第四章悬索桥精确计算
悬索桥—计算PPT课件

下页
工程中,悬索桥跨径突破300米,当时的遇到的问题是活载挠度 过大,曾通过增大加劲梁刚度来解决这一问题,主梁高跨比用到 1/40左右,过大挠度对内力影响不能忽略。
2020/2/20
7
(四)挠度理论
1908年梅兰(Melan)提出了悬索桥分析的挠度理论,并经1908年在
目录
纽约的曼哈顿(Manhattan)大桥设计中采用。
目录
悬索桥
上页
下页
2020/2/20
1
内容提要
本章主要介绍悬索桥的结构类型及构造,悬索桥的计算及
目录
施工简介。
本章的教学重点悬索桥的结构类型及构造;
教学难点为悬索桥的计算及施工。
上页
能力要求
下页
通过本章的学习,学生应达到掌握各类悬索桥的结构类型
及构造,熟悉悬索桥的计算及施工简介。
2020/2/20
行分析。
上页
与此同时,Poshitt、Tezcan、Saafan也相继发表了悬
索桥分析的有限位移理论。在有限位移理论中,荷载的
平衡状态是以变形后的结构状态为基础的。采用有限位
下页
移理论进行分析,对所分析的对象可以采用更符合实际
的计算模型,其结果当然也就更为精确。
2020/2/20
10
(六)悬索桥设计的计算内容
精确合理地确定悬索桥成桥内力状态与构形;
目录
合理确定悬索桥施工阶段的受力状态与构形,以期在成桥时满足设
计要求;
精确分析悬索桥运营阶段在活载及其它附加荷载作用下的静力响应;
上页
(七)成桥状态主缆形状
下页
2020/2/20
小跨径悬索桥:确定桥成状态采用抛物线法。 大跨径悬索桥:主缆线型呈多段悬链线组成的索多边形,计算主 缆线型主要有非线性循环迭代法和基于成桥状态的反算法。
悬索桥的计算方法及其历程1

悬索桥的计算方法及其发展悬索桥是一种古老的桥梁结构形式,也是目前大跨度桥梁的主要结构型式之一。
悬索桥主要是由缆索、吊杆、加劲梁、主塔、锚碇等构成。
从结构形式上看,它是一种由索和梁所构成的组合体系,在受力本质上它是一种以柔性索为主要承重构件的悬挂结构。
悬索桥随着跨度的增大,柔性加大,在荷载作用下会呈现出较强的非线性,所以悬索桥宜采用非线性方法来进行结构分析。
考虑悬索桥非线性因素的结构分析方法主要有挠度理论和有限位移理论。
挠度理论考虑了悬索桥几何非线性的主要因素,可用比较简便的数值方法来分析,又有影响线可资利用,故很适用于初步设计阶段的结构设计计算。
有限位移理论则全面地考虑了悬索桥几何非线性因素,计算结果较挠度理论精确,但计算过程复杂,直接用于设计计算有诸多不便和困难。
悬索桥挠度理论是一种古典的悬索桥结构分析理论。
这种理论主要考虑悬索和加劲梁变形对结构内力的影响,在中小跨度范围内其计算结果比较接近结构的实际受力情况,具有较好的精度。
悬索桥挠度理论主要分为多塔悬索桥挠度理论和自锚式悬索桥挠度理论。
最初的悬索桥分析理论是弹性理论。
弹性理论认为缆索完全柔性,缆索曲线形状及坐标取决于满跨均布荷载而不随外荷载的加载而变化,吊杆受力后也不伸长,加劲梁在无活载时处于无应力状态。
弹性理论用普通结构力学方法即可求解,计算简便,至今仍在跨径小于200米的悬索桥设计中应用[1]。
但弹性理论假定缆索形状在加载前后不发生变化,显然与悬索桥的可挠性不符,因此发展出计入变形影响的悬索桥挠度理论。
古典的挠度理论称为“膜理论”。
它是将悬索桥的全部近视看成是一种连续的不变形的膜,当缆索产生挠度时,加劲梁也随之产生相同的挠度。
由于根据作用于缆索单元上吊杆力与缆索拉力的垂直分力平衡以及作用于加劲梁单元上的外荷载及吊杆力与加劲梁弹性抗力平衡的条件建立力的平衡微分方程而求解。
挠度理论和弹性理论的最大区别是摒弃了弹性理论中关于缆索形状不因外荷载介入而改变的假设,相应建立缆索在恒载下取得平衡的几何形状将因外荷载介入而改变及同时计入缆索因外荷载所增索力引起的伸长量的假设,极大的接近悬索桥主索的实际工作状态,对悬索桥的发展起到了很大的推动作用。
悬索桥施工、计算与自锚式悬索桥简介

