Z I Z I Z E I Z I Z I Z E (7-1)如果三相电源对称,那么将7-1中三个方程相加就得到:0))(2(=+++=++cb a m sc b a I I I Z Z E E E (7-2) 根据7-2可知:0=++cb a I I I 那么三相电压方程7-1变为:⎪⎩⎪⎨⎧-=++=-=++=-=++=cm s c s b m a m c b m s c m b s a m b a m s c m b m a s a I Z Z I Z I Z I Z E I Z Z I Z I Z I Z E I Z Z I Z I Z I Z E )()()( (7-3)上式说明,三相电流也对称。
上面的三个式子是在三相系统平衡且对称情况下,用单相法进行三相电路计算的基础。
然而电力系统发生的故障大多数情况下都是不对称故障,我们用什么方法来进行分析和计算呢?很显然,不对称的三相系统之所以不可以用单相来代替,如果采用三相电路方程进行计算,不对称故障分析将非常复杂(随着计算机技术的发展,很多计算是采用三相电路计算的)。
不对称短路故障分析与计算(电力系统课程设计)

不对称短路故障分析
02
不对称短路故障类型
单相接地短路
其中一相电流通过接地电阻,其余两 相保持正常。
两相短路
两相接地短路
两相电流通过接地电阻,另一相保持 正常。
两相之间没有通过任何元件直接短路。
不对称短路故障产生的原因
01
02
03
设备故障
设备老化、绝缘损坏等原 因导致短路。
外部因素
如雷击、鸟类或其他异物 接触线路导致短路。
操作错误
如误操作或维护不当导致 短路。
不对称短路故障的危害
设备损坏
短路可能导致设备过热、烧毁或损坏。
安全隐患
短路可能引发火灾、爆炸等安全事故。
停电
短路可能导致电力系统的局部或全面停电。
经济损失
停电和设备损坏可能导致重大的经济损失。
不对称短路故障计算
03
方法
短路电流的计算
短路电流的计算是电力系统故障分析中的重要步骤,它涉及到电力系统的 运行状态和设备参数。
不对称短路故障分析与 计算(电力系统课程设计)
contents
目录
• 引言 • 不对称短路故障分析 • 不对称短路故障计算方法 • 不对称短路故障的预防与处理 • 电力系统不对称短路故障案例分析 • 结论与展望
引言
01
课程设计的目的和意义
掌握电力系统不对称短路故障的基本原理和计算 方法
培养解决实际问题的能力,提高电力系统安全稳 定运行的水平
故障描述
某高校电力系统在宿舍用电高峰期发生不对称短路故障,导致部 分宿舍楼停电。
故障原因
经调查发现,故障原因为学生私拉乱接电线,导致插座短路。
解决方案
加强学生用电安全教育,规范用电行为;加强宿舍用电管理,定 期检查和维护电路。
电力系统不对称故障

对称分量中分解和合成的相量关系
Fa2 Fa1
Fc1
Fb1
(a)
Fb2
(b)
Fa0
Fa2
Fa
Fa1
Fc2
Fa0 Fb0 Fc0
(c)
Fc1
Fc2
Fc
Fb1 Fc0
Fb2
Fb
(d)
Fb0
注意:
➢ a b c T 1 2 0 是一对一的线性变换。独立总变 量数不变。
➢ 这样的转换并非纯数学的,各序电流、电压 是客观存在的,可以测出。
U a
a
Zs
Ia
U b
Zm
b
Zm
Zs
U c
Ib
Zm
c
Zs
Ic
从变换上来看:
U UbaZZm a
Zm Zb
Uc Zm
Zm
U a b c Z a b c Ia b c
Zm Zm
IIba
Zc Ic
将三相电压降和三相电流变换成对称分量 :
U 1 2 0 T 1 U a b c T 1 Z a b c T I 1 2 0 Z 1 2 0 I 1 2 0
Y0 /Y/ 开 开 Y0/Y0/ 开 合
x(0) xI xII//xIII
xI xIII xIxII/I/x(II )
3、自耦变压器
自耦变压器的中性点一般都直接接地,或者 经过阻抗接地。如果有第三个绕组,则通常
