2017届上海市杨浦区高三二模数学卷(含答案)
上海市杨浦区2017届高考数学二模试卷(详解版)

2017年上海市杨浦区高考数学二模试卷一、填空题1.(4分)三阶行列式中,5的余子式的值是.2.(4分)若实数ω>0,若函数f(x)=cos(ωx)+sin(ωx)的最小正周期为π,则ω=.3.(4分)已知圆锥的底面半径和高均为1,则该圆锥的侧面积为.4.(4分)设向量=(2,3),向量=(6,t),若与夹角为钝角,则实数t的取值范围为.5.(4分)集合A={1,3,a2},集合B={a+1,a+2},若B∪A=A,则实数a=.6.(4分)设z1、z2是方程z2+2z+3=0的两根,则|z1﹣z2|=.7.设f(x)是定义在R上的奇函数,当x>0时,f(x)=2x﹣3,则不等式f(x)<﹣5的解为.8.若变量x、y满足约束条件,则z=y﹣x的最小值为.9.小明和小红各自掷一颗均匀的正方体骰子,两人相互独立地进行,则小明掷出的点数不大于2或小红掷出的点数不小于3的概率为.10.设A是椭圆+=1(a>0)上的动点,点F的坐标为(﹣2,0),若满足|AF|=10的点A有且仅有两个,则实数a的取值范围为.11.已知a>0,b>0,当(a+4b)2+取到最小值时,b=.12.设函数f a(x)=|x|+|x﹣a|,当a在实数范围内变化时,在圆盘x2+y2≤1内,且不在任一f a(x)的图象上的点的全体组成的图形的面积为.二、选择题13.设z∈C且z≠0,“z是纯虚数”是“z2∈R”的()A.充分非必要条件 B.必要非充分条件C.充要条件D.既不充分也不必要条件14.设等差数列{a n}的公差为d,d≠0,若{a n}的前10项之和大于其前21项之和,则()A.d<0 B.d>0 C.a16<0 D.a16>015.如图,N、S是球O直径的两个端点,圆C1是经过N和S点的大圆,圆C2和圆C3分别是所在平面与NS垂直的大圆和小圆,圆C1和C2交于点A、B,圆C1和C3交于点C、D,设a、b、c分别表示圆C1上劣弧CND的弧长、圆C2上半圆弧AB的弧长、圆C3上半圆弧CD的弧长,则a、b、c的大小关系为()A.b>a=c B.b=c>a C.b>a>c D.b>c>a16.对于定义在R上的函数f(x),若存在正常数a、b,使得f(x+a)≤f(x)+b 对一切x∈R均成立,则称f(x)是“控制增长函数”,在以下四个函数中:①f (x)=x2+x+1;②f(x)=; ③f(x)=sin(x2);④f(x)=x•sinx.是“控制增长函数"的有()A.②③B.③④C.②③④D.①②④三、解答题17.(14分)如图,正方体ABCD﹣A1B1C1D1中,AB=4,P、Q分别是棱BC与B1C1的中点.(1)求异面直线D1P和A1Q所成角的大小;(2)求以A1、D1、P、Q四点为四个顶点的四面体的体积.18.(14分)已知函数f(x)=.(1)判断函数f(x)的奇偶性,并证明;(2)若不等式f(x)>log9(2c﹣1)有解,求c的取值范围.19.(14分)如图,扇形ABC是一块半径为2千米,圆心角为60°的风景区,P 点在弧BC上,现欲在风景区中规划三条商业街道,要求街道PQ与AB垂直,街道PR与AC垂直,线段RQ表示第三条街道.(1)如果P位于弧BC的中点,求三条街道的总长度;(2)由于环境的原因,三条街道PQ、PR、RQ每年能产生的经济效益分别为每千米300万元、200万元及400万元,问:这三条街道每年能产生的经济总效益最高为多少?(精确到1万元)20.(16分)设数列{a n}满足a n=A•4n+B•n,其中A、B是两个确定的实数,B ≠0.(1)若A=B=1,求{a n}的前n项之和;(2)证明:{a n}不是等比数列;(3)若a1=a2,数列{a n}中除去开始的两项之外,是否还有相等的两项?证明你的结论.21.(18分)设双曲线Γ的方程为x2﹣=1,过其右焦点F且斜率不为零的直线l1与双曲线交于A、B两点,直线l2的方程为x=t,A、B在直线l2上的射影分别为C、D.(1)当l1垂直于x轴,t=﹣2时,求四边形ABDC的面积;(2)当t=0,l1的斜率为正实数,A在第一象限,B在第四象限时,试比较和1的大小,并说明理由;(3)是否存在实数t∈(﹣1,1),使得对满足题意的任意直线l1,直线AD和直线BC的交点总在x轴上,若存在,求出所有的t的值和此时直线AD与BC交点的位置;若不存在,说明理由.2017年上海市杨浦区高考数学二模试卷参考答案与试题解析一、填空题1.三阶行列式中,5的余子式的值是﹣12.【考点】OU:特征向量的意义.【分析】去掉5所在行与列,即得5的余子式,从而求值.【解答】解:由题意,去掉5所在行与列得:=﹣12故答案为﹣12.【点评】本题以三阶行列式为载体,考查余子式,关键是理解余子式的定义.2.若实数ω>0,若函数f(x)=cos(ωx)+sin(ωx)的最小正周期为π,则ω=2.【考点】H1:三角函数的周期性及其求法.【分析】利用两角和的正弦公式化简函数的解析式,再利用正弦函数的周期性,求得ω的值.【解答】解:实数ω>0,若函数f(x)=cos(ωx)+sin(ωx)=sin(ωx+)的最小正周期为π,∴=π,∴ω=2,故答案为:2.【点评】本题主要考查两角和的正弦公式,正弦函数的周期性,属于基础题.3.已知圆锥的底面半径和高均为1,则该圆锥的侧面积为.【考点】L5:旋转体(圆柱、圆锥、圆台).【分析】首先根据底面半径和高利用勾股定理求得母线长,然后直接利用圆锥的侧面积公式代入求出即可.【解答】解:∵圆锥的底面半径为1,高为1,∴母线长l为:=,∴圆锥的侧面积为:πrl=π×1×=π,故答案为:π.【点评】题考查了圆锥的侧面积的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键.4.设向量=(2,3),向量=(6,t),若与夹角为钝角,则实数t的取值范围为(﹣∞,﹣4).【考点】9S:数量积表示两个向量的夹角.【分析】由题意可得<0,且、不共线,即,由此求得实数t的取值范围.【解答】解:若与夹角为钝角,向量=(2,3),向量=(6,t),则<0,且、不共线,∴,求得t<﹣4,故答案为:(﹣∞,﹣4).【点评】本题主要考查两个向量的数量公式,两个向量共线的性质,属于基础题.5.集合A={1,3,a2},集合B={a+1,a+2},若B∪A=A,则实数a=2.【考点】18:集合的包含关系判断及应用.【分析】根据并集的意义,由A∪B=A得到集合B中的元素都属于集合A,列出关于a的方程,求出方程的解得到a的值.【解答】解:由A∪B=A,得到B⊆A,∵A={1,3,a2},集合B={a+1,a+2},∴a+1=1,a+2=a2,或a+1=a2,a+2=1,或a+1=3,a+2=a2,或a+1=a2,a+2=3,解得:a=2.故答案为2.【点评】此题考查了并集的意义,以及集合中元素的特点.集合中元素有三个特点,即确定性,互异性,无序性.学生做题时注意利用元素的特点判断得到满足题意的a的值.6.设z1、z2是方程z2+2z+3=0的两根,则|z1﹣z2|=2.【考点】A7:复数代数形式的混合运算.【分析】求出z,即可求出|z1﹣z2|.【解答】解:由题意,z=﹣1±i,∴|z1﹣z2|=|2i|=2,故答案为2.【点评】本题考查复数的运算与球模,考查学生的计算能力,比较基础.7.设f(x)是定义在R上的奇函数,当x>0时,f(x)=2x﹣3,则不等式f(x)<﹣5的解为(﹣∞,﹣3).【考点】3L:函数奇偶性的性质.【分析】根据函数奇偶性的性质求出当x<0的解析式,讨论x>0,x<0,x=0,解不等式即可.【解答】解:若x<0,则﹣x>0,∵当x>0时,f(x)=2x﹣3,∴当﹣x>0时,f(﹣x)=2﹣x﹣3,∵f(x)是定义在R上的奇函数,∴f(﹣x)=2﹣x﹣3=﹣f(x),则f(x)=﹣2﹣x+3,x<0,当x>0时,不等式f(x)<﹣5等价为2x﹣3<﹣5即2x<﹣2,无解,不成立;当x<0时,不等式f(x)<﹣5等价为﹣2﹣x+3<﹣5即2﹣x>8,得﹣x>3,即x<﹣3;当x=0时,f(0)=0,不等式f(x)<﹣5不成立,综上,不等式的解为x<﹣3.故不等式的解集为(﹣∞,﹣3).故答案为(﹣∞,﹣3).【点评】本题主要考查不等式的解集的求解,根据函数奇偶性的性质求出函数的解析式是解决本题的关键.8.若变量x、y满足约束条件,则z=y﹣x的最小值为﹣4.【考点】7C:简单线性规划.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【解答】解:由约束条件作出可行域如图,联立,解得A(8,4),化目标函数z=y﹣x,得y=x+z,由图可知,当直线y=x+z过点A(8,4)时,直线在y轴上的截距最小,z有最小值为﹣4.故答案为:﹣4.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.9.