➢ 19世纪后半叶,奥地利工程师约瑟夫·朗金和 美国工程师查理斯·本德分别独立地构思出自锚式 悬索桥的造型,朗金在1859 年写出了这种构想, 本德于1867年申请了专利。 ➢ 1870年,朗金在波兰设计建造了世界上首座小 型铁路自锚式悬索桥。 ➢ 1915年, 德国设计师在科隆的莱茵河上建造了主 跨达185m的科隆-迪兹自锚式悬索桥,采用临时 木脚手架支撑钢梁直到主缆就位。该方案的选择主 要是因为其外形美观,而地质条件又不允许修建锚 碇。主缆采用了眼杆结构,因而能方便地锚固在加 劲梁上。科隆-迪兹桥1945年被毁,但原来桥台上 的钢箱梁仍保存至今。
1.2 挠度理论 1862年有学者提出了无加劲悬索桥的挠度理
论,1888年,奥地利J.Melan教授发表了有加劲悬 索桥的挠度理论并于1906年进行了改进。1908年, L.S.Moiseiff在设计纽约Manhattan大桥时首次 采用挠度理论并显示出该理论的优越性。此后,巴 西的Florianpolis桥,美国的华盛顿桥、金门桥, 英国的福斯桥、塞文桥等大量悬索桥都采用了挠度 理论,并在实践中对理论进行了一些修正和发展。
立面图
桥名 布鲁克林桥 曼哈顿桥
悬索桥
国家 主跨
美国
486
美国
448
华盛顿桥
美国 1067
金门大桥 奥克兰海湾大桥
韦拉扎诺桥 塞文桥
博斯普鲁斯大桥 虎门大桥
大贝尔特东桥 明石海峡桥 青马大桥
江阴长江大桥 润扬大桥
美国 美国 美国 英国 土耳其 中国 丹麦 日本 中国 中国 中国
1280 704 1298 987.6 1074 888 1624 1991 1377 1385 1490
2. 悬索桥的结构体系
地锚式:单跨、三跨简支加劲梁、三跨双跨
悬索桥缆索线形基本理论及计算方法

Bridge Engineering
悬索桥缆索线形基本理论及计算方法
李乾坤
(广东和立土木工程有限公司,广东广州511400)
摘要:关于悬索桥缆索线形的理论分析及计算方法国内外很多学者都已进行了研究,但均未对这些研究做细致的推导
论述,笔者依据主缆微分平衡方程,推导了缆索在沿跨长均布荷载作用下的抛物线方程及沿主缆长均布荷载作用下的悬
H•話+心)=0。
(5)
悬索桥主缆在仅受竖向荷载作用时,主缆任一点
张力的水平分力相等,竖向荷载沿跨长均匀分布时,
g(y)=g,则有 //•半r+<7 = 0;
(6)
ax
dd2yZ~__q亍
((77))
20194* 4#|(7
37 卷彳苯技* 95
!!桥梁工程
Bridge Engineering
对公式(7)进行二次积分可得:
S=^^-・sin/i(j8)cosb(a-B)。
(25)
q 取主缆微段分析可得成桥状态下主缆伸长量 。将
公式(24)代入公式(16)可得:
△S = H2S2
(26)
EAL2
则空缆状态下主缆的无应力索长为:S°=S-AS。 若考虑温度对主缆伸长量的影响,设温度差为At,
主缆膨胀系数为a(l/T),则有:
y=—[cosfe(a) ~cos/i(^^--a)]o (23)
q
L
其中:a = shT啤?)+/3,/3=单-。索长微段ds =
shp
2H
皿砰,则任一点处的有应力索长为:S= [#1 + (瞥)2 ;
由公式(23)可得:
■^- = _sin/i( 2血 _a)。
悬索桥计算主缆面积例题

悬索桥计算主缆面积例题
计算悬索桥主缆面积的常见例题,可以根据以下步骤进行计算:
1. 确定桥梁的设计参数,包括主跨长度、主缆高度和各个隔距(通常为等距离)。
2. 计算主跨的独立悬索段数量。
根据跨径和隔距,可以计算出主缆中独立悬索段的数量。
3. 计算悬索桥中每个悬索段的长度。
根据主跨长度和独立悬索段数量,可以计算出每个悬索段的长度。
4. 计算每个悬索段所需的主缆总长。
根据悬索段长度和主缆高度,可以计算出每个悬索段所需的主缆总长。
5. 计算主缆的总面积。
将每个悬索段所需的主缆总长相加,得到主缆的总长度。