都采用 接线。
(1)中性点直接接地的 Y0 / Y0 和 Y0 / Y0 / 自耦变压器
Y0 / Y0 接线
1
R1jX1
•
U0
R2jX2 RmojXmo
两侧绕组中都可以有零序电流流过。即等值 电路中的两个端点都可以与外电路相连。
第七章不对称故障分析

引入因子
ae
j120
一、对称分量法
• 三相量用三序量表示
F F F F a a1 a2 a0 F b F c 2 Fb1 Fb 2 Fb0 a Fa1 aFa 2 Fa 0 2 F F aF a F F F c1 c2 c0 a1 a2 a0
•简单不对称故障的分析计算
7.1 对称分量法在不对称短路计算中的应用
• 系统中发生最多的故障是不对称故障,即单
相短路、两相短路、单相断线等,与三相比最大
的区别就是不对称故障时三相电路时不对称的,
因此不能采用前面的“对称相分析法”分析。采
用将不对称问题 对称 化的处理方法
7.1.1、对称分量法 加拿大C.L.Fortescue在1918年提出的,任 意一组不对称的三相向量(三相电压或三 相电流)均可由三相对称分量合成。
零序网络
三、对称分量法在不对称短路计算中的应用 根据电路图分别列出各序网络的电压方程 正序网
I (Z Z ) ( I a2I aI )Z V E a a1 G1 L1 a1 a1 a1 n a1
I I I a1 b1 c1 2I I I
zab zbc zca zm
0 0 Z0
正序阻抗 负序阻抗 零序阻抗
V120 Zsc I120
Z I V a1 1 a1 V a 2 Z 2 I a 2 Z I V a0 0 a0
结论:在三相参数对称的线性电路中,各序对称分量具有独 立性,因此,可以对正序、负序、零序分量分别进行计算。
F 1 a a1 1 2 F 1 a a2 3 F 1 1 a 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
14
三、对称分量法在不对称短路计算中的应用 ➢ 零序网
Ia0 Ib0 Ic0 3Ia0
0 Ia0 (Z G0 Z L0 ) 3Ia0 Z n Va0
0 Ia0 (ZG0 Z L0 3Z n ) Va0
15
Ea Ia1 (Z G1 Z L1 ) Va1 0 Ia2 (Z G2 Z12 ) Va2 0 Ia0 (Z G0 Z L0 3Z n ) Va0
第四章 对称分量法及电力系统元件的 各序参数和等值电路
电气工程学院 电气工程及其自动化专业1
1、什么是对称分量法? 2、为什么要引入对称分量法?
➢ 对称分量法
分析过程是什么?
1、各元件的序参数是怎样的?
➢ 对称分量法在不对称故2、障如何分绘析制电计力算系中统的的序应网图用?
➢ 电力系统元件序参数及如 简系何单利不统用对的对称故称序分障网量进图行法对分
Fb1 Fb2
a 2 Fa1 , Fc1 aFa2 , Fc2
aFa1 a 2 Fa2
Fb0 Fc0 Fa0
a e j120
4
• 三相量用三序量表示
Fa Fb
Fa1 Fb1
Fa2 Fb2
Fa0 Fb0
a 2 Fa1
aFa2
Fa0
Fc
Fc1
Fc2
Fc0
aFa1
a 2 Fa2
E 0
Ia1Z1 Va1 Ia2 Z 2 Va2
0 Ia0 Z 0 Va0
16
4.2 电力系统各序网络
• 静止元件:正序阻抗等于负序阻抗,不等于零序 阻抗。如:变压器、输电线路等。
• 旋转元件:各序阻抗均不相同。如:发电机、电 动机等元件。
17
一、同步发电机的负序和零序电抗
1 同步发电机的负序电抗
Zs
Z m
Z sc
0
0
Z Z
s
m
0
Z 1
0
0
0
0
Z 2
0
0
0
Z s
2Z m
0
0 Z0
V120 Zsc I120
Va1 Va2
Z 1 Ia1 Z 2 Ia2
Va0
Z
0
Ia0
结论:在三相参数对称的线性电路中,各序对称分量具有独 立性,因此,可以对正序、负序、零序分量分别进行计算。