小明和小红各自掷一颗均匀的正方体骰子,两人相互独立地进行,则小明掷出的点数不大于2或小红掷出的点数不小于3的概率为.【考点】CC:列举法计算基本事件数及事件发生的概率.【分析】先求出基本事件总数n=6×6=36,再求出小明掷出的点数不大于2或小红掷出的点数不小于3包含的基本事件个数m=2×6+6×4﹣2×4=28,由此能求出小明掷出的点数不大于2或小红掷出的点数不小于3的概率.【解答】解:小明和小红各自掷一颗均匀的正方体骰子,两人相互独立地进行,基本事件总数n=6×6=36,小明掷出的点数不大于2或小红掷出的点数不小于3包含的基本事件个数:m=2×6+6×4﹣2×4=28,∴小明掷出的点数不大于2或小红掷出的点数不小于3的概率为:p==.故答案为:.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.10.设A是椭圆+=1(a>0)上的动点,点F的坐标为(﹣2,0),若满足|AF|=10的点A有且仅有两个,则实数a的取值范围为8<a<12.【考点】K4:椭圆的简单性质.【分析】由题意,F是椭圆的焦点,满足|AF|=10的点A有且仅有两个,可得a ﹣2<10<a+2,即可得出结论.【解答】解:由题意,F是椭圆的焦点,∵满足|AF|=10的点A有且仅有两个,∴a﹣2<10<a+2,∴8<a<12,故答案为:8<a<12.【点评】本题考查椭圆的方程与性质,考查学生的计算能力,比较基础.11.已知a>0,b>0,当(a+4b)2+取到最小值时,b=.【考点】7F:基本不等式.【分析】根据基本不等式,,a=4b时取等号,进而得出,进一步可求出a=1,时,取到最小值,即求出了此时的b的值.【解答】解:∵a>0,b>0;∴,当a=4b时取“=”;∴(a+4b)2≥16ab;∴=8,当,即,a=1时取“=”;此时,b=.故答案为:.【点评】考查基本不等式,注意基本不等式等号成立的条件,不等式的性质.12.设函数f a(x)=|x|+|x﹣a|,当a在实数范围内变化时,在圆盘x2+y2≤1内,且不在任一f a(x)的图象上的点的全体组成的图形的面积为.【考点】7F:基本不等式.【分析】根据题意,分析可得函数f a(x)=|x|+|x﹣a|(当a在实数范围内变化)的图象,进而可得在圆盘x2+y2≤1内,且不在任一f a(x)的图象上的点单位圆的,由圆的面积公式计算可得答案.【解答】解:根据题意,对于函数f a(x)=|x|+|x﹣a|,当a变化时,其图象为在圆盘x2+y2≤1内,且不在任一f a(x)的图象上的点单位圆的,则其面积S=×π=;故答案为:.【点评】本题考查函数的图象,关键是分析函数f a(x)=|x|+|x﹣a|(当a在实数范围内变化)的图象.二、选择题13.设z∈C且z≠0,“z是纯虚数"是“z2∈R”的()A.充分非必要条件 B.必要非充分条件C.充要条件D.既不充分也不必要条件【考点】2L:必要条件、充分条件与充要条件的判断.【分析】z∈C且z≠0,“z是纯虚数”⇒“z2∈R",反之不成立,例如取z=2.即可判断出结论.【解答】解:∵z∈C且z≠0,“z是纯虚数”⇒“z2∈R”,反之不成立,例如取z=2.∴“z是纯虚数”是“z2∈R”的充分不必要条件.故选:A.【点评】本题考查了纯虚数的定义、复数的运算法则、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.14.设等差数列{a n}的公差为d,d≠0,若{a n}的前10项之和大于其前21项之和,则()A.d<0 B.d>0 C.a16<0 D.a16>0【考点】85:等差数列的前n项和.【分析】由{a n}的前10项之和大于其前21项之和,得到a1<﹣15d,由此得到a16=a1+15d<0.【解答】解:等差数列{a n}的公差为d,d≠0,∵{a n}的前10项之和大于其前21项之和,∴10a1+>21a1+d,∴11a1<﹣165d,即a1<﹣15d,∴a16=a1+15d<0.故选:C.【点评】本题考查命题真假的判断,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.15.如图,N、S是球O直径的两个端点,圆C1是经过N和S点的大圆,圆C2和圆C3分别是所在平面与NS垂直的大圆和小圆,圆C1和C2交于点A、B,圆C1和C3交于点C、D,设a、b、c分别表示圆C1上劣弧CND的弧长、圆C2上半圆弧AB的弧长、圆C3上半圆弧CD的弧长,则a、b、c的大小关系为()A.b>a=c B.b=c>a C.b>a>c D.b>c>a【考点】L*:球面距离及相关计算.【分析】分别计算a,b,c,即可得出结论.【解答】解:设球的半径为R,球心角∠COD=2α,则b=πR,a=2αR,∵CD<AB,∴c<b,∵CD=2Rsinα,∴c=2πRsinα,∵0<α<,∴=>1,∴c>a,∴b>c>a,故选D.【点评】本题考查球中弧长的计算,考查学生的计算能力,正确计算是关键.16.对于定义在R上的函数f(x),若存在正常数a、b,使得f(x+a)≤f(x)+b对一切x∈R均成立,则称f(x)是“控制增长函数",在以下四个函数中:①f(x)=x2+x+1;②f(x)=;③f(x)=sin(x2);④f(x)=x•sinx.是“控制增长函数"的有()A.②③B.③④C.②③④D.①②④【考点】3T:函数的值.【分析】假设各函数为“控制增长函数",根据定义推倒f(x+a)≤f(x)+b恒成立的条件,判断a,b的存在性即可得出答案.【解答】解:对于①,f(x+a)≤f(x)+b可化为:(x+a)2+(x+a)+1≤x2+x+1+b,即2ax≤﹣a2﹣a+b,即x≤对一切x∈R均成立,由函数的定义域为R,故不存在满足条件的正常数a、b,故f(x)=x2+x+1不是“控制增长函数";对于②,若f(x)=是“控制增长函数”,则f(x+a)≤f(x)+b可化为:≤+b,∴|x+a|≤|x|+b2+2b恒成立,又|x+a|≤|x|+a,∴|x|+a≤|x|+b2+2b,∴≥,显然当a<b2时式子恒成立,∴f(x)=是“控制增长函数”;对于③,∵﹣1≤f(x)=sin(x2)≤1,∴f(x+a)﹣f(x)≤2,∴当b≥2时,a为任意正数,使f(x+a)≤f(x)+b恒成立,故f(x)=sin(x2)是“控制增长函数”;对于④,若f(x)=xsinx是“控制增长函数”,则(x+a)sin(x+a)≤xsinx+b恒成立,∵(x+a)sin(x+a)≤x+a,∴x+a≤xsinx+b≤x+b,即a≤b,∴f(x)=xsinx是“控制增长函数".故选C.【点评】本题考查了新定义的理解,函数存在性与恒成立问题研究,属于中档题.三、解答题17.(14分)(2017•杨浦区二模)如图,正方体ABCD﹣A1B1C1D1中,AB=4,P、Q 分别是棱BC与B1C1的中点.(1)求异面直线D1P和A1Q所成角的大小;(2)求以A1、D1、P、Q四点为四个顶点的四面体的体积.【考点】LF:棱柱、棱锥、棱台的体积;LM:异面直线及其所成的角.【分析】(1)以D为原点,DA,DC,DD1为x,y,z轴,建立空间直角坐标系,利用向量法能求出异面直线D1P和A1Q所成角.(2)以A1、D1、P、Q四点为四个顶点的四面体的体积V=.【解答】解:(1)以D为原点,DA,DC,DD1为x,y,z轴,建立空间直角坐标系,则D1(0,0,4),P(2,4,0),A1(4,0,4),Q(2,4,4),=(2,4,﹣4),=(﹣2,4,0),设异面直线D1P和A1Q所成角为θ,则cosθ===,∴θ=arccoa.∴异面直线D1P和A1Q所成角为arccos.(2)∵==8,PQ⊥平面A1D1Q,且PQ=4,∴以A1、D1、P、Q四点为四个顶点的四面体的体积:V===.【点评】本题考查异面直线所成角的求法,考查四面体的体积的求法,是中档题,考查推理论证能力、运算求解能力,考查转化化归思想、数形结合思想.18.(14分)(2017•杨浦区二模)已知函数f(x)=.(1)判断函数f(x)的奇偶性,并证明;(2)若不等式f(x)>log9(2c﹣1)有解,求c的取值范围.【考点】3K:函数奇偶性的判断.【分析】(1)利用奇函数的定义,即可得出结论;(2)f(x)===﹣+∈(﹣,),不等式f(x)>log9(2c﹣1)有解,可得>log9(2c﹣1),即可求c的取值范围.【解答】解:(1)函数的定义域为R,f(x)==,f(﹣x)==﹣f(x),∴函数f(x)是奇函数;(2)f(x)===﹣+∈(﹣,)∵不等式f(x)>log9(2c﹣1)有解,∴>log9(2c﹣1),∴0<2c﹣1<3,∴.【点评】本题考查奇函数的定义,考查函数的值域,考查学生分析解决问题的能力,属于中档题.19.