然后,将总长度乘以主缆高度,即可得到主缆的总面积。
请注意,以上仅为常见的计算步骤,具体计算方法可能因不同桥梁设计规范和参数而有所不同。
在实际应用中,应参考相关的国家或行业标准来进行计算。
对于具体桥梁设计,建议咨询专业的桥梁工程师进行准确计算。
悬索桥设计计算书

-I-
哈尔滨工业大学毕业设计(论文)
Abstract
As a particular kind of suspension bridge, self-anchored suspension bridge has made an appearance in field of engineering after years’ dreariness. Preserving shape of traditional suspension bridge, it causes the engineer’s favor by its elegant figure. Howener, due to complexity of its structure, there are little research data or achievement at home and abroad. This paper has put emphasis on design and computational analysis to a middle-span concrete self-anchored suspension bridge in construction—Fu Shun Wan Xin Bridge are done. 1. Calculation of the reasonal force of cable.The suspension bridge is commonly required the force of cable are uniformity when the dead load acted on the bridge. Then the shear and bending moment will distribute uniformly. The tower of this bridge adopts a sliping saddle and there are some declinations. Therefore the bridge tower doesn’t has bending moment when the dead load acted on the bridge.When we adjust the force of the cable, we just need control the bending moment of the girder. If the distribution of the girder bending moment is uniformly,the force of the cable is the reasonal force of cable. 2. Calculation of girder. self-anchored suspension bridge, the cable anchored at the two ends of the girder directly, so the axial-force of the girder is very great Therefore the girder only need ordinary reinforcing bar. 3. Calculation of deck slab. The deck slab is two-way slab, wo need calculate the deck slab according to the two-way slab. Keywords concrete, self-anchored, suspension bridge, design
