实验四:电子实做实验(差分放大器)

合集下载

【最新精选】差分放大电路仿真

【最新精选】差分放大电路仿真

差分放大电路仿真一、实验目的1.掌握差动放大电路对放大器性能的影响。

2.学习差动放大器静态工作点、电压放大倍数、输入电阻、输出电阻的仿真方法。

3.学习掌握Multisim交流分析4.学会开关元件的使用二、实验原理图3.2-1是差动放大器的基本结构。

它由两个元件参数相同的基本共发射放大电路组成。

当开关K 拨向左边时,构成典型的差动放大器。

调零电位器RP用来调节VT1、VT2管的静态工作点,使得输入信号Ui=0时,双端输出电压Uo=0。

R E为两管共用的发射极电阻,它对差模信号无负反馈作用,因而不影响差模电压放大倍数,但对共模信号有较强的负反馈作用,故可以有效地抑制零漂,稳定静态工作点。

图3.2-1 差动放大器原理电路在设计时,选择VT1、VT2特性完全相同,相应的电阻也完全一致,调节电位器RP的位置置50%处,则当输入电压等于零时,UCQ1= UCQ2,即Uo=0。

双击图中万用表XMM1、XMM2、XMM3分别显示出UCQ1、、UCQ2、Uo电压,其显示结果如图3.2-2所示。

(a)UCQ1显示结果(b)Uo显示结果(c)UCQ2显示结果图3.2-2 UCQ1、、UCQ2、Uo显示结果三、虚礼实验仪器及器材双踪示波器信号发生器交流毫伏表数字万用表四、实验内容与步骤1. 差动放大器的静态工作点分析 典型差动放大器电路静态工作点EBEEE E R U U I -≈(认为UB1=UB2≈0),E C2C1I 21I I ==恒流源差动放大器电路静态工作点E1BEEE CC 212E3C3R U )U (U R R R I I -++≈≈,C3C1C1I 21I I == (1)按下图3.2-3输入电路图3.2-3(2)调节放大器零点把开关S1和S2闭合,S3打在最左端,启动仿真,调节滑动变阻器的阻值,使得万用表的数据为0(尽量接近0,如果不好调节,可以减小滑动变阻器的Increment 值)。

(3)直流分析启动直流分析,将测量结果填入下表:2. 差模电压放大倍数和共模电压放大倍数 (1)测量差模电压放大倍数当差动放大器的发射极电阻R E 足够大,或采用恒流源电路时,差模电压放大倍数Ad 由输出端方式决定,而与输入方式无关。

差分放大器实验报告

差分放大器实验报告

差分放大器实验报告实验报告——差分放大器一、实验目的本次实验旨在掌握差动放大器的基本原理和实验方法,熟悉差动放大器的电路组成及其参数的测量方法。

二、实验原理差动放大器是运放常用电路之一,由两个反相输入、一个反相输出和一个非反相输出组成。

该电路对于输入信号中公共模信号即同等量级的噪声信号具有一定的抵消作用,能够提高电路的增益,并减小电路的噪声。

差动放大器主要由晶体管、共模抑制电容、偏置稳定电阻等组成。

三、实验器材1. 信号发生器2. 示波器3. 电压表、电流表4. 直流电源5. 差分放大器电路板6. 大量电缆、万用表等组成四、实验步骤1. 准备工作:将电源和差动放大器电路板连接,并将电源接通并连接交、直流电源与电路板。