(14分)(2017•杨浦区二模)如图,扇形ABC是一块半径为2千米,圆心角为60°的风景区,P点在弧BC上,现欲在风景区中规划三条商业街道,要求街道PQ与AB垂直,街道PR与AC垂直,线段RQ表示第三条街道.(1)如果P位于弧BC的中点,求三条街道的总长度;(2)由于环境的原因,三条街道PQ、PR、RQ每年能产生的经济效益分别为每千米300万元、200万元及400万元,问:这三条街道每年能产生的经济总效益最高为多少?(精确到1万元)【考点】HU:解三角形的实际应用;HS:余弦定理的应用.【分析】(1)由P为于∠BAC的角平分线上,利用几何关系,分别表示丨PQ 丨,丨PR丨,丨RQ丨,即可求得三条街道的总长度;(2)设∠PAB=θ,0<θ<60°,根据三角函数关系及余弦定理,即可求得丨PQ丨,丨PR丨,丨RQ丨,则总效益W=丨PQ丨×300+丨PR丨×200+丨RQ丨×400,利用辅助角公式及正弦函数的性质,即可求得答案.【解答】解:(1)由P位于弧BC的中点,在P位于∠BAC的角平分线上,则丨PQ丨=丨PR丨=丨PA丨sin∠PAB=2×sin30°=2×=1,丨AQ丨=丨PA丨cos∠PAB=2×=,由∠BAC=60°,且丨AQ丨=丨AR丨,∴△QAB为等边三角形,则丨RQ丨=丨AQ丨=,三条街道的总长度l=丨PQ丨+丨PR丨+丨RQ丨=1+1+=2+;(2)设∠PAB=θ,0<θ<60°,则丨PQ丨=丨AP丨sinθ=2sinθ,丨PR丨=丨AP丨sin(60°﹣θ)=2sin(60°﹣θ)=cosθ﹣sinθ,丨AQ丨=丨AP丨cosθ=2cosθ,丨AR丨=丨AP丨cos(60°﹣θ)=2cos(60°﹣θ)=cosθ+sinθ由余弦定理可知:丨RQ丨2=丨AQ丨2+丨AR丨2﹣2丨AQ丨丨AR丨cos60°, =(2cosθ)2+(cosθ+sinθ)2﹣2×2cosθ(cosθ+sinθ)cos60°,=3,则丨RQ丨=,三条街道每年能产生的经济总效益W,W=丨PQ丨×300+丨PR丨×200+丨RQ 丨×400=300×2sinθ+(cosθ﹣sinθ)×200+400=400sinθ+200cosθ+400,=200(2sinθ+cosθ)+400,=200sin(θ+φ)+400,tanφ=,当sin(θ+φ)=1时,W取最大值,最大值为200+400≈1222,三条街道每年能产生的经济总效益最高约为1222万元.【点评】本题考查三角函数的综合应用,考查余弦定理,正弦函数图象及性质,辅助角公式,考查计算能力,属于中档题.20.(16分)(2017•杨浦区二模)设数列{a n}满足a n=A•4n+B•n,其中A、B是两个确定的实数,B≠0.(1)若A=B=1,求{a n}的前n项之和;(2)证明:{a n}不是等比数列;(3)若a1=a2,数列{a n}中除去开始的两项之外,是否还有相等的两项?证明你的结论.【考点】8E:数列的求和;8H:数列递推式.【分析】(1)运用数列的求和方法:分组求和,结合等比数列和等差数列的求和公式,计算即可得到所求和;(2)运用反证法,假设{a n}是等比数列,由定义,设公比为q,化简整理推出B=0与题意矛盾,即可得证;(3)数列{a n}中除去开始的两项之外,假设还有相等的两项,由题意可得B=﹣12A,构造函数f(x)=4x﹣12x,x>0,求出导数和单调性,即可得到结论.【解答】解:(1)由a n=4n+n,可得{a n}的前n项之和为(4+42+…+4n)+(1+2+…+n)=+n(n+1)=(4n﹣1)+(n2+n);(2)证明:假设{a n}是等比数列,即有=q(q为公比),即为Aq•4n+Bq•n=A•4n+1+B•(n+1),即Aq=4A,Bq=B,B=0,解得q=4,B=0,这与B≠0矛盾,则{a n}不是等比数列;(3)若a1=a2,数列{a n}中除去开始的两项之外,假设还有相等的两项,设为a k=a m,(k,m不相等),由a1=a2,可得4A+B=16A+2B,即B=﹣12A.则a n=A•4n+B•n=A(4n﹣12•n),即有A(4k﹣12•k)=A(4m﹣12•m),即为4k﹣12•k=4m﹣12•m,构造函数f(x)=4x﹣12x,x>0,f′(x)=4x ln4﹣12,由f′(x)=0可得x0=log4∈(1,2),当x>x0时,f′(x)>0,f(x)递增,故数列{a n}中除去开始的两项之外,再没有相等的两项.【点评】本题考查数列的求和方法:分组求和,考查等比数列和等差数列的求和公式,同时考查反证法的运用,以及构造函数法,考查化简整理的运算能力,属于中档题.21.(18分)(2017•杨浦区二模)设双曲线Γ的方程为x2﹣=1,过其右焦点F且斜率不为零的直线l1与双曲线交于A、B两点,直线l2的方程为x=t,A、B 在直线l2上的射影分别为C、D.(1)当l1垂直于x轴,t=﹣2时,求四边形ABDC的面积;(2)当t=0,l1的斜率为正实数,A在第一象限,B在第四象限时,试比较和1的大小,并说明理由;(3)是否存在实数t∈(﹣1,1),使得对满足题意的任意直线l1,直线AD和直线BC的交点总在x轴上,若存在,求出所有的t的值和此时直线AD与BC交点的位置;若不存在,说明理由.【考点】KC:双曲线的简单性质.(1)由双曲线Γ的方程为x2﹣=1,可得c==2,可得右焦点F(2,0).当【分析】l1垂直于x轴,t=﹣2时,由双曲线的对称性可得:四边形ABDC为矩形.即可得出面积.(2)作出右准线MN:x=.e==2.分别作AC⊥MN,垂足为M;BD⊥MN,垂足为N.利用双曲线的第二定义可得:=,==.(3)存在实数t∈(﹣1,1),t=时,定点.下面给出证明分析:设直线AB的方程为:y=k(x﹣2),A(x1,k(x1﹣2)),B(x2,k(x2﹣2)).则C(t,k(x1﹣2)),D(t,k(x2﹣2)).直线方程与双曲线方程联立化为:(3﹣k2)x2+4k2x ﹣4k2﹣3=0,分别得出:直线AD与BC的方程,进而得出.【解答】解:(1)由双曲线Γ的方程为x2﹣=1,可得c==2,可得右焦点F(2,0).当l1垂直于x轴,t=﹣2时,由双曲线的对称性可得:四边形ABDC为矩形.代入双曲线可得:22﹣=1,焦点y=±3.∴四边形ABDC的面积S=4×6=24.(2)作出右准线MN:x=.e==2.分别作AC⊥MN,垂足为M;BD⊥MN,垂足为N.则==+.===.∵|AF|>|FB|,∴<.∴<1.(3)存在实数t∈(﹣1,1),t=时,定点.下面给出证明:设直线AB的方程为:y=k(x﹣2),A(x1,k(x1﹣2)),B(x2,k(x2﹣2)).则C(t,k(x1﹣2)),D(t,k(x2﹣2)).联立,化为:(3﹣k2)x2+4k2x﹣4k2﹣3=0,可得x1+x2=,x1•x2=.直线AD的方程为:y﹣k(x1﹣2)=(x﹣x1),令y=0,解得x=.直线BC的方程为:y﹣k(x2﹣2)=(x﹣x2),令y=0,解得x=.由=,可得:(2+t)(x1+x2)﹣2x1•x2﹣4t=0.∴(2+t)•﹣2•﹣4t=0.化为:t=,不妨取k=1,则2x2+4x﹣7=0,解得x=.不妨取x1=,x2=.定点的横坐标x===.∴定点坐标.【点评】本题考查了双曲线的第二定义、直线与双曲线相交问题、一元二次方程的根与系数的关系、直线过定点问题,考查了推理能力与计算能力,属于难题.。
2017年上海市杨浦区中考数学二模试题(解析版)

(1)由图象可知,x=20千克时,y1=y2,故答案为20千克.
(2)由图象可知,0<x<20时,在乙店批发比较便宜.故答案为0<x<20.
(3)设AB的解析式为y=kx+b,由题意OC的函数解析式为y=10x,
∴ ,
解得 ,
∴射线AB的表达式y=5x+100(x≥10).
【点睛】本题的关键是根据图像解答问题
解得 ,
∵∠A=45°,AD=2,
∴ ,
∵ ,
∴ ,
∴ ,
∴ ,
∴ .
故答案为 .
【点睛】本题是一道综合题,解题的关键是掌握图形翻折变换的性质、等腰三角形的性质和勾股定理并能灵活运用
三、解答题
19.计算: .
【答案】
【解析】
【分析】
利用分数指数幂,零指数幂、负整数指数幂法则,以及完全平方公式化简即可
【答案】(1)42;(2) 4或16
【解析】
【分析】
(1)过C作CD⊥AB于D解直角三角形得到CD,根据三角形的面积公式即可得到结论;(2)根据圆C与直线AB相切,得到○C的半径,根据勾股定理得到AC,设○A的半径为r,当圆A与圆C内切时,当圆A与圆C外切时即可得到结论
【详解】
(1)过C作CD⊥AB于D,
【点睛】本体的关键是在数轴上正确的表示出各个不等式的解,并找到公共部分,确定解集
11.方程 的解是:x=_____.
【答案】±2
【解析】
【分析】
对方程左右两边同时平方,可得x2+5=9,进而可解x的值,答案注意根式有意义的条件
详解】根据题意,有 ,左右两边同时平方可得x2+5=9;解之,可得:x=±2.
