电力系统不对称运行分析方法

合集下载

不对称三相电路如何分析计算不对称三相电路

不对称三相电路如何分析计算不对称三相电路

中线的作用
• 中线的作用就在于使星形连接的不对称负 载的相电压对称。为了保证负载的相电压 对称,就不应让中线断开。因此,为防止 误动作,规定中线内不允许接入熔断器或 闸刀开关。
例4求负载相电压、负载电流及 中线电流。
• 已知电路如图所示,电源电压对称,每相 电压Up=220V;负载为电灯组,在额定电 压下其电阻分别为RA=5Ω,RB=10Ω, RC=20Ω。(灯泡的额定电路为220V)
IC'A' = 1.11 –118.20 A
求解负载端 线电压
• 从原图中可知: UA'B' = IA'B' Z△=1.11 –1.80×300/300 =333/ 28.20V
求解负载端线电压
IA
或根据一相等效电路先求出负载相电压 UA'N' = IA ZY = 1.93 –31.80× 100 300 =193 –1.80 V
• 当三相系统发生故障时也会引起不对称。
不对称星形连接的三相电路
IN
不对称星形负载的相电压(S断开)
• 开关S断开时,由弥尔曼定理得:
UN'N =
UA ZA
+
UB ZB
+
UC ZC
1 ZA
+
1 ZB
+
1 ZC
≠0
各相电压为 UAN' =UA- UN'N
UBN' =UB- UN'N
UCN' =UC- UN'N
幻灯片
IA
IA= UA/Z=220 00 /22 200=10 –200A • 根据对称性可写出
IB= IA –1200=10 –1400A