根据电路原理和电路板图纸在板上焊接所有器件,并按照图纸接线。

2. 测试偏置电压:将示波器负极接地,正极接输入端差模(+)和差模(-)互相交替。

记录偏置电压。

3. 测量差动放大器电压增益:将信号发生器输出一个50mV幅值、1kHz正弦波,在输入端交替连接同相、反相信号。

测量差分放大器输出信号幅值。

4. 测量输入电阻:将信号发生器接入差动放大器输入端,固定一个电压,改变电压源内阻,读取两个数值,计算差分放大器的输入电阻。

5. 测量输出电阻:通过连接负载和电压表,固定输出电压,测量输出电流,通过计算得到输出电阻。

6. 测量共模抑制比:将信号发生器产生信号,同时加入同相和反相信号,测量差模输出电压,并计算共模抑制比。

七、实验结果分析通过本次实验,我们顺利的实现了差动放大器的电路部署,并测量了其电压增益、输入电阻、输出电阻,以及共模抑制比等参数。

数据表明,本实验设计和测试方法正确可行,并为近期电路实验提供了较为完备的技术积累。

结语本次实验通过学习和实践的相结合,让我们了解了电路基本原理和电路参数测量知识,也帮助我们掌握了差动放大器的电路结构和工作原理。

期望未来在电路设计和开发中积累更多的宝贵经验和有效技术指导。

差分放大器实验报告

差分放大器实验报告

差分放大器实验报告差分放大器实验报告引言差分放大器是一种常见的电路,广泛应用于模拟电路和信号处理领域。

本实验旨在通过搭建差分放大器电路并进行测试,探究其工作原理和性能特点。

一、实验原理差分放大器是由两个共尺度的放大器组成,分别对输入信号进行放大后再作差。

其主要特点是具有较好的抑制共模干扰能力和较高的增益。

差分放大器的工作原理如下:1. 差模放大差分放大器的输入信号分为差模信号和共模信号。

差模信号是两个输入信号之间的差值,而共模信号是两个输入信号之和的一半。

差分放大器会将差模信号放大,而对共模信号进行抑制。

2. 共模抑制比共模抑制比是衡量差分放大器抑制共模信号能力的指标。

通常用分贝(dB)来表示,计算公式为:CMRR = 20log10(差模增益/共模增益)。

共模抑制比越大,说明差分放大器对共模信号的抑制能力越强。

二、实验器材和步骤实验器材:1. 功放芯片2. 电阻、电容等被动元件3. 示波器4. 函数信号发生器5. 直流电源实验步骤:1. 搭建差分放大器电路,包括两个放大器、输入电阻、反馈电阻等元件。

2. 连接示波器和函数信号发生器,用于输入和观测信号。

3. 打开直流电源,调节电压至适当数值。

4. 调节函数信号发生器,输入差模信号和共模信号。

5. 观察示波器上的输出波形,并记录数据。

6. 根据记录的数据,计算差分放大器的增益和共模抑制比。

三、实验结果与分析通过实验,我们得到了差分放大器的输出波形和相关数据。

根据这些数据,我们可以计算出差分放大器的增益和共模抑制比。

1. 增益差分放大器的增益可以通过测量输出信号的峰值电压和输入信号的峰值电压来计算。

增益的计算公式为:差分增益 = 输出峰值电压 / 输入峰值电压。

根据实验数据,我们可以得到差分放大器的增益值。

2. 共模抑制比共模抑制比的计算需要用到差分增益和共模增益的值。

根据实验数据,我们可以计算出共模抑制比的数值,并进行比较分析。

通过对实验结果的分析,我们可以得出差分放大器具有较高的增益和较好的共模抑制能力。

差动放大电器实验报告

差动放大电器实验报告

差动放大电器实验报告差动放大电路实验报告一、实验目的:1. 了解差动放大电路的工作原理;2. 掌握差动放大电路的参数测量方法;3. 研究差动放大电路的频率响应特性。

二、实验仪器和材料:1. 差动放大电路实验箱;2. 某型号差动放大电路芯片;3. 功能发生器;4. 串联耦合电容;5. 变阻器;6. 电压表。

三、实验步骤:1. 将差分放大器芯片正确插入实验箱中;2. 将功能发生器的输出端与差分放大器的输入端相连,设置合适的频率和振幅;3. 通过串联耦合电容将差分放大器的输出端与示波器相连,观察放大器的输出信号;4. 使用电压表测量输入端和输出端的电压;5. 调节变阻器,观察不同阻值对放大器增益和频率响应的影响;6. 记录实验数据。