三、对称分量法在不对称短路计算中的应用 ➢正序网
Ea Ia1 (Z G1 Z L1 ) (Ia1 a 2 Ia1 aIa1 )Z n Va1 Ia1 Ib1 Ic1 Ia1 2Ia1 Ia1 0
Ea Ia1 (Z G1 Z L1 ) Va1
13
三、对称分量法在不对称短路计算中的应用 ➢ 负序网
0.24
0.04~0.125 0.04~0.125 0.036~0.08
0.08
19
2.同步发电机的零序电抗 • 三相零序电流在气隙中产生的合成磁势为零,因
此其零序电抗仅由定子线圈的漏磁通确定。 • 同步发电机零序电抗在数值上相差很大(绕组结
构形式不同): X 0 (0.15 ~ 0.6) X d • 零序电抗典型值
Fa0
• 三序量用三相量表示
1 1 1 S 1 a 2 a 1
a a 2 1
FFaa12 Fa0
1 3
1 1 1
a a2 1
a2 a
S 1F120
5
二、序阻抗的概念
• 静止的三相电路元件序阻抗
VVba Vc
Z Z Z
• a相发生单相接地
Va 0 Vb 0 Vc 0
Ia 0 Ib 0 Ic 0
9
三、对称分量法在不对称短路计算中的应用
• a相接地的模拟
Va 0 Vb 0 Vc 0
Ia 0 Ib 0 Ic 0
10
将不对称部分用三序分量表示
三、对称分量法在不对称短路计算中的应用
11
12
应用叠加原理进行分解
22
1 .普通变压器的零序阻抗及其等值电路 ➢ 漏磁通的路径与所通电流的序别无关,因此变压
器的各序等值漏抗相等。 ➢ 励磁电抗取决于主磁通路径,正序与负序电流的
7
二、序阻抗的概念
• 序阻抗:元件三相参数对称时,元件两端某一序的电压降 与通过该元件的同一序电流的比值。
正序阻抗 负序阻抗 零序阻抗
Z1 Z2
Va1/ Ia1 Va2 / Ia2
Z0
Va0 /
Ia0
8
三、对称分量法在不对称短路计算中的应用
• 一台发电机接于空载线路,发电机中性点经阻抗 Zn接地。
析与计算?
➢ 简单不对称故障的分析计算
2
4.1 对称分量法
正序分量
负序分量
零序分量
合成
3
一、对称分量法
• 正序分量:三相量大小相等,互差1200,且与系 统正常运行相序相同。
• 负序分量:三相量大小相等,互差1200,且与系 统正常运行相序相反。
• 零序分量:三相量大小相等,相位一致。
逆时针旋转1200
X q)
无阻尼绕组 X 2 X d X q
• 发电机负序电抗近似估算值
有阻尼绕组 X 2 1.22 X d 无阻尼绕组 X 2 1.45X d
• 无确切数值,可取典型值
电机类型 电抗
X2
X0
水轮发电机 有阻尼绕组
0.15~0.35
无阻尼绕组 0.32~0.55
汽轮发电机 0.134~0.18
调相机和 大型同步电动机
aa ab ac
Z ab Z bb Z bc
Z Z Z
ac bc cc
I a Ib
Ic
Vabc ZI abc
V120 SZS 1 I120 Z sc I120
Z sc SZS 1 称为序阻抗矩阵
6
• 当元件参数完全对称时 zaa zbb zcc zs zab zbc zca zm
• 负序旋转磁场与转子旋转 方向相反,因而在不同的 位置会遇到不同的磁阻 (因转子不是任意对称 的),负序电抗会发生周 期性变化。
• 有阻尼绕组发电机 X d ~ X q • 无阻尼绕组发电机 X d ~ X q
18
1 同步发电机的负序电抗
• 实用计算中发电机负序电抗计算
有阻尼绕组
X2
1 2
(
X
d
20
二、异步电动机和综合负荷的序阻抗
• 异步电机和综合负荷的正序阻抗: Z1=0.8+j0.6或X1=1.2;
• 异步电机负序阻抗:X2=0.2; • 综合负荷负序阻抗:X2=0.35;
• 异步电机和综合负荷的零序电抗:X0=∞。
21
三、变压器的零序电抗及其等值电路
1. 普通变压器的零序阻抗及其等值电路 • 正序、负序和零序等值电路结构相同。