A. B. C. D.
2017年-上海各区-数学高三二模试卷和答案

宝山2017二模一、填空题(本大题共有12题,满分54分,第16题每题4分,第712题每题5分)考生应在答题纸的相应位置直接填写结果.1.若集合{}|0A x x =>,{}|1B x x =<,则A B ⋂=____________2.已知复数z1z i ⋅=+(i 为虚数单位),则z =____________ 3.函数()sin cos cos sin x x f x x x=的最小正周期是____________4.已知双曲线()2221081x y a a -=>的一条渐近线方程3y x =,则a =____________ 5.若圆柱的侧面展开图是边长为4的正方形,则圆柱的体积为____________6.已知,x y 满足0220x y x y x -≤⎧⎪+≤⎨⎪+≥⎩,则2z x y =+的最大值是____________7.直线12x t y t =-⎧⎨=-⎩(t 为参数)与曲线3cos 2sin x y θθ=⎧⎨=⎩(θ为参数)的交点个数是____________8.已知函数()()()220log 01xx f x x x ⎧≤⎪=⎨<≤⎪⎩的反函数是()1f x -,则12f -1⎛⎫= ⎪⎝⎭____________9.设多项式()()()()23*11110,nx x x x x n N ++++++++≠∈的展开式中x 项的系数为n T ,则2limnn T n →∞=____________10.生产零件需要经过两道工序,在第一、第二道工序中产生的概率分别为0.01和p ,每道工序产生废品相互独立,若经过两道工序得到的零件不是废品的概率是0.9603,则p =____________11.设向量()(),,,m x y n x y ==-,P 为曲线()10m n x ⋅=>上的一个动点,若点P 到直线10x y -+=的距离大于λ恒成立,则实数λ的最大值为____________12.设1210,,,x x x 为1,2,,10的一个排列,则满足对任意正整数,m n ,且110m n ≤<≤,都有m n x m x n +≤+成立的不同排列的个数为____________二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项,考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.设,a b R ∈,则“4a b +>”是“1a >且3b >”的( ) A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分又不必要条件14.如图,P 为正方体1111ABCD A B C D -中1AC 与1BD 的交点,则PAC 在该正方体各个面上的射影可能是( )A. ①②③④B.①③C. ①④D.②④15.如图,在同一平面内,点P 位于两平行直线12,l l 同侧,且P 到12,l l 的距离分别为1,3.点,M N 分别在12,l l 上,8PM PN +=,则PM PN ⋅的最大值为( )A. 15B. 12C. 10D. 916.若存在t R ∈与正数m ,使()()F t m F t m -=+成立,则称“函数()F x 在x t =处存在距离为2m 的对称点”,设()()20x f x x xλ+=>,若对于任意()2,6t ∈,总存在正数m ,使得“函数()f x 在x t =处存在距离为2m 的对称点”,则实数λ的取值范围是( )A. (]0,2B. (]1,2C. []1,2D. []1,4三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(本题满分14分,第1小题满分8分,第2小题满分6分)如图,在正方体1111ABCD A B C D -中,E 、F 分别是线段BC 、1CD 的中点. (1)求异面直线EF 与1AA 所成角的大小; (2)求直线EF 与平面11AA B B 所成角的大小.18.(本题满分14分,第1小题6分,第2小题8分)已知抛物线()220y px p =>,其准线方程为10x +=,直线l 过点()(),00T t t >且与抛物线交于A 、B 两点,O 为坐标原点.(1)求抛物线方程,并证明:OA OB ⋅的值与直线l 倾斜角的大小无关; (2)若P 为抛物线上的动点,记PT 的最小值为函数()d t ,求()d t 的解析式.19.(本题满分14分,第1小题6分,第2小题8分)对于定义域为D 的函数()y f x =,如果存在区间[](),m n D m n ⊆<,同时满足:①()f x 在[],m n 内是单调函数;②当定义域是[],m n 时,()f x 的值域也是[],m n 则称函数()f x 是区间[],m n 上的“保值函数”.(1)求证:函数()22g x x x =-不是定义域[]0,1上的“保值函数”;(2)已知()()2112,0f x a R a a a x=+-∈≠是区间[],m n 上的“保值函数”,求a 的取值范围.20.(本题满分16分,第1小题满分4分,第2小题满分6分,第3小题满分6分)数列{}n a 中,已知()12121,,n n n a a a a k a a ++===+对任意*n N ∈都成立,数列{}n a 的前n 项和为n S .(这里,a k 均为实数) (1)若{}n a 是等差数列,求k ; (2)若11,2a k ==-,求n S ; (3)是否存在实数k ,使数列{}n a 是公比不为1的等比数列,且任意相邻三项12,,m m m a a a ++按某顺序排列后成等差数列?若存在,求出所有k 的值;若不存在,请说明理由.21.(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)设T,R 若存在常数0M >,使得对任意t T ∈,均有t M ≤,则称T 为有界集合,同时称M 为集合T 的上界.(1)设121|,21x xA y y x R ⎧⎫-==∈⎨⎬+⎩⎭、21|sin 2A x x ⎧⎫=>⎨⎬⎩⎭,试判断1A 、2A 是否为有界集合,并说明理由;(2)已知()2f x x u =+,记()()()()()()11,2,3,n n f x f x f x f f x n -===.若m R ∈,1,4u ⎡⎫∈+∞⎪⎢⎣⎭,且(){}*|n B f m n N =∈为有界集合,求u 的值及m 的取值范围;(3)设a 、b 、c 均为正数,将()2a b -、()2b c -、()2c a -中的最小数记为d ,是否存在正数()0,1λ∈,使得λ为有界集合222{|,dC y y a b c ==++a 、b 、c 均为正数}的上界,若存在,试求λ的最小值;若不存在,请说明理由.宝山区答案1.(0,1)2.13. π4.35. 5.16. 37. 28. 19.1210. 0.03 11.212.512 13. B14. C15.A16.A17. (1) (2)arctan 218.(1)24y x =,证明略(2)2)(t),(0t 2)d t ⎧≥⎪=⎨<<⎪⎩19. (1)证明略(2)12a或32a 20. (1)12k =(2)2(21,),(2,)n n n k k N S n n k k N **⎧-=-∈=⎨=∈⎩ (3)25k =-21.(1)1A 为有界集合,上界为1;2A 不是有界集合 (2)14u =,11,22m ⎡⎤∈-⎢⎥⎣⎦ (3)15λ=解析:(2)设()()011,,,1,2,3,...n n a m a f m a f a n -====,则()n n a f m =∵()2114a f m m u ==+≥,则222111111024a a a a u a u ⎛⎫-=-+=-+-≥ ⎪⎝⎭且211111024n n n n n a a a u a a ---⎛⎫-=-+-≥⇒≥ ⎪⎝⎭若(){}*|N n B f m n =∈为有界集合,则设其上界为0M ,既有*0,N n a M n ≤∈∴()()()112211112211......n n n n n n n n n a a a a a a a a a a a a a a a ------=-+-++-+=-+-++-+2222121111111...242424n n a u a u a u m u --⎛⎫⎛⎫⎛⎫=-+-+-+-++-+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭222212111111...22244n n a a a m n u u n u u --⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-++-+≥-+⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦若0n a M ≤恒成立,则014n u u M ⎛⎫-+≤ ⎪⎝⎭恒成立,又11044u u ≥⇒-≥ ∴14u =,∴()214f x x =+ 设12m λ=+(i )0λ>,则()22101011112422a a f m m a a λλλ⎛⎫⎛⎫-=-=++-+=⇒>> ⎪ ⎪⎝⎭⎝⎭∴111...2n n a a a m ->>>>>记()()212g x f x x x ⎛⎫=-=- ⎪⎝⎭,则当1212x x >>时,()()12g x g x >∴()()()2111110n n n n n g a f a a a a g m a a λ----=-=->=-=∴()211n a a n λ>+-,若0na M ≤恒成立,则0λ=,矛盾。
2017年上海市杨浦区中考数学二模试卷

2017年上海市杨浦区中考数学二模试卷一、选择题(本大题共6小题,每小题4分,共24分)1.与平面直角坐标系中的点具有一一对应关系的是()A.实数B.有理数C.有序实数对D.有序有理数对2.化简(a≠0)的结果是()A.a B.﹣a C.﹣a D.a3.通常在频率分布直方图中,用每小组对应的小矩形的面积表示该小组的组频率.因此,频率分布直方图的纵轴表示()A.B.C.D.4.如果用A表示事件“若a>b,则a+c>b+c”,用P(A)表示“事件A发生的概率”,那么下列结论中正确的是()A.P(A)=1 B.P(A)=0 C.0<P(A)<1 D.P(A)>15.下列判断不正确的是()A.如果=,那么||=||B. +=+C.如果非零向量=k•(k≠0),那么∥D. +=06.下列四个命题中真命题是()A.矩形的对角线平分对角B.平行四边形的对角线相等C.梯形的对角线互相垂直D.菱形的对角线互相垂直平分二、填空题(本大题12小题,每小题4分,共48分)7.两个不相等的无理数,它们的乘积为有理数,这两个数可以是.8.化简:=.9.在实数范围内分解因式:a3﹣2a=.10.不等式组的解集是.11.方程的解是:x=.12.已知点A(2,﹣1)在反比例函数y=(k≠0)的图象上,那么当x>0时,y随x的增大而.13.如果将抛物线y=x2向左平移4个单位,再向下平移2个单位后,那么此时抛物线的表达式是.14.如表记录的是某班级女生在一次跳绳练习中跳绳的次数及相应的人数,则该班级女生本次练习中跳绳次数的平均数是15.如图,已知:△ABC中,∠C=90°,AC=40,BD平分∠ABC交AC于D,AD:DC=5:3,则D点到AB的距离是.16.正十二边形的中心角是度.17.如图,在甲楼的底部B处测得乙楼的顶部D点的仰角为α,在甲楼的顶部A 处测得乙楼的顶部D点的俯角为β,如果乙楼的高DC=10米,那么甲楼的高AB=米(用含α,β的代数式表示)18.如图,在Rt△ABC中,∠C=90°,CA=CB=4,将△ABC翻折,使得点B与边AC的中点M重合,如果折痕与边AB的交点为E,那么BE的长为.三、解答题(本大题共7小题,共78分)19.(10分)计算:27﹣()﹣1÷3+80﹣(﹣2)2.20.(10分)解方程:.21.(10分)已知:如图,在△ABC中,∠ABC=45°,tanA=,AB=14,(1)求:△ABC的面积;(2)若以C为圆心的圆C与直线AB相切,以A为圆心的圆A与圆C相切,试求圆A的半径.22.(10分)水果市场的甲、乙两家商店中都有批发某种水果,批发该种水果x 千克时,在甲、乙两家商店所花的钱分别为y1元和y2元,已知y1、y2关于x的函数图象分别为如图所示的折线OAB和射线OC.(1)当x的取值为时,在甲乙两家店所花钱一样多?(2)当x的取值为时,在乙店批发比较便宜?(3)如果批发30千克该水果时,在甲店批发比在乙店批发便宜50元,求射线AB的表达式,并写出定义域.23.(12分)已知:如图,四边形ABCD中,DB⊥BC,DB平分∠ADC,点E为边CD的中点,AB⊥BE.(1)求证:BD2=AD•DC;(2)连结AE,当BD=BC时,求证:ABCE为平行四边形.24.