四、实验结果与分析:1. 在不同频率下,测量输入端和输出端的电压,并计算差分放大器的增益。

根据实验数据绘制增益-频率曲线图,计算放大器的功率带宽积;2. 通过调节变阻器,观察不同阻值对放大器增益和频率响应的影响。

记录实验数据并进行分析。

五、实验结论:1. 差分放大器具有高增益和高共模抑制比等特点,适用于需要抑制共模干扰的场合;2. 通过实验可以得到差分放大器的频率响应特性曲线,了解其在不同频率下的放大倍数和相位特性;3. 实验结果还可以用于差分放大电路的性能优化,如选择合适的补偿网络,提高其频率响应特性。

六、实验心得:通过本次实验,我深入了解了差分放大器的工作原理和参数测量方法,掌握了差分放大器的频率响应特性的测试技巧。

同时,实验过程中需要注意对实验仪器的正确操作,准确测量并记录实验数据。

此外,实验中还应注意安全使用电器设备。

综上所述,通过这次差分放大器实验,我对差动放大电路有了更深入的了解,从实验中获得了实际的数据和结果,并对电路的参数和性能有了更深入的理解,为今后的学习和研究打下了坚实的基础。

差分电路放大电路实验报告

差分电路放大电路实验报告

差分电路放大电路实验报告差分电路放大电路实验报告引言:差分放大电路是电子工程中常用的一种电路,它具有放大信号、抵消噪声等优点。

本实验旨在通过搭建差分电路放大电路,探究其工作原理和性能表现。

一、实验目的通过差分电路放大电路的实验,达到以下目的:1. 掌握差分放大电路的基本原理;2. 了解差分放大电路的性能指标;3. 实际搭建差分放大电路,观察其放大效果。

二、实验原理差分放大电路由两个输入端和一个输出端组成,其中输入端的信号被分别送入两个放大器中,再将两个放大器的输出信号相减得到差分输出信号。

差分放大电路的工作原理基于放大器的放大特性,通过差分输入信号的放大,可以得到更高的输出信号。

三、实验步骤1. 准备实验所需材料:电源、电阻、电容、运放等;2. 按照电路图搭建差分放大电路,注意连接的正确性和稳定性;3. 调整电源电压,使其符合放大电路的工作要求;4. 输入不同的信号,观察输出信号的变化,并记录数据;5. 对比不同输入信号的放大效果,分析差分放大电路的性能。

四、实验结果与分析通过实验,我们得到了一系列的实验数据,并进行了分析。

在不同的输入信号下,差分放大电路的输出信号均有所放大,而且在抵消噪声方面表现出色。

这验证了差分放大电路的工作原理和性能。

五、实验总结差分放大电路是电子工程中常用的一种电路,它具有放大信号、抵消噪声等优点。

通过本次实验,我们对差分放大电路的原理和性能有了更深入的了解。

在实际应用中,差分放大电路可以用于信号放大、噪声抑制等方面,具有广泛的应用前景。

六、实验心得通过本次实验,我对差分放大电路有了更加深入的认识。

在搭建电路的过程中,我学会了正确连接电路元件,保证电路的稳定性。

在观察实验结果时,我发现不同的输入信号对输出信号的影响,这让我对差分放大电路的性能有了更加直观的认识。

通过实验,我不仅提高了实验操作能力,还加深了对电子工程的理解。

七、参考文献[1] 电子电路设计与仿真实验教程. 邓志东, 陈乃渊. 电子工业出版社, 2009.[2] 电子电路实验与设计教程. 刘同英, 刘红刚. 电子工业出版社, 2016.[3] 电子电路基础与实验. 赵文瑞, 姚文涛. 电子工业出版社, 2018.注:本实验报告仅供参考,实际操作请遵循实验室安全规定。