悬索桥的计算理论

上式中第一项及第二项沿缆索全长积分,最后一项与加 劲梁挠曲有关,沿加劲梁积分
第2节 悬索桥计算的挠度理论
3. 变形协调方程 上式中前二项沿缆索全长积分,最后一项与加劲梁挠曲 有关,沿加劲梁积分
根据代换梁法,当H固定时,迭加原理仍然适用,于是 可引进影响线的概念,不过此时的影响线是在H一定的 条件下的影响线,H为不同值时,其影响线亦不相同, 因此称H固定情况下的影响线为狭义影响线。 6.1 求某静力影响线的思路
第2节 悬索桥计算的挠度理论
6. 加劲梁为简支情形下的狭义影响线
6.1 求某静力影响线的思路
2 dx dx 2 dy dy 2 ds ds
第2节 悬索桥计算的挠度理论
3. 变形协调方程 以上两式相减,并略去高阶项得
ds ds dx dx dy dy
ds dy dx dl ds dy dx dx
3.1 非线性因素 大位移 垂度 重力刚度(初始应力)
第3节 悬索桥计算的有限位移理论
3.2 杆端力与位移的关系
P 1 EA ( L L0 ) L0
P2
EA ( L L0 ) L0
Q1
6 EI (1 2 ) 2 L
Q2
6 EI (1 2 ) 2 L
代换梁图
第2节 悬索桥计算的挠度理论
4. 代换梁法的基本原理 对(3.26)两边求导两次
d 2M d2 EI 2 ( ) p( x) yH P H 2 dx dx
得到:
EI IV p( x) H P y H
悬索桥的计算方法及其历程1

悬索桥的计算方法及其发展悬索桥是一种古老的桥梁结构形式,也是目前大跨度桥梁的主要结构型式之一。
悬索桥主要是由缆索、吊杆、加劲梁、主塔、锚碇等构成。
从结构形式上看,它是一种由索和梁所构成的组合体系在受力本质上它是一种以柔性索为主要承重构件的悬挂结构。
悬索桥随着跨度的增大,柔性加大,在荷载作用下会呈现出较强的非线性,所以悬索桥宜采用非线性方法来进行结构分析。
考虑悬索桥非线性因素的结构分析方法主要有挠度理论和有限位移理论。
挠度理论考虑了悬索桥几何非线性的主要因素,可用比较简便的数值方法来分析,又有影响线可资利用,故很适用于初步设计阶段的结构设计计算。
有限位移理论则全面地考虑了悬索桥几何非线性因素,计算结果较挠度理论精确,但计算过程复杂,直接用于设计计算有诸多不便和困难。
悬索桥挠度理论是一种古典的悬索桥结构分析理论。
这种理论主要考虑悬索和加劲梁变形对结构内力的影响,在中小跨度范围内其计算结果比较接近结构的实际受力情况,具有较好的精度。
悬索桥挠度理论主要分为多塔悬索桥挠度理论和自锚式悬索桥挠度理论最初的悬索桥分析理论是弹性理论。
弹性理论认为缆索完全柔性,缆索曲线形状及坐标取决于满跨均布荷载而不随外荷载的加载而变化,吊杆受力后也不伸长,加劲梁在无活载时处于无应力状态弹性理论用普通结构力学方法即可求解,计算简便,至今仍在跨径小于200米的悬索桥设计中应用[1]。
但弹性理论假定缆索形状在加载前后不发生变化,显然与悬索桥的可挠性不符,因此发展出计入变形影响的悬索桥挠度理论。
古典的挠度理论称为“膜理论”。
它是将悬索桥的全部近视看成是一种连续的不变形的膜,当缆索产生挠度时,加劲梁也随之产生相同的挠度。
由于根据作用于缆索单元上吊杆力与缆索拉力的垂直分力平衡以及作用于加劲梁单元上的外荷载及吊杆力与加劲梁弹性抗力平衡的条件建立力的平衡微分方程而求解。
挠度理论和弹性理论的最大区别是摒弃了弹性理论中关于缆索形状不因外荷载介入而改变的假设,相应建立缆索在恒载下取得平衡的几何形状将因外荷载介入而改变及同时计入缆索因外荷载所增索力引起的伸长量的假设,极大的接近悬索桥主索的实际工作状态,对悬索桥的发展起到了很大的推动作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
真实索形的迭代计算(续)