(12分)如图,已知抛物线y=ax2﹣x+c的对称轴为直线x=1,与x轴的一个交点为A(﹣1,0),顶点为B.点C(5,m)在抛物线上,直线BC交x轴于点E.(1)求抛物线的表达式及点E的坐标;(2)联结AB,求∠B的正切值;(3)点G为线段AC上一点,过点G作CB的垂线交x轴于点M(位于点E右侧),当△CGM与△ABE相似时,求点M的坐标.25.(14分)已知:以O为圆心的扇形AOB中,∠AOB=90°,点C为上一动点,射线AC交射线OB于点D,过点D作OD的垂线交射线OC于点E,联结AE.(1)如图1,当四边形AODE为矩形时,求∠ADO的度数;(2)当扇形的半径长为5,且AC=6时,求线段DE的长;(3)联结BC,试问:在点C运动的过程中,∠BCD的大小是否确定?若是,请求出它的度数;若不是,请说明理由.2017年上海市杨浦区中考数学二模试卷参考答案与试题解析一、选择题(本大题共6小题,每小题4分,共24分)1.与平面直角坐标系中的点具有一一对应关系的是()A.实数B.有理数C.有序实数对D.有序有理数对【考点】D1:点的坐标.【分析】根据平面直角坐标系与有序实数对的关系,可得答案.【解答】解:有序实数对与平面直角坐标系中的点具有一一对应关系,故选:C【点评】本题考查了点的坐标,平面直角坐标系与有序实数对是一一对应关系.2.化简(a≠0)的结果是()A.a B.﹣a C.﹣a D.a【考点】73:二次根式的性质与化简.【分析】二次根式有意义,则a<0,根据二次根式的性质解答.【解答】解:有意义,则a<0,﹣a>0,原式=﹣a.故选C.【点评】本题考查了二次根式的化简,注意二次根式的结果为非负数及题目的隐含条件a<0.二次根式的性质:=|a|.3.通常在频率分布直方图中,用每小组对应的小矩形的面积表示该小组的组频率.因此,频率分布直方图的纵轴表示()A.B.C.D.【考点】V8:频数(率)分布直方图.【分析】根据频率分布直方图中纵横坐标的意义,易得长方形的面积为长乘宽,即组距×频率/组距=频率;即答案.【解答】解:在频率直方图中纵坐标表示频率/组距,横坐标表示组距,则小长方形的高表示频率/组距,小长方形的长表示组距,则长方形的面积为长乘宽,即组距×频率/组距=频率;故选:B.【点评】本题考查频率直方图中横纵坐标表示的意义.4.如果用A表示事件“若a>b,则a+c>b+c”,用P(A)表示“事件A发生的概率”,那么下列结论中正确的是()A.P(A)=1 B.P(A)=0 C.0<P(A)<1 D.P(A)>1【考点】X3:概率的意义.【分析】根据不等式的基本性质1知事件A是必然事件,由概率的意义可得答案.【解答】解:若a>b,根据不等式的基本性质知a+c>b+c必然成立,∴事件A是必然事件,∴P(A)=1,故选:A.【点评】本题主要考查概率的意义及不等式的基本性质,熟练掌握必然事件的定义是解题的关键.5.下列判断不正确的是()A.如果=,那么||=||B. +=+C.如果非零向量=k•(k≠0),那么∥D. +=0【考点】LM:*平面向量.【分析】根据模的定义,可确定A正确;根据平面向量的交换律,可判定B正确,又由如果非零向量非零向量=k•(k≠0),那么∥或共线,可得C错误;利用相反向量的知识,可判定D正确.【解答】解:A、如果=,那么||=||,故此选项正确;B、+=+,故本选项正确;C、如果非零向量=k•(k≠0),那么∥或共线,故此选项错误;D、+=0,故此选项正确;故选:C.【点评】此题考查了平面向量的知识.注意理解平面向量有关的定义是关键.6.下列四个命题中真命题是()A.矩形的对角线平分对角B.平行四边形的对角线相等C.梯形的对角线互相垂直D.菱形的对角线互相垂直平分【考点】O1:命题与定理.【分析】由矩形、菱形、梯形和平行四边形对角线的性质作出判断,从而利用排除法得出答案.【解答】解:矩形的对角线不能平分对角,A错误;平行四边形的对角线平分,但不一定相等,B错误.梯形的对角线不一定互相垂直,C错误;根据菱形的性质,菱形的对角线互相垂直平分,D正确;故选:D.【点评】本题考查了命题与定理;熟记矩形、菱形、梯形和平行四边形对角线的性质是解决问题的关键.二、填空题(本大题12小题,每小题4分,共48分)7.两个不相等的无理数,它们的乘积为有理数,这两个数可以是和﹣(答案不唯一).【考点】26:无理数.【分析】由于无理数就是无限不循环小数.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及0.1010010001…,等有这样规律的数.由此即可求解【解答】解:∵两个不相等的无理数,它们的乘积为有理数,这两个数可以是和﹣.(答案不唯一).【点评】此题主要考查了无理数的定义和性质,解题时注意无理数的积不一定是无理数.8.化简:=﹣.【考点】66:约分.【分析】先将分子与分母进行因式分解,再根据分式的基本性质,将分子与分母的公因式约去,即可求解.【解答】解:==﹣,故答案为:﹣.【点评】此题考查了约分,约去分式的分子与分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.由约分的概念可知,要首先将分子、分母转化为乘积的形式,再找出分子、分母的最大公因式并约去.9.在实数范围内分解因式:a3﹣2a=a(a+)(a﹣).【考点】55:提公因式法与公式法的综合运用.【分析】先提取公因式a,再根据平方差公式进行二次分解即可求得答案.【解答】解:a3﹣2a=a(a2﹣2)=a(a+)(a﹣).故答案为:a(a+)(a﹣).【点评】本题考查了提公因式法,公式法分解因式.注意提取公因式后利用平方差公式进行二次分解,注意分解要彻底.10.不等式组的解集是4<x<5.【考点】CB:解一元一次不等式组.【分析】根据不等式分别求出x的取值范围,画出坐标轴,在其上表示出来x.【解答】解:不等式组可以化为:,在坐标轴上表示为:∴不等式组的解集为:4<x<5.【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x大于较小的数、小于较大的数,那么解集为x 介于两数之间.11.方程的解是:x=±2.【考点】AG:无理方程.【分析】对方程左右两边同时平方,可得x2+5=9,进而解可得x的值.【解答】解:根据题意,有,左右两边同时平方可得x2+5=9;解之,可得:x=±2.故答案为:±2.【点评】本题考查含二次根式的无理方程的解法,一般先化为一次或二次方程,再求解,答案注意根式有意义的条件.12.已知点A(2,﹣1)在反比例函数y=(k≠0)的图象上,那么当x>0时,y随x的增大而增大.【考点】G4:反比例函数的性质.【分析】首先将点A的坐标代入解析式求得k值,然后根据反比例函数的性质确定其增减性即可.【解答】解:∵点A(2,﹣1)在反比例函数y=(k≠0)的图象上,∴k=2×(﹣1)=﹣2<0,∴在每一象限内y随着x的增大而增大,故答案为:增大.【点评】本题考查了反比例函数的性质,解题的关键是利用待定系数法确定比例系数的值,难度不大.13.如果将抛物线y=x2向左平移4个单位,再向下平移2个单位后,那么此时抛物线的表达式是y=(x+4)2﹣2.【考点】H6:二次函数图象与几何变换.【分析】根据二次函数图象左加右减,上加下减的平移规律进行求解.【解答】解:函数y=x2向左平移4个单位,得:y=(x+4)2;再向下平移2个单位后,得:y=(x+4)2﹣2.【点评】主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.14.如表记录的是某班级女生在一次跳绳练习中跳绳的次数及相应的人数,则该班级女生本次练习中跳绳次数的平均数是54【考点】W2:加权平均数.【分析】平均数的计算方法是求出所有数据的和,然后除以数据的总个数.【解答】解:该班级女生本次练习中跳绳次数的平均数是==54.故答案为54.【点评】本题考查的是加权平均数的求法.本题易出现的错误是求40,50,60,70这四个数的平均数,对平均数的理解不正确.15.如图,已知:△ABC中,∠C=90°,AC=40,BD平分∠ABC交AC于D,AD:DC=5:3,则D点到AB的距离是15.【考点】KF:角平分线的性质.【分析】先求出CD的长,再根据角平分线的性质即可得出结论.【解答】解:∵AC=40,AD:DC=5:3,∴CD=40×=15.∵BD平分∠BAC交AC于D,∴D点到AB的距离是15.故答案为:15.【点评】本题考查的是角平分线的性质,熟知角的平分线上的点到角的两边的距离相等是解答此题的关键.16.正十二边形的中心角是30度.【考点】MM:正多边形和圆.【分析】根据正多边形的中心角的定义,可得正六边形的中心角是:360°÷12=30°.【解答】解:正十二边形的中心角是:360°÷12=30°.故答案为:30.【点评】此题考查了正多边形的中心角.此题比较简单,注意准确掌握定义是关键.17.如图,在甲楼的底部B处测得乙楼的顶部D点的仰角为α,在甲楼的顶部A 处测得乙楼的顶部D点的俯角为β,如果乙楼的高DC=10米,那么甲楼的高AB=+10米(用含α,β的代数式表示)【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】作AH⊥CD交CD的延长线于H,根据正切的概念分别求出DC、DH,计算即可.【解答】解:作AH⊥CD交CD的延长线于H,在Rt△DBC中,tan∠DBC=,则AH=BC=,在Rt△AHD中,tan∠DAH=,DH=AH×tanβ=,∴AB=CH=CD+DH=+10,故答案为: +10.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.18.如图,在Rt△ABC中,∠C=90°,CA=CB=4,将△ABC翻折,使得点B与边AC的中点M重合,如果折痕与边AB的交点为E,那么BE的长为.【考点】PB:翻折变换(折叠问题);KW:等腰直角三角形.【分析】作DG⊥AE,先根据翻折变换的性质得到△DEF≌△BEF,再根据等腰三角形的性质及三角形外角的性质可得到∠AED=CDF,设CF=x,则DF=FB=4﹣x,根据勾股定理求出CF,可知tan∠AED=tanCDF,在Rt△ADG和Rt△EDG分别求出DG、EG,然后根据勾股定理即可得到结论.【解答】解:作DG⊥BE,∵△DEF是△BEF翻折而成,∴△DEF≌△BEF,∠B=∠EDF,∵△ABC是等腰直角三角形,∴∠EDF=45°,由三角形外角性质得∠CDF+45°=∠AED+45°,∴∠AED=∠CDF,∵CA=CB=4,CD=AD=2,设CF=x,∴DF=FB=4﹣x,∴在Rt△CDF中,由勾股定理得,CF2+CD2=DF2,即x2+4=(4﹣x)2,解得x=,∵∠A=45°,AD=2,∴AG=DG=,∵tan∠AED=tanCDF==,∴=,∴=,∴EG=,∴DE=BE==.故答案为:.【点评】本题考查的是图形翻折变换的性质、等腰直角三角形的性质、勾股定理、三角形外角的性质以及锐角三角函数的综合运用,涉及面较广,但难易适中.三、解答题(本大题共7小题,共78分)19.(10分)(2017•杨浦区二模)计算:27﹣()﹣1÷3+80﹣(﹣2)2.【考点】2C:实数的运算;2F:分数指数幂;6E:零指数幂;6F:负整数指数幂.【分析】原式利用分数指数幂,零指数幂、负整数指数幂法则,以及完全平方公式化简即可得到结果.【解答】解:原式=3﹣1+1﹣7+4=7﹣7.【点评】此题考查了实数的运算,分数指数幂,零指数幂、负整数指数幂,熟练掌握运算法则是解本题的关键.20.(10分)(2017•杨浦区二模)解方程:.【考点】B3:解分式方程.【分析】分式方程去分母转化为一元二次方程,求出一元二次方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3(1﹣x)﹣(x+3)=(1﹣x)(x+3),整理得:x2﹣2x﹣3=0,即(x+1)(x﹣3)=0,解得:x1=﹣1,x1=3,经检验x1=﹣1,x1=3都是原方程的根.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.21.(10分)(2017•杨浦区二模)已知:如图,在△ABC中,∠ABC=45°,tanA=,AB=14,(1)求:△ABC的面积;(2)若以C为圆心的圆C与直线AB相切,以A为圆心的圆A与圆C相切,试求圆A的半径.【考点】MJ:圆与圆的位置关系;MC:切线的性质;T7:解直角三角形.【分析】(1)过C作CD⊥AB于D,解直角三角形得到CD=,根据三角形的面积公式即可得到结论;(2)根据圆C与直线AB相切,得到⊙C的半径=,根据勾股定理得到AC==,设⊙A的半径为r,当圆A与圆C内切时,当圆A与圆C外切时即可得到结论.【解答】解:(1)过C作CD⊥AB于D,∵tanA==,∴AD=,∵∠ABC=45°,∴BD=CD,∵AB=14,∴+CD=15,∴CD=,∴△ABC的面积=AB•CD=×15×=;(2)∵以C为圆心的圆C与直线AB相切,∴⊙C的半径=,∵AD=,∴AC==,设⊙A的半径为r,当圆A与圆C内切时,r﹣=,∴r=,当圆A与圆C外切时,r+=,∴r=,综上所述:以A为圆心的圆A与圆C相切,圆A的半径为:或.