差分放大电路实验报告

差分放大电路实验报告

差分放大电路实验报告一、实验目的1.了解差分放大电路的基本原理和特点;2.掌握差分放大电路的设计和调试方法;3.熟悉差分放大电路的频率特性;4.学习使用示波器进行电路信号的观测和测量。

二、实验器材1.差分放大电路实验箱;2.示波器;3.信号源;4.直流电压源。

三、实验原理差分放大电路是众多电子设备中常见的一类电路,采用了差分输入方式可以有效降低共模干扰,提高了电路的抗干扰能力。

它由两个共模输入信号为零的晶体管组成,通过二极管连接的虚地点对共模信号进行抑制,只放大差模信号。

差模信号指的是两个输入信号的差值,共模信号指的是两个输入信号的平均值。

在差分放大电路中,晶体管的放大倍数由输入电流决定,输入电流越大,放大倍数越大。

同时,将两个输入信号松耦合,可以大幅度减小共模信号的放大倍数,从而达到抑制共模干扰的目的。

四、实验步骤1.搭建差分放大电路,接入示波器和信号源;2.分别接入正向输入信号和负向输入信号,将其调节至理想值;3.调节直流电压源和输入电阻,使差分放大电路的工作点稳定;4.调节输入信号频率,记录输出信号幅度和相位的变化情况;5.结束实验,关闭相关设备。

五、实验结果与分析通过实验,我们可以得到差分放大电路的输入输出特性曲线。

根据实验数据,我们可以计算出差分传输增益、共模抑制比和输出相位等。

实验结果显示,差分放大电路能够很好地放大差模信号,同时将共模信号压制得很低。

由于输入阻抗大,输入信号能够有效地传入差分放大电路中,而输出阻抗小,可以将信号有效地传递到下一个级联电路中。

此外,差分放大电路的相位可以随输入信号的频率变化而变化,相位差可达到180度。

六、实验总结通过本次实验,我们了解了差分放大电路的基本原理和特点,掌握了差分放大电路的设计和调试方法。

实验结果表明,差分放大电路能够有效地抑制共模干扰,提高电路的抗干扰能力。

在实际应用中,差分放大电路被广泛应用于增加电路增益、提高系统灵敏度、减小噪声等方面。

[精编]差动放大器实验报告

[精编]差动放大器实验报告

[精编]差动放大器实验报告(1) 实验报告:差动放大器实验一、实验目的1.理解差动放大器的工作原理及特点。

2.掌握差动放大器的调整与测量方法。

3.通过实验,加深对模拟电路中放大器性能的理解。

二、实验原理差动放大器是一种对差模信号具有放大作用的放大器,它具有高输入阻抗、高共模抑制比、低零点漂移等优点,常用于模拟电路中的信号放大。

差动放大器主要由差分对管和负载电阻组成,通过对差分对管的基极电压进行适当调整,可以实现差模信号的放大。

三、实验步骤1.准备实验器材:差动放大器模块、信号源、示波器、万用表、导线若干。

2.连接实验电路:将差动放大器模块与信号源、示波器、万用表连接起来,构成完整的实验电路。

3.调整差动放大器:根据差动放大器的使用手册,调整差分对管的基极电压,使差动放大器工作在合适的状态。

4.输入信号:利用信号源产生一定幅度和频率的差模信号,输入到差动放大器的输入端。

5.观察输出信号:在示波器上观察差动放大器输出端的信号变化,记录下不同输入信号下的输出信号幅值和波形。

6.测量性能指标:利用万用表测量差动放大器的增益、共模抑制比等性能指标,并记录下测量数据。

7.分析实验结果:根据实验数据和观察结果,分析差动放大器的性能特点及工作原理。

四、实验结果与分析1.实验数据:2.结果分析:根据实验数据,我们可以看出,随着输入信号幅值的增加,输出信号幅值也相应增加,增益和共模抑制比也表现出良好的线性关系。