电力系统不对称故障分析与计算及其程序设计

电力系统不对称故障分析与计算及其程序设计

电力系统不对称故障分析与计算及其程序设计电力系统是现代社会不可或缺的组成部分。

在电力系统中,不对称故障是一种严重的故障,其影响可以导致电力系统的瘫痪。

因此,不对称故障分析与计算非常重要,是电力系统维护的基础工作之一。

本文将重点讨论电力系统不对称故障分析与计算及其程序设计。

1. 不对称故障的概念不对称故障是指在电力系统中,一侧电源与另一侧负载不对称导致的故障。

不对称故障通常包括短路故障和开路故障两种情况。

短路故障是指两个相之间或者相与地之间的短路,导致电路异常加热、设备损坏、电压降低等问题。

开路故障是指电路中出现的缺失和断路,导致电流无法正常流动,使电力系统无法正常运行。

2. 不对称故障分析与计算在出现不对称故障时,需要进行分析和计算。

基本的不对称故障分析和计算包括以下内容:(1)不对称故障电流的计算。

不对称故障电流是指出现不对称故障时电路中的电流。

不同类型的故障电流计算方法不同,需要根据具体情况进行计算。

不对称故障电流的计算非常关键,可以为后续的故障处理提供依据。

(2)故障影响分析。

不对称故障会对电力系统产生不同程度的影响,包括电压降低、设备故障、负荷损失等。

需要进行故障影响分析,为后续处理提供依据。

(3)电力系统稳态分析。

在不对称故障发生时,需要进行电力系统的稳态分析,分析电力系统受故障干扰后的运行情况,为后续处理提供可靠的指导。

3. 不对称故障计算程序设计对于电力系统不对称故障计算,可以设计相应的计算程序,以提高计算效率和准确性。

根据不同的故障情况和计算需求,可以设计不同的计算程序。

一般而言,不对称故障计算程序应包括以下部分:(1)输入信息。

输入信息主要包括电路图、电力系统参数、故障类型等。

输入信息的准确性对计算结果具有重要的影响。

(2)故障电流计算。

根据输入的电路图和电力系统参数,计算不对称故障电流。

不对称故障电流是不对称故障计算的基础。

(3)故障影响分析。

根据不对称故障电流,计算电力系统电压降低、设备故障等影响,预测故障对电力系统的影响程度。

电力系统不对称故障的分析计算

电力系统不对称故障的分析计算

电力系统不对称故障的分析计算1. 引言电力系统是现代社会中不可或缺的根底设施之一。

然而,由于各种原因,电力系统可能会发生不对称故障,导致电力系统的正常运行受到严重影响甚至导致短路事故。

因此,对电力系统不对称故障进行分析和计算是非常重要的。

本文将分析电力系统不对称故障的原因、特点以及进行相应计算的方法,并使用Markdown文本格式进行输出。

2. 不对称故障的原因和特点不对称故障是指电力系统中出现相序不对称的故障。

其主要原因包括:单相接地故障、双相接地故障以及两相短路故障等。

不对称故障的特点如下:1.电流和电压的相位不同:在不对称故障中,电流和电压的相位不同,通常表现为电流和电压波形的不对称。

2.非对称系统功率:由于不对称故障,电力系统中的功率将变得非对称。

正常情况下,三相电流和电压的功率应该平衡,但在不对称故障中,这种平衡被破坏。

3.对称分量的存在:在不对称故障中,由于相序的不同,电流和电压中会存在对称正序分量、对称负序分量和零序分量。

3. 不对称故障的分析计算方法对于不对称故障的分析计算,一般可以采用以下步骤:3.1 系统参数获取首先,需要获取电力系统的各项参数,包括发电机、变压器、线路和负载的参数等。

这些参数将用于后续的计算。

3.2 故障状态建模根据故障的类型和位置,对故障状态进行建模。

常见的故障状态包括单相接地故障、双相接地故障和两相短路故障等。

3.3 网络方程建立基于故障状态的建模,可以建立电力系统的节点方程或潮流方程。

通过求解节点方程或潮流方程,可以得到电流和电压的分布情况。

3.4 不对称故障计算根据网络方程的求解结果,可以计算不对称故障中电流、电压和功率的各项指标,包括正序分量电流、负序分量电流、零序电流等。

3.5 故障保护和控制根据不对称故障的计算结果,可以对故障保护和控制系统进行设计和优化。

通过故障保护和控制系统的响应,可以及时检测和隔离故障,保证电力系统的平安运行。

4. 结论电力系统不对称故障的分析计算是确保电力系统平安运行的重要步骤。

同步发电机不对称运行的分析

同步发电机不对称运行的分析

发 电机在对称运行 时的电磁现象完全相同。 所以稳态运行时正序 电流 21 单相短路 单相短路是指单线对 中点短路 ,这种情况 只有在发 . 所 遇 到 的 阻抗 就 是 同步 电抗 , z + +其 中 r 定 子 绕 组 电 阻 , 电机 的 中 点 接 地 时 才 有 可 能 发 生 , 电路 如 图 2 图 中 假 定 A相 发 生 即 r , + + 为 + 其 , 为定 子 绕 组 的 同 步 电抗 。 短 路 而 B C两相 空 载 。 、
1 . 负 序 阻 抗 Z : 谓 负 序 阻 抗是 指 负序 电流 流 过 定 子 三 相 绕 组 时 .2 2 _所
电势 , 即
图 1 同步 发 电机 不 对 称 运 行 时各 相 序 的 等 效 电 路 ( 相 J A
Fg 1 A y i. s mme r n i e s n h o o s g n r t r h s ti r nn t y c r n u e e ao a e cu gh p
( ) 得 1
E : U I o :UA I 2 — A
苞 U l q z +
式中磊 为发 电机的励磁电势, Z为同步 电抗 。
当发 电 机不 对 称 运 行 时 , 电枢 电 流 、 其 电枢 电 压 、 电枢 磁 通 都 将 出 现 不 对 称 现 象 。按 照对 称 分 量 法 的 原 理 , 以 将 不 对 称 的 三 相 系 统 分 可 解 为 正 序 、 序 、 序 三 个 对 称 的 分 量 。 就 每一 相 序 的对 称分 量 而 言 , 负 零 可 认 为 各 自构成 一 个 独 立 的 对 称 系 统 . 因此 公 式 1 写 为 可
昂^ 0
E ̄ =0 o
() 3

不对称短路故障分析与计算(电力系统课程设计)

不对称短路故障分析与计算(电力系统课程设计)