【点评】本题考查了圆与圆的位置关系,勾股定理,三角形的面积的计算,解直角三角形,注意分类讨论思想的应用.22.(10分)(2017•杨浦区二模)水果市场的甲、乙两家商店中都有批发某种水果,批发该种水果x千克时,在甲、乙两家商店所花的钱分别为y1元和y2元,已知y1、y2关于x的函数图象分别为如图所示的折线OAB和射线OC.(1)当x的取值为20千克时,在甲乙两家店所花钱一样多?(2)当x的取值为0<x<20时,在乙店批发比较便宜?(3)如果批发30千克该水果时,在甲店批发比在乙店批发便宜50元,求射线AB的表达式,并写出定义域.【考点】FH:一次函数的应用.【分析】(1)利用两个函数图象的交点坐标即可解决问题.(2)根据y2的图象在y1的下方,观察图象即可解决问题.(3)设AB的解析式为y=kx+b,由题意OC的函数解析式为y=10x,可得方程组,解方程组即可.【解答】解:(1)由图象可知,x=20千克时,y1=y2,故答案为20千克.(2)由图象可知,0<x<20时,在乙店批发比较便宜.故答案为0<x<20.(3)设AB的解析式为y=kx+b,由题意OC的函数解析式为y=10x,∴,解得,∴射线AB的表达式y=5x+100(x≥10).【点评】本题考查一次函数的应用、二元一次方程组等知识,解题的关键是灵活运用一次函数的性质解决问题,学会利用图象解决实际问题,属于中考常考题型.23.(12分)(2017•杨浦区二模)已知:如图,四边形ABCD中,DB⊥BC,DB 平分∠ADC,点E为边CD的中点,AB⊥BE.(1)求证:BD2=AD•DC;(2)连结AE,当BD=BC时,求证:ABCE为平行四边形.【考点】S9:相似三角形的判定与性质;L6:平行四边形的判定.【分析】(1)根据直角三角形的性质得到BE=DE,由等腰三角形的性质得到∠DBE=∠BDE,根据角平分线的定义得到∠ADB=∠BDE,等量代换得到∠ADB=∠DBE,根据平行线的判定定理得到AD∥BE,根据相似三角形的性质即可得到结论;(2)由已知条件得到△BDC是等腰直角三角形,根据等腰直角三角形的性质得到∠BDC=45°,求得∠ADE=90°,推出四边形ADEB是矩形,根据矩形的性质得到AB=DE,AE=BD,于是得到结论.【解答】(1)证明:∵DB⊥BC,点E为边CD的中点,∴BE=DE,∴∠DBE=∠BDE,∵DB平分∠ADC,∴∠ADB=∠BDE,∴∠ADB=∠DBE,∴AD∥BE,∵AB⊥BE,∴∠A=∠ABE=90°,∵∠DBC=90°,∴∠A=∠DBC,∴△ADB∽△BDC,∴,∴BD2=AD•DC;(2)解:∵BD=BC,∴△BDC是等腰直角三角形,∴∠BDC=45°,∴∠ADE=90°,∴四边形ADEB是矩形,∴AB=DE,AE=BD,∴AB=CE,AE=BC,∴四边形ABCE为平行四边形.【点评】本题考查了相似三角形的判定和性质,等腰直角三角形的判定和性质,平行四边形的判定,平行线的判定和性质,正确的理解题意是解题的关键.24.(12分)(2017•杨浦区二模)如图,已知抛物线y=ax2﹣x+c的对称轴为直线x=1,与x轴的一个交点为A(﹣1,0),顶点为B.点C(5,m)在抛物线上,直线BC交x轴于点E.(1)求抛物线的表达式及点E的坐标;(2)联结AB,求∠B的正切值;(3)点G为线段AC上一点,过点G作CB的垂线交x轴于点M(位于点E右侧),当△CGM与△ABE相似时,求点M的坐标.【考点】HF:二次函数综合题.【分析】(1)由对称轴可求得a的值,再把A点坐标代入可求得c的值,则可求得抛物线表达式,则可求得B、C的坐标,由待定系数法可求得直线BC的解析式,可求得E点坐标;(2)由A、B、C三点的坐标可求得AB、AC和BC的长,可判定△ABC是以BC 为斜边的直角三角形,利用三角形的定义可求得答案;(3)设M(x,0),当∠GCM=∠BAE时,可知△AMC为等腰直角三角形,可求得M点的坐标;当∠CMG=∠BAE时,可证得△MEC∽△MCA,利用相似三角形的性质可求得x的值,可求得M点的坐标.【解答】解:(1)∵抛物线对称轴为x=1,∴﹣=1,解得a=,把A点坐标代入可得+1+c=0,解得c=﹣,∴抛物线表达式为y=x2﹣x﹣,∵y=x2﹣x﹣=(x﹣1)2﹣2,∴B (1,﹣2),把C (5,m )代入抛物线解析式可得m=﹣5﹣=6,∴C (5,6),设直线BC 解析式为y=kx +b ,把B 、C 坐标代入可得,解得, ∴直线BC 解析式为y=2x ﹣4,令y=2可得2x ﹣4=0,解得x=2,∴E (2,0);(2)∵A (﹣1,0),B (1,﹣2),C (5,6),∴AB=2,AC==6,BC==4, ∴AB 2+AC 2=8+72=80=BC 2,∴△ABC 是以BC 为斜边的直角三角形,∴tan ∠B===3;(3)∵A (﹣1,0),B (1,﹣2),∴∠CAE=∠BAE=45°,∵GM ⊥BC ,∴∠CGM +∠GCB=∠GCB +∠ABC=90°,∴∠CGM=∠ABC ,∴当△CGM 与△ABE 相似时有两种情况,设M (x ,0),则C (x ,2x ﹣4),①当∠GCM=∠BAE=45°时,则∠AMC=90°,∴MC=AM ,即2x ﹣4=x +1,解得x=5,∴M (5,0);②当∠GMC=∠BAE=∠MAC=45°时,∵∠MEC=∠AEB=∠MCG ,∴△MEC ∽△MCA ,∴=,即=,∴MC 2=(x ﹣2)(x +1),∵C (5,6),∴MC 2=(x ﹣5)2+62=x 2﹣10x +61,∴(x ﹣2)(x +1)=x 2﹣10x +61,解得x=7,∴M (7,0);综上可知M 点的坐标为(5,0)或(7,0).【点评】本题为二次函数的综合应用,涉及待定系数法、二次函数的性质、勾股定理及其逆定理、三角函数的定义、相似三角形的判定和性质、方程思想及分类讨论思想等知识.在(1)中注意利用对称轴求得a 的值是解题的关键,在(2)中证得△ABC 为直角三角形是解题的关键,在(3)中利用相似三角形的性质得到关于M 点坐标的方程是解题的关键,注意分两种情况.本题考查知识点较多,综合性较强,难度适中.25.(14分)(2017•杨浦区二模)已知:以O 为圆心的扇形AOB 中,∠AOB=90°,点C 为上一动点,射线AC 交射线OB 于点D ,过点D 作OD 的垂线交射线OC 于点E ,联结AE .(1)如图1,当四边形AODE 为矩形时,求∠ADO 的度数;(2)当扇形的半径长为5,且AC=6时,求线段DE 的长;(3)联结BC ,试问:在点C 运动的过程中,∠BCD 的大小是否确定?若是,请求出它的度数;若不是,请说明理由.【考点】MR :圆的综合题.【分析】(1)利用矩形的性质,只要证明△OAC 是等边三角形,即可解决问题.(2)如图2中,作OH ⊥AD 于H .由△AOH ∽△ADO ,推出=,推出=,可得AD=,CD=AD﹣AC=,由DE∥OA,可得=,求出DE即可.(3)如图3中,结论:∠BCD的值是确定的.∠BCD=45°.连接AB、BC,由∠BCD=∠BAC+∠ABC,又∠BAC=∠BOC,∠ABC=∠AOC,即可推出∠BCD=∠BOC+∠AOC=(∠BCO+∠AOC)=×90°=45°.【解答】解:(1)如图1中,∵四边形ABCD是矩形,∴AD=EC,AC=CD,OC=CE,∠AOD=90°∴AC=OC=OA,∴△AOC是等边三角形,∴∠OAD=60°,∴∠ADO=90°﹣∠OAD=30°.(2)如图2中,作OH⊥AD于H.∵OA=OC,OH⊥AC,∴AH=HC=3,∵∠OAH=∠OAD,∠AHO=∠AOD,∴△AOH∽△ADO,∴=,∴=,∴AD=,∴CD=AD﹣AC=,∵DE⊥OD,∴∠EDO=90°,∴∠AOD+∠EDO=180°,∴DE∥OA,∴=,∴=,∴DE=.(3)如图3中,结论:∠BCD的值是确定的.∠BCD=45°.理由:连接AB、BC.∵∠BCD=∠BAC+∠ABC,又∵∠BAC=∠BOC,∠ABC=∠AOC,∴∠BCD=∠BOC+∠AOC=(∠BCO+∠AOC)=×90°=45°.【点评】本题考查圆综合题、矩形的性质、圆周角定理、平行线的判定和性质、相似三角形的判定和性质、等边三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,属于中考压轴题.像平时有价值的升学文章,像自招、校园开放日消息、历年中考分数线,那些文章我都放在公众号菜单栏那个按钮上的专题那里了,还有什么细化的升学问题,你们可以关注公众号给我留言,我看到会第一时间回复你们的——小编编。
上海市杨浦区2019届高三二模数学试题含答案

上海市杨浦区2019届高三二模数学试题含答案上海市杨浦区2017届高三二模数学试题一、填空题1、行列式987654321中,元素5的代数余子式2、设实数x x fx sin cos ,0若函数的最小正周期为,则3、已知圆锥的底面半径和高均为1,则该圆锥的侧面积为4、设向量t b a ,6,3,2,若b a 与的夹角为钝角,则实数t 的取值范围5、集合2,3,1a A ,集合2,1a a B a A A B 则实数若,=6、设21221-032,z z z z z z 的两根,则是方程=7、设R x f 是定义在上的奇函数,当的解集则不等式时,5,320x f x f xx 8、若变量y x,满足约束条件020212yx y x yx ,则y x z的最小值为9、小明和小红各自扔一颗均匀的正方体骰子,两人相互独立的进行,则小明扔出的点数不大于2或小红扔出的点数不小于3的概率为10、设)的坐标(上的动点,点是椭圆0,2-)0(142222F a a y a xA ,若满足A AF 的点10有且仅有两个,则实数a 的取值范围为11、已知bab b a b a 取得最小值时,当14,0,0212、设函数1,22y x a a x x x f 在圆盘在实数范围内变化时,当内,且不在任一x f 的图像上的点的全体组成的图形面积二、选择题13、”的是纯虚数”是““且设R z z z C z 2,0A,充分非必要B 、必要非充分C 、充要条件D 、即非充分又非必要14、设等差数列n a 的公差为0,d d ,若n a 的前10项和大于其前21项和,则A 、0d B 、0d C 、016a D 、016a。
2017年上海市杨浦区中考二模数学试卷及答案

2017年杨浦区初三模拟测试数 学 试 卷(满分150分,考试时间100分钟)2017.5.8考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.点A 是数轴上的任意一点,则下列说法正确的是( ▲ ) (A )点A 表示的数一定是整数; (B )点A 表示的数一定是分数;(C )点A 表示的数一定是有理数; (D )点A 表示的数可能是无理数.2.下列关于x 的方程一定有实数解的是( ▲ ) (A )21011xx x++=--; (B1x =-;(第3题图)(C )210x x --=; (D )210x x -+=.3.某学校为了了解九年级学生体能情况,随机选取30名 学生测试一分钟仰卧起坐次数,并绘制了直方图(如图), 学生仰卧起坐次数在25~30之间的频率为( ▲ ) (A )0.1; (B )0.4;(C )0.33;(D )0.17.4.将抛物线22y x =-平移到抛物线222y x x =+-的位置,以下描述正确的是( ▲ )(A )向左平移1个单位,向上平移1个单位;(B )向右平移1个单位,向上平移1个单位;(C )向左平移1个单位,向下平移1个单位;(D )向右平移1个单位,向下平移1个单位. 5.下列图形既是中心对称又是轴对称的是( ▲ )(A )菱形; (B )梯形; (C )正三角形; (D )正五边形.6.下列条件一定能推得△ABC 与△DEF 全等的是( ▲ ) (A )在△ABC 和△DEF 中,∠A =∠B ,∠D =∠E ,AB =DE ; (B )在△ABC 和△DEF 中,AB =AC ,∠A =∠F , FD =FE ; (C )在△ABC 和△DEF 中,1,AB DEB E BC EF==∠=∠; (D )在△ABC 和△DEF 中,1,AB BCB E DE EF==∠=∠. 二、填空题:(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置上】7= ▲ . 8x =的解是 ▲ . 9.如果反比例函数1ky x -=的图像在第二、四象限,那么k 的取值范围是 ▲ .10.函数y kx b =+的大致图像如图所示,则当0x <范围是 ▲ .11.黄老师在数学课上给出了6道习题,要求每位同学独立完成。
2017年杨浦二模试卷(校对标准答案版)

杨浦区2016学年度第二学期高三模拟质量调研英语学科试卷2017.4本试卷分为第I卷(第1-13页)和第II卷(第14页)两部分。
全卷共14页。
满分140分。
考试时间120分钟。