这表明差动放大器在放大差模信号的同时,能够有效地抑制共模信号,具有较高的信号保真度。

此外,通过观察示波器上的输出波形,我们发现差动放大器的输出信号波形具有良好的稳定性,没有出现明显的零点漂移现象。

这进一步验证了差动放大器在模拟电路中的重要作用。

五、实验结论通过本次实验,我们验证了差动放大器在模拟电路中的重要作用,包括放大差模信号、抑制共模信号、提高信号保真度以及减小零点漂移等。

此外,我们还发现,差动放大器的性能指标如增益和共模抑制比与输入信号的幅值和频率具有一定的关系。

差分放大器试验报告

差分放大器试验报告

差分放大器实验报告篇一:差分放大器设计的实验报告设计课题设计一个具有恒流偏置的单端输入-单端输出差分放大器。

学校:延安大学一:已知条件正负电源电压?V模信号Vidcc??12V,?VEE??12V;负载RL输入差?20k?;?20mV。

?10k?;差模电压增益Avd?15;共模抑制二:性能指标要求差模输入电阻R比KCMRid?50dB。

三:方案设计及论证方案一:方案二方案论证:在放大电路中,任何元件参数的变化,都将产生输出电压的漂移,由温度变化所引起的半导体参数的变化是产生零点漂移的主要原因。

采用特性相同的管子使它们产生的温漂相互抵消,故构成差分放大电路。

差分放大电路的基本性能是放大差模信号,抑制共模信号好,采用恒流源代替稳流电阻,从而尽可能的提高共模抑制比。

论证方案一:用电阻R6来抑制温漂?优点:R6越大抑制温漂的能力越强;?缺点:<1>在集成电路中难以制作大电阻;<2>R6的增大也会导致Vee的增大(实际中Vee 不可能随意变化)论证方案二优点:(1)引入恒流源来代替R6,理想的恒流源内阻趋于无穷,直流压降不会太高,符合实际情况;(2)电路中恒流源部分增加了两个电位器,其中47R的用来调整电路对称性,10K的用来控制Ic的大小,从而调节静态工作点。

通过分析最终选择方案二。

四:实验工作原理及元器件参数确定?静态分析:当输入信号为0时,?IEQ≈(Vee-UBEQ) /2Re?IBQ=IEQ/(1+β)?UCEQ=UCQ-UEQ≈Vcc-ICQRc+UBEQ动态分析?已知:R1=R4,R2=R3篇二:加法器及差分放大器项目实验报告加法器及差分放大器项目实验报告一、项目内容和要求(一)、加法器1、任务目的:(1)掌握运算放大器线性电路的设计方法;(2)理解运算放大器的工作原理;(3)掌握应用仿真软件对运算放大器进行仿真分析的方法。

2、任务内容:2.1设计一个反相加法器电路,技术指标如下:(1)电路指标运算关系:UO??(5Ui1?2Ui2)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验四差分放大器实验
1. 实验目的
(1)熟悉差分放大器的工程估算,掌握差分放大器静态工作点的调整与测试方法。

(2)加深理解差分放大器的性能特点。

(3)掌握差分放大器性能指标的测试方法。

2. 实验仪表及器材
(1)双踪示波器
(2)双路直流稳压电源
(3)函数信号发生器
(4)数字万用表
(5)双路晶体管毫伏表
3. 实验电路图
图1-1 差分放大器
如图1-1,当开关K2打向“恒阻”时,实验电路为长尾式差分放大器;当开关K2打向“恒管”时,实验电路为具有恒流源的差分放大器。

4. 知识准备
(1)复习差分放大器的相关理论知识。

(2)根据理论知识对实验电路的静态工作点、电压放大倍数等性能指标进行工程估算。

5. 实验原理
(1)基本原理
差分放大器是一种特殊的直接耦合放大器,它能有效的抑制零点漂移;它的基本性能是放大差模信号,抑制共模信号;常用共模抑制比来表征差分放大器对共模信号的抑制能力;稳流电阻的增加可以提高共模抑制比;但稳流电阻不能太大,因此采用恒流源取代稳流电阻,从而进一步的提高共模抑制比。