不对称短路故障分析
02
不对称短路故障类型
单相接地短路
其中一相电流通过接地电阻,其余两 相保持正常。
两相短路
两相接地短路
两相电流通过接地电阻,另一相保持 正常。
两相之间没有通过任何元件直接短路。
不对称短路故障产生的原因
01
02
03
设备故障
设备老化、绝缘损坏等原 因导致短路。
外部因素
如雷击、鸟类或其他异物 接触线路导致短路。
操作错误
如误操作或维护不当导致 短路。
不对称短路故障的危害
设备损坏
短路可能导致设备过热、烧毁或损坏。
安全隐患
短路可能引发火灾、爆炸等安全事故。
停电
短路可能导致电力系统的局部或全面停电。
经济损失
停电和设备损坏可能导致重大的经济损失。
不对称短路故障计算
03
方法
短路电流的计算
短路电流的计算是电力系统故障分析中的重要步骤,它涉及到电力系统的 运行状态和设备参数。
不对称短路故障分析与 计算(电力系统课程设计)
contents
目录
• 引言 • 不对称短路故障分析 • 不对称短路故障计算方法 • 不对称短路故障的预防与处理 • 电力系统不对称短路故障案例分析 • 结论与展望
引言
01
课程设计的目的和意义
掌握电力系统不对称短路故障的基本原理和计算 方法
培养解决实际问题的能力,提高电力系统安全稳 定运行的水平
故障描述
某高校电力系统在宿舍用电高峰期发生不对称短路故障,导致部 分宿舍楼停电。
故障原因
经调查发现,故障原因为学生私拉乱接电线,导致插座短路。
解决方案
加强学生用电安全教育,规范用电行为;加强宿舍用电管理,定 期检查和维护电路。

电力系统不对称故障

电力系统不对称故障

对称分量中分解和合成的相量关系
Fa2 Fa1
Fc1
Fb1
(a)
Fb2
(b)
Fa0
Fa2
Fa
Fa1
Fc2
Fa0 Fb0 Fc0
(c)
Fc1
Fc2
Fc
Fb1 Fc0
Fb2
Fb
(d)
Fb0
注意:
➢ a b c T 1 2 0 是一对一的线性变换。独立总变 量数不变。
➢ 这样的转换并非纯数学的,各序电流、电压 是客观存在的,可以测出。
U a
a
Zs
Ia
U b
Zm
b
Zm
Zs
U c
Ib
Zm
c
Zs
Ic
从变换上来看:
U UbaZZm a
Zm Zb
Uc Zm
Zm
U a b c Z a b c Ia b c
Zm Zm
IIba
Zc Ic
将三相电压降和三相电流变换成对称分量 :
U 1 2 0 T 1 U a b c T 1 Z a b c T I 1 2 0 Z 1 2 0 I 1 2 0
Y0 /Y/ 开 开 Y0/Y0/ 开 合
x(0) xI xII//xIII
xI xIII xIxII/I/x(II )
3、自耦变压器
自耦变压器的中性点一般都直接接地,或者 经过阻抗接地。如果有第三个绕组,则通常
都采用 接线。
(1)中性点直接接地的 Y0 / Y0 和 Y0 / Y0 / 自耦变压器
Y0 / Y0 接线
1
R1jX1

U0
R2jX2 RmojXmo
两侧绕组中都可以有零序电流流过。即等值 电路中的两个端点都可以与外电路相连。

不对称短路的分析和计算

不对称短路的分析和计算

不对称短路的分析和计算Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】目录摘要电力系统的安全、稳定、经济运行无疑是历代电力工作者所致力追求的,但是从电力系统建立之初至今电力系统就一直伴随着故障的发生而且电力系统的故障类型多样。

在电力系统运行过程中,时常会发生故障,且大多是短路故障。

短路通常分为三相短路、单相接地短路、两相短路和两相接地短路。

其中三相短路为对称短路,后三者为不对称短路。

电力运行经验指出单相接地短路占大多数,因此分析与计算不对称短路具有非常重要意义。

求解不对称短路,首先应该计算各原件的序参数和画出等值电路。

然后制定各序网络。

根据不同的故障类型,确定出以相分量表示的边界条件,进而列出以序分量表示的边界条件,按边界条件将三个序网联合成复合网,由复合网求出故障处各序电流和电压,进而合成三相电流电压。

关键词: 不对称短路计算、对称分量法、节点导纳矩阵1电力系统短路故障的基本概念短路故障的概述在电力系统运行过程中,时常发生故障,其中大多数是短路故障。

所谓短路:是指电力系统正常运行情况以外的相与相之间或相与地(或中性线)之间的连接。

除中性点外,相与相或相与地之间都是绝缘的。

电力系统短路可分为三相短路,单相接地短路。

两相短路和两相接地短路等。

三相短路的三相回路依旧是对称的,故称为不对称短路。

其他的几种短路的三相回路均不对称,故称为不对称短路。

电力系统运行经念表明,单相短路占大多数,上述短路均是指在同一地点短路,实际上也可能在不同地点同时发生短路,例如两相在不同地点接地短路。

依照短路发生的地点和持续时间不同,它的后果可能使用户的供电情况部分地或全部地发生故障。

当在有由多发电厂组成的电力系统发生端来了时,其后果更为严重,由于短路造成电网电压的大幅度下降,可能导致并行运行的发电机失去同步,或者导致电网枢纽点电压崩溃,所有这些可能引起电力系统瓦解而造成大面积的停电事故,这是最危险的后果。