1.答第I卷前,考试务必将条形码粘贴在答题纸的指定区域内。
2.第I卷(1-20小题,31-70小题)由机器阅卷,答案必须全部涂写在答题卡上。
考生应将代表正确答案的小方格用铅笔涂黑。
注意试题题号和答题卡编号一一对应,不能错位。
答案需要更改时,必须将原选项用橡皮擦去,重新选择。
答案写在试卷上一律不给分。
第I卷中的第21-30小题,IV. Summary writing部分和第II卷的试题,其答案用钢笔或水笔写在答题纸的规定区域内,如用铅笔答题,或写在试卷上则无效。
第I卷(共100分)I.Listening ComprehensionSection ADirections:In Section A, you will hear ten short conversions between two speakers. At the end of each conversion, a question will be asked about what was said. The conversations and the questions will be spoken only once. After you hear a conversation and the question about it, read the four possible answers on your paper, and decide which one is the best answer to the question you have heard.1. A.1:00p.m. B.2:03p.m.C.2:30p.m.D.2:45p.m2.A .Jon Smith isn’t in right now.B .The man dialed the wrong number.C. John Smith can’t answer the phone right now.D. The woman is busy working and can’t find John Smith.3. A. Delivering newspaper. B .Picking Fruit.C. Baby-sitting.D. Posting advertisements.4. A. At home. B. At a hair-dresser.C. In the office.D. In a library.5. A. Cook and baker. B. Waitress and diner.C. Tailor and customer.D. Boss and secretary.6 .A. The man forgot saying something about the exam.B. The man said something that annoyed Jess.C. The man didn’t care about the exam.D. The man kept talking in the exam.7. A. The boys are badly spoiled.B. The man gives them too much money.C. They should learn to manage money.D. She wants to save money for the boys.8. A. Delighted. B. Excited.C. Puzzled.D. Disappointed.9. A. Rebecca doesn’t work hard enough.B. Rebecca never falls asleep in class.C. Rebecca has a Japanese cultural background.D. Rebecca’s parents urge her to have more sleep.10. A. Cindy is satisfied with her new hair style.B. Cindy is suffering from a serious hair loss.C. Cindy found her new image unbelievably nice.D. Cindy’s hairstylist didn’t understand her requirement.Section BDirections:In Section B, you will hear several longer conversion(s) and short passage(s), and you will be asked several questions on each of the conversation (s) and the passage(s).The conversation(s) and passage(s) will be read twice, but the questions will be spoken only twice. When you hear a question, read the four possible answers on your paper and decide which one would be the best answer to the question you have heard.Questions11 through 13 are based on the following passage.11. A. In Sichuan province in 2013.B .In Washington, DC in 2000.C. In Washington, DC in 2013.D. In Sichuan province in 2000.12. A. She was seriously ill.B. her parents missed her too much.C. She was not accustomed to the food there.D. Pandas born outside China must come back before 4.13. A. Many US people saw her off at the airplane.B. It took her 6hours to come back home by plane.C. She was accompanied by a diplomat and doctor.D. A variety of food was prepared on the plane by Chinese zoo.Question 14 though 16 are based on the following passage.14. A. They speak too carefully.B. They don’t like foreigners.C. .They use jokes and slangD. They are poor at communication.15. A. You are as beautiful as a queen. B. No problems.C. You are serious about small matters.D. Don’t play drams.16. A. Imitate their pronunciation.B. Point out their lake of patience.C. Learn to speak internationally.D. Ask them to speak slowly and clearly.Question 17 through 20 are based on the following conversation.17. A. A cell phone that had just been released.B. A cell phone whose price had just dropped.C. cell phone that the woman thought had some problems.D. A cell phone that the woman thought had some problems.18. A. He was afraid the product he wanted would be sold out soon.B. He thought that the new technology was worth the full price.C. He predicted that the prices of well-designed products would go up.D. He knew products from this company seldom offered a discount.19. A. She picked one model and bought it without hesitation.B. She was always the first one to try out latest models.C.She often consulted product reviews before purchase.D. She compared prices and bought the more expensive one.20A. Most companies overstate the function of their products.B. Different people have different values and principles.C. The man admitted that he bought the cell phone too hastily.D. The woman was more experienced in buying expensive products.II Grammar and vocabularySection ADirections:After reading the passage, fill in the blanks to make the passages coherent and grammatically correct. For the blanks with a given word, fill in each blank with the proper form of the given word; for the other blanks, use one word that best fits each blank.I was standing in the checkout line behind a woman who looked to be in (21) ______60s. When it was her turn to pay, the cashier greeted her by name and asked her how she was doing.The woman looked down,(22) ______(shake) her head and said:“Not so good. My husband just lost job and my son is up to his old tricks again. The truth is, I don’t know how I’m going to get through the holidays.”Then she gave the cashier food stamps.My heat ached. I wanted to help but didn’t know how. (23)____ I offer to pay for her groceries or ask for her husband’s resume?As i walked into the parking lot, I saw the woman (24)_______ (return) her shopping cart. I remembered something in my purse (25)______ I thought could help her. It wasn’t a handful ofcash or an offer of a job for her husband, but maybe it would make her life better.My heart pounded as I approached the woman.