差分放大器要求电路两边的元器件完全对称,即两管型号相同、特性相同及各对应电阻值相等。

但实际中总是存在元器件不匹配的情况,从而产生失调漂移。

为了消除失调漂移,实验电路采用了发射极调零电路来调节电路的对称性;同时由于调零电路引入了负反馈,所以电路得以以牺牲增益为代价获得了线性范围的扩展。

差分放大器的有双端输入双端输出、双端输入单端输出、单端输入单端输出、单端输入双端输出四种连接方式;实验电路采用单端输入单端输出的连接方式。

(2)静态工作点的调整
实验电路通过调节电位器R p 使两个三极管的集电极电压相等来调节电路的对称性,完成电路的调零。

(3)静态工作点的测量
静态工作点的测量就是测出三极管各电极对地直流电压V BQ 、V EQ 、V CQ ,从而计算得到V CEQ 和V BEQ 。

而测量直流电流时,通常采用间接测量法测量,即通过直流电压来换算得到直流电流。

这样即可以避免更动电路,同时操作也简单。

EQ CQ CEQ V V V -= EQ BQ BEQ V V V -= e EQ EQ R V I = C CQ CC CQ )(R V V I -=
(4)电压放大倍数的测量
差分放大器有差模和共模两种工作模式,因此电压放大倍数有差模电压放大倍数和共模电压放大倍数两种。

在差模工作模式下,差模输出端U od1是反相输出端,U od2是同相输出端,则差模电压放大倍数为:
ud2ud1ud A A A += ud2i
od2i od1ud1A U U
U U A -=-==
在共模工作模式下,共模输出端U oc1、U oc2均为反相输出端,则共模电压放大倍数为:
uc2uc1uc A A A -= uc2i
oc2
i oc1uc1A U U U U A ===
电路的共模抑制比K CMR 为:
cd ud CMR A A K =
或 dB 20lg cd
ud CMR A A
K =
(5)输入电阻的测量
差分放大器差模输入电阻
R i远小于测量仪表的内阻,所以测试采用图1-2所示的测试方法。

在信号源和电路的输入端之间串接一个电阻R,将微小的输入电流I i转换成电压进行测量;在输出波形不失真的情况下输入信号U i,测量出U s及U i,则输入电阻为:
R
U
U
U
R
U
U
U
I
U
R
i
S
i
i
S
i
i
i
i)
(-
=
-
=
=
可以证明,只有在
s
i
s2
1
U
U
U=
-时测量误差最小;同电阻R的准确度直接影响测量的准确度,电阻R不宜取得过大,否则易引入干扰;也不宜取得过小,否则易引起较大的测量误差。

因此,电阻R应选择精密的电阻,同时选取R和R i一个数量级,且R≈R i,以减小测量误差。

(6)输出电阻的测量
差分放大器差模单端输出的输出电阻R o的测量采用图1-3所示的测试方法。

开关K打开时测出U o,开关K闭合时测出U oL,测输出电阻为:
L
oL
oL
o
L
oL
oL
o
o
R
U
U
U
R
U
U
U
R
-
=
-
=
可以证明,只有在
o
oL
o2
1
U
U
U=
-时测量误差最小;同时电阻R L的准确度直接影响测量的准确度,因此电阻R L应选择精密的电阻,同时选取R L和R o一个数量级,且R L≈R o,以减小测量误差。

(7)差模传输特性的测量
差模传输特性是指差分放大器在差模信号输入时,输出电流I c随输入电压U id的变化规律。

由于在电路确定以后,输出电流-I c1(-I c2)的变化规律与U c1(U c2)的变化规律完全相同,而且测量电压比测量电流要方便,所以可以用示波器来测量差模传输特性曲线;差分放大器的差模单端输出特性曲线如图1-4所示,差模双端输出特性曲线如图1-5所示。