根据IP点处实际的H和V,可计算边跨主缆的成桥索形;根 据主索鞍、转索鞍的设计半径,可计算主缆与鞍座的切点座 标;根据吊杆在主缆和桥面上的y座标,可计算吊索在成桥 态的长度。至此,整个悬吊部分的受力与几何形态都被唯一 确定。 否则设误差向量为:
e f hi f
i 1
悬索桥索形力学模型简化图
真实索形的迭代计算
已知:主缆恒载集度 q ,中跨吊杆间距和矢高 f ,鞍座上IP点 坐标,求主缆索形。
公式准备1:取主缆吊杆间任一段无伸长自由悬索,其竖坐标
为y,向下为正,单位缆长重为q,任一点处的Lagrange坐 标为s ,相应的迪卡尔坐标为(x,y),则任意索自由索段
悬索桥 结构精确计算理论
悬索桥成桥状态和施工状态的精确计算
什么是成桥状态和施工状态精确计算? 计算思路:确定悬索桥成桥和施工状态的关键是确定主 缆成桥时的线型,即计算主缆与吊索交点位置及主缆与 鞍座的切点座标。将悬索桥简化成图示的力学模型。
悬索桥索形力学模型简化图
悬索桥成桥状态和施工状态的精确计算
m
e y hi y
i 1
n+1
(54)
实际的H,V可通过影响矩阵法迭代计算按如下步骤迭代求解:
悬索桥施工状态的计算
悬索桥施工状态是指从挂主缆开始到成桥各阶段悬索桥的构 形和受力状态。确定施工状态主要解决三方面问题:
1) 主缆各索段无应力索长
2) 挂索初始状态 3) 吊梁阶段的结构状态
V )T
c11 c 21
c12 H e f V e c 22 y
(56)
H,V通过影响矩阵法迭代计算步骤(续)
3.修正索端力H=H+ H,V=V+ V ,重新计算hi和ef,ey。 由于方程是非线性的,整个计算可以按1-3步进行迭代。当 式(54)的误差值落入收敛范围时,迭代计算结束。这样,不
索形计算思路: 1)先根据抛物线假定预估一个IP点处的H 和V,通过式(61) 由计算出,通过式(62)由计算。最后,应满足如下几何边界 条件:
h
i 1
m
i
f
h
i 1
n+1
i
y
(53)
式中:m,n分别为左鞍座到跨中的吊杆数和吊索总数,为两个 主鞍座IP点的y坐标之差。 2) 如果预估的H,V能使(53)式成立,则H、V、和为所求。
3) 加劲梁安装阶段合理状态的确定 加劲梁的安装步骤是由施工设计确定的。要确定梁体上各 块件在每次施工中的确切位置,从几何上讲仍是困难的, 为此,可以从成桥合理状态开始,逆施工过程进行非线性 倒退分析,计算每一施工阶段剩余结构的状态。 根据前面讨论可知,只要结构材料参数、几何参数是合理 的、施工过程中不出现人为误差,从空索合理状态开始吊 梁,则全桥加劲梁安装完毕,各块件将相互独立,固结后 作用以二期恒载,就可以达到成桥的合理状态。
通过研究缆、吊索、梁、塔等构件的受力特性,精确计 算悬索桥成桥状态和施工状态用三步分析方法比较合适:
第一步:分析吊索恒载轴力;
第二步:计算主缆平衡位置;
第三步:确定主缆与鞍座切点的位置。
悬索桥成桥状态和施工状态的精确计算
成桥状态的近似计算法
吊索是连系加劲梁与主缆的纽带,吊索力可决定加劲梁的内力 分配,反过来,加劲梁的受力状态也可确定吊索内力。给定加 劲梁恒载受力状态,就可求出吊索轴力。 大部分悬索桥的加劲梁是按先铰接后固结的方法施工的,其吊 索的恒载轴力可分为吊装时块件自重引起的轴力N1和桥面固结 后二期恒载作用下根据刚度分配到各吊索上的轴力N2两部分。 N1是确定的,只要计算N2。 假定主缆为二次抛物线,以一期恒载内力为初内力,对结构进 行二期恒载的非线性分析,就能得到N2。(同样矢跨比的悬索 桥而言,索形误差对结构竖向刚度的影响较小,大量数值计算 也证明了这一点),可也可用类似的方法确定其它方法施工的 悬索桥吊索内力。
仅得到了IP点处真实的H和V,而且也得到了每段索的有应
力长度si和吊索作用点的竖座标yi。
i 1
yi y0 hi
k 1
(57)
(50)
Hi Vi 2 V i qsi 2 hi [ 1 ( ) 1 ( ) ] (51) q Hi Hi
式中: li为i号梁段吊杆间距;hi为i号梁段主缆吊点高差 对仅有垂直吊杆的情况