电力系统发生不对称短路故障分析

电力系统发生不对称短路故障分析

摘要电力系统发生不对称短路故障的可能性是最大的,本课题要求通过对电力系统分析不对称短路故障进行分析与计算,为电力系统的规划设计、安全运行、设备选择和继电保护等提供重要的依据。

关键字:标么值;等值电路;不对称故障目录一、基础资料 (3)二、设计内容 (3)1.选择110kV为电压基本级,画出用标幺值表示的各序等值电路。

并求出各序元件的参数。

(3)2.化简各序等值电路并求出各序总等值电抗。

(6)3.K处发生单相直接接地短路,列出边界条件并画出复合相序图。

求出短路电流。

(7)4.设在K处发生两相直接接地短路,列出边界条件并画出复合相序图。

求出短路电流。

(9)5.讨论正序定则及其应用。

并用正序定则直接求在K处发生两相直接短路时的短路电流。

(11)三、设计小结 (12)四、参考文献 (12)附录 (12)一、基础资料1. 电力系统简单结构图如图1所示。

图1 电力系统结构图在K 点发生不对称短路,系统各元件标幺值参数如下:(为简洁,不加下标*) 发电机G1和G2:S n =120MV A ,U n =10.5kV ,次暂态电动势标幺值1.67,次暂态电抗标幺值0.9,负序电抗标幺值0.45;变压器T1:S n =60MV A ,U K %=10.5 变压器T2:S n =60MV A ,U K %=10.5线路L=105km ,单位长度电抗x 1= 0.4Ω/km ,x 0=3 x 1, 负荷L1:S n =60MV A ,X 1=1.2,X 2=0.35 负荷L2:S n =40MV A ,X 1=1.2,X 2=0.35 取S B =120MV A 和U B 为所在级平均额定电压。