图1-3 输出电阻测量原理图
图1-2 输入电阻测量原理图
6. 实验内容及步骤 (1)电路搭接
按图1-1搭接电路;注意三极管的管脚、电位器的正确接法。

检查无误后方可通电。

(2)调测直流工作点
① 将直流稳压电源的每路输出均调至6V ,正确接入实验电路(注意正、负电源的接法)。

② 将K 1闭合,使输入信号接地;分别在K 2置于“恒阻”和“恒管”位置的情况下,调整电位器R p 使三极管VT1和VT2的集电极电压相等;测量三极管的V BQ 、V EQ 、V CQ ;将测试值记录于表1-1中,计算相关数据。

表1-1 测试静态工作点
③ 测试差模电压放大倍数
测试条件 电路形式
管号
测试数据 计算数据
V B
Q
(V)
V C
Q
(V)
V E
Q
(V)
V B
EQ
(V) V C
EQ
(V) I C
Q
(mA)
V CQ1=V CQ2
恒阻
VT1 VT2 恒管
VT1 VT2
图1-4 差模单端输出传输特性曲线
图1-5 差模双端输出传输特性曲线
将K1打开,使电路处于差模输入状态;输入正弦信号(f =1KHz、U i=50mv),在输出波形不失真的情况下,测量K2置于“恒阻”和“恒管”两种位置时的输出电压U od1的U od2,将测试值记录于表1-2中,计算相关数据;观察并记录输入信号U i与输出信号U od1、U od2之间的相位关系,绘制相应波形。

④测试共模电压放大倍数
将K1闭合,使电路处于共模输入状态;输入正弦信号(f =1KHz、U i=300mv),在输出波形不失真的情况下,测量K2置于“恒阻”和“恒管”两种位置时的输出电压U oc1的U oc2,将测试值记录于表1-3中,计算相关数据;观察并记录输入信号U i与输出信号U oc1、U oc2的相位关系,绘制相应波形。

表1-2 测试差模电压放大倍数
表1-3 测试共模电压放大倍数
⑤测试差模输入电阻
将K1打开,K2置于“恒阻”位置;在信号源U s和输入端U i之间串接一个R =2KΩ的电阻;输入正弦信号(f =1KHz、U i=50mv),在输出波形不失真的情况下,测量信号源电压U S ,将测试
值记录于表1-4中,计算输入电阻R i;完成测试后恢复电路。

表1-4 测试差模输入电阻
⑥测试差模单端输出的输出电阻
将K1打开,K2置于“恒阻”位置;输入正弦信号(f =1KHz、U i=50mv),在输出波形不失真的情况下,测量空载(R L不接入即原电路形式)时的输出电压U o及有载(将R L=3KΩ并接在VT1三极管的集电极与电路地之间)时的输出电压U oL,将测试值记录于表1-5中;计算输出电阻R o;完成测试后恢复电路。

表1-5 测试差模单端输出的输出电阻
⑦测试差模传输特性
将K1打开,使电路处于差模输入状态;输入正弦信号(f = 1KHz),用示波器的X-Y工作模式观察输入信号与输出信号的相对关系(即传输特性曲线);逐渐增大输入信号,使输出进入限幅区,即可观察到完整的传输特性曲线;从曲线上测试静态工作点V CQ、线性范围、差模电压增益等性能指标,并与前测数据进行比较;观察差模工作模式下差分放大电路的线性工作区、非线性工作区和限幅区;观察并记录差模传输特性曲线。

7. 实验报告要求
(1)整理实验数据,填入相关表格;绘制相应波形及差模传输特性曲线。

(2)将测试数据与估算值相比较,分析误差产生的原因。

(3)对比“恒阻”和“恒管”的测试数据,能得出什么结论
(4)总结差分放大器的特点。

8. 思考与分析
(1)电阻器R p在实验电路中起什么作用
(2)为什么单端输入的差分放大器的另一端还要接入一个与信号源内阻数值一样大小的电阻
(3)怎样调节示波器才能测出差模传输特性曲线
(3)如何从差模传输特性曲线上测出相关性能指标。

相关文档
最新文档