Hi H;
Vi Vi 1 ( P1) 主缆各索段无应力索长的计算
无应力索长的计算必须从成桥合理状态的有应力索长反算而得。 对固定于A(0,0),B(l,h)两点的自由索,其方程为:
其中:
c
y= c cosh(cx+c1)+c2
1
(58) (59)
索长
ch(c1 ) q hc cl ,c1 sh 1 ( ) ,c2 H 2sh(cl / 2) 2 c 1 S ds 1 y ' 2 dx [ sh(cl c1 ) sh(c1 )] s s c
端点力与座标之间的函数关系为:
H 1 V 1 V qs x (s) [sh ( ) sh ( ) ] q H H
V qs 2 H V 2 y (s) [ 1 ( ) 1 ( ) ] q H H
(48)
(49)
真实索形的迭代计算
公式准备2:吊杆间任一索段都必须满足式(48)、(49),令 Vi =V,Hi =H,于是: Hi 1 V i 1 V i qsi l [sh ( ) sh ( )] i q Hi Hi
H,V通过影响矩阵法迭代计算步骤
1.索端力产生单位增量,使V=V+1和H=H+1分别代入式 (53),计算出相应的f和的增量,从而得到影响矩阵:
c11 C c 21
c12 c 22
(55)
式中矩阵第列一为V引起的f和改变量,第二列为H引起的f和 改变量。
2.求出H、V的修正向量 (H
b)包裹转索鞍索段的索长。根据左、右切点及中心索转索鞍半径, 可计算索段的有应力索长。根据成桥态索段左、右段索的轴力,以 及鞍座的实际摩阻系数,可以计算沿鞍座张角变化的索段应力,从 而可计算出该索段的伸长量,有应力索长与伸长量之差便得该索段 无应力索长。
c)转索鞍到主鞍切点索段索长 该索段索长应根据桥跨布置来进行计算。 对于单联吊桥,该段索长可用悬链线索长计算公式。根据转、 主索鞍切点座标直接计算而得,扣除应力伸长量便得无应力索 长。 对于三联悬索桥,主缆与各吊杆的理论交点均已知,可分段将 各吊索间的索段作为悬链线,计算出各段的有应力索长和无应 力索长,累加得到该索段的总索长和无应力索长。 d)包裹主鞍座索段的索长,可仿 b)进行计算; e)中跨主鞍座两切点间索长计算,可参照 c)中三联悬索桥的索 长计算方法计算。 根据桥面标高,鞍座压力等参数,就可以确定塔高、吊索无应力索 长等重要构件尺寸。从而完全得到了挂索初态所必须的基本参数。
(60)
当
T ( s) EA0
<<1时 (61)
T ( s) H S S0 ( )ds [cl sh(2cl c1 ) sh(2c1 )] s0 EA0 2 EA0 c
根据公式(71)和(72)可以完成以下计算:
a)从锚碇到转索鞍索段的索长,根据悬链线索长计算公式可计算 有应力索长,扣除成桥索力引起的伸长量便是无应力索长;这一区 段内主缆的长度计算比较复杂。因为主缆每一层离开转索鞍的离开 点都是不一样的。在计算中先计算出该索段的中心索长,再根据不 同层和离开点位置对每一层索长进行修正。
2) 鞍座基准回退量及空索合理状态
鞍座基准回退量是指以满足成桥合理状态的各跨主缆无应力索长空 挂于索鞍上,使左、右边空索水平拉力相等时索鞍的移动量。 空索合理状态是指在鞍座具有基本回退量时主缆的真实形状与受力 状态。 计算采用数值迭代法,通过图示流程由电算完成。
在实际施工时,有时塔顶尺寸不允许鞍座有基准回退量那么大的偏 移,柔性塔往往使塔在施工时预拉一水平位移来实现。 挂索时,只要能将各跨算准的无应力索长安装到位,并保证主缆在 鞍座上不滑动,基准回退量并不影响最终成桥时达到合理状态。
真实索形的迭代计算
为了寻找主缆变形后在吊索力作用下的平衡索形,将铰支座设置在主、转 索鞍的理论交点处,主缆被分割成独立的五部分。它们靠支座的左、右边 竖向力和水平力的平衡条件取得联系。弯曲刚度忽略不计,吊索力、索夹 自重力都以等效集中力Pi方式作用在其相应位置。并注意到计算的是主缆 有应力平衡位置,其变形已经完成,因此主缆在计算过程中不伸长。