二、设计内容1.选择110kV 为电压基本级,画出用标幺值表示的各序等值电路。

并求出各序元件的参数(要求列出基本公式,并加说明)在产品样本中,电力系统中各电器设备如发电机、变压器、电抗器等所给出的都是标么值,即以本身额定值为基准的标么值或百分值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7.3 变压器的各序参数和等效电路
• 变压器的零序励磁电抗与变压器的铁芯结构有关,
(a)三个单相组合式 (b)三相四柱式
Xm
(c)三相三柱式 Xm* 0.3~1
Xm
Xm* 0.3~1
第14页/共38页
7.3.2 变压器等效电路与外电路的连接
• 变压器的正序、负序等效电路都是直接与 外电路相连接。
第12页/共38页
7.3 变压器的各序参数和等效电路
• 7.3.1 普通变压器的各序参数
• 变压器的正序、负序和零序电路具有相同的 形状且和前面给出的等效电路完全一致,
• 注意双绕组变压器的画法略有变化,有
XI+XII=XT ,
短路分析时,略去电阻与电导
(a) 双绕组变压器
(b) 三绕组变压器
第13页/共38页
第7页/共38页
7.1.2 对称分量法 在不对称短路计算中的应用
• 根据对称分量法,这一组不对称的电 压源可以分解成正序、负序和零序三 组对称电压源。根据叠加原理,可以 把电力系统看成三部分的叠加。
第8页/共38页
=
讨论:
1、分别用
下标1、2、
0表示各序 参数。
+
2、各8页
Ic Ia1 Ia2 Ia0 aIa1 a 2Ia2 Ia0
IIba
1 a 2
1 a
1 1
IIaa21
T
IIaa21
Ic a a 2 1Ia0 Ia0
对称分量变换矩阵,用T表示
第3页/共38页
7.1.1 对称分量法
• 简写成:
Iabc TI120
• 已知了三个序相量,就可以通过T的逆变换 可求出三个不对称的电流相量
• 任何一组不对称的三个相量(电压或电流 )总可以分解成为正序、负序和零序三组 (每组三个)相量。
第2页/共38页
7.1.1 对称分量法
• 任选一相(这里选a相)电流作为基准相量,
Ia Ia1 Ia2 Ia0
a e j120o
Ib Ib1 Ib2 Ib0 a 2Ia1 aIa2 Ia0
第7章 电力系统不对称运行分析方法
• 对基波分量而言,由于只有故障点发 生不对称故障导致三相阻抗不相等, 电力系统其它各元件的三相阻抗仍保 持相等,针对此特点,可以采用一种 比较简单的对称分量法进行分析。
• 本章重点掌握对称分量法和三序等效 电路的画法。
第1页/共38页
7.1 对称分量法及其应用
• 7.1.1 对称分量法
第19页/共38页
表7-2 架空电力线路各序电抗的平均值
x1/kmx2 0.4
正、负序
架空电力线路分类 电抗 /km 零序电抗 /km
单回路 无避雷线
x0=3.5x1=1.4
双回路
单回路 有钢质避雷
• 设变压器的至少有一个中性点直接接地, 则变压器零序等效电路与外电路的连接 :
第16页/共38页
7.3.3 中性点有接地阻抗时变压器的零序等效电路
• 当变压器的Yn接法绕组的中性点经阻抗接 地时,若有零序电流流过变压器,则中性 点接地阻抗中将流过三倍的零序电流。
第17页/共38页
7.3.3 中性点有接地阻抗时变压器的零序等效电路
7.2同步发电机的各序参数
• 在讨论短路时我们往往采用近似方法,只计 入电抗,如果精确求解要计入电阻时,因为 电阻与频率无关,所以正、负、序等效电路 中的电阻都是相等的。
第10页/共38页
7.2同步发电机的各序参数
同步电机类型 汽轮发电机 有阻尼绕组的水轮发电机 无阻尼绕组水轮发电机 调相机和大型同步电机
• 试求其三组序电压分量。
• 解:取a相为基准相,
UUaa21
Ua0
1 3
1 1 1
a a2 1
a2
0
113.9 60o
a
223.1 - 20o
139.8
-
120
o
1 223.1 - 220 o 25.8 60o
第5页/共38页
例7-1
• 求出另二相的各序电压分量
正序分量: Ub1 a2Ua1 113.9 300 o 113.9 - 60oV Uc1 aUa1 113.9 180 o -113.9 V
IIaa21
Ia0
1 3
1 1 1
a a2 1
a2 a
IIba
T-1 IIba
1 Ic
Ic
对不对称的三相电压,也可以用对称分量 法进行分解。
第4页/共38页
例7-1
• 设电力系统某点发生a相单相接地故障,现 测得短路点的三相线电压分别为:
Ua 0, Ub 233.1 - 20o V,Uc 233.1 - 220 o V
• 当外电路向变压器某侧三相绕组施加零序 电压时,如果能在该侧绕组产生零序电流 ,则等效电路中该侧绕组与外电路接通, 如果不能产生零序电流,则认为变压器该 侧绕组与外电路断开。根据这个原则,只 有中性点接地的星形接法(用YN表示)的 绕组才能与外电路接通。
第15页/共38页
7.3.2 变压器等效电路与外电路的连接
负序分量:Ub2 a Ua2 139.8 0o 139.8 V Uc2 a2Ua2 139.8 120 o V
零序分量:Ub0 Uc0 Ua0 25.8 60o V
第6页/共38页
7.1.2 对称分量法 在不对称短路计算中的应用
• 电力系统发生不对称短路时,仅在短 路点不对称。——转化为对称
• Yn/Y/Δ连接的三绕组变压器的等效电路如下 ,注意到实际上变压器的各绕组是通过电磁
耦合的,电路上并不相连,两侧的中性点电
压实际可能并不相等。
第18页/共38页
7.4 电力线路的各序参数和等效电路
• 三相电力线路也是静止元件,其正序 和负序参数相等。
• 三相电力线路中流过零序电流时,由 于零序电流大小相同,且相位也相同 ,因此零序电流必须与大地、架空地 线来构成回路,这样架空输电线路的 零序阻抗与电流在大地中的分布有关 ,精确计算是十分困难的。
XG2* 0.16
XG0* 0.06
0.25 0.06
0.45 0.07
0.24 0.08
第11页/共38页
7.2同步发电机的各序参数
• 讨论: • 当发电机定子绕组中通过负序基频电流时,
它产生的负序旋转磁场与转子之间有两倍 转速的相对运动,因此,同步发电机的负 序电抗是不等于其正序电抗的。 • 发电机的零序电抗只由定子线圈的等值漏 磁通决定,与发电机内部绕组的结构有关。
相关文档
最新文档