“Excuse me,” I said, my voice trembling a bit. “I couldn’t help overhearing what you said to the cashier. It sounds like you’re going through a really hard time right now. I’m so sorry. I’d like to give you something.”I handed her the small card from my purse.When the woman read the card’s only two words, she began to cry. And through her tears, she said: “You have no idea (26) ____ this means to me.”I was a little startled by her reply. (27)_____ (not do) anything like this before, I didn’t know what kind of reaction I might receive. All left for me (28)______(say) was: “ Oh, Would it be OK to give you a hug?”(29)______ we embraced, I walked back to my car -- and began to cry, too.The words on the card?“You Matter.”A few weeks earlier, a colleague gave me a similar card (30) ___encouragement for a project I was working on. When I read the card, I felt a warm glow spread inside of me. Deeply touched, I came home and ordered my own box of You Matter card and started sharing them. Section BDirections: Fill in each blank with a proper word chosen from the box. Each word can only be used once. Note that there is one word more than you need.Most of us learn at primary school that there are seven continents, but the next generation of kids may be adding one more to that list.According to a recent paper published in the geological society of American journal by a group of researchers, “Zealandia’’is a new continent that’s 31 beneath the ocean.Zealandia is 32 to be five million sq km. Most of this massive area is covered by water, but its highest mountains already have their own name: New Zealand.The small country is the only part of new Zealandia that isn't under water, but the paper’s authors want the huge landmass to be 33 worldwide as its own continent.‘The scientific value of classifying Zealandia as a continent is much more than just an extra name on a list,’ the researchers wrote in their paper.Scientists discovered Zealandia all the way back in 1995, then started 34 research on the area using underwater and satellite mapping 35 . After completing their work, they were finally able to write a report suggesting that Zealandia be named a continent.But who decided on what is a continent and what isn't? There is ,in fact, no official organization that does some countries teach that there are six or even five continents. This changes depending on where in the world the school is.Due to their 36 as a continuous expanse of land, some classify Europe and Asia as the same continent-known as Eurasia. Schools in Russia and parts of Eastern Europe teach this.And to making things even more confusing, France and Greece, as well as some other countries, classify North America and South American as simply America.This argument over how land is defined has even 37 into outer space. In 2006, the International Astronomical Union (IAU) decided that Pluto was no longer a planet ,met the requirements needed to be called a planet ,76 years after its 38 in 1930, experts argued that it no longer met the requirements needed to called a planet alongside the eight others in our solar system. It was therefore renamed a “dwarf planet(矮行星)”,meaning that 39 books, models and museum exhibits all over world had to be 40 .But will be the world take the same notice of new Zealandia? The best way to tell is to keep an eye on our textbooks.III .Reading ComprehensionSection ADirections:For each blank in the following passage there are four words or phrases marked a b and c fill in each blanks with the word or phrase that best fits the context.Good news for awkward teenagers around the world. As time goes by, you could 41 up like a completely different person.This comes from the longest running personality study ever 42 by scientists. According to41. A. hold B. wake C. end D. cheer42. A. carried out B. applied to C. participated in D. made up43. A. incredible B. accessible C. changeable D. recognizable44. A. assemble B. assess C. assume D. access45. A. alternative B. individual C. original D. separate46. A. score B. rate C. comment D. remark47.A. comparing B. reviewing C. presenting D. observing48. A. young B. similar C. amateur D. differentbination B. stability C. transformation D. flexibility50.A. increasingly B. strangely C. subsequently D. obviously51.A. Therefore B. Moreover C. However D. Otherwise52.A. stronger B. closer C. further D. weaker53.A. option B. sign C. symptom D. cause54.A. replaced B. exposed C. divided D. cultivated55.A. stuck in mud B. buried in sand C. lost in thought D.set in stoneS ection BDirections:Read the following three passages. Each passage is followed by several questions or unfinished statements. For each of them there are four choices marked A, B, C, and D. Choose the one that fits best according to the information given in the passage you have just read.(A)One way people are responding to food safety concerns is by going their own food. However, not everyone live on property with enough space for a private plot. One solution is community gardens, which have become popular worldwide, numbering 1,000 in North America alone. In addition to providing low-cost, delicious food, these public spaces offer cities a range of other benefits.Community gardens are located in a town or city and tended by local residents. Often, the land is on a vacant lot owned by the city. The site is divided into manageable plots, which may be tended by individuals or by the garden’s members collectively. Since the land is usually publicly owned, the cost for gardeners to lease it is minimal. In fact, New York City, which is home to more than 750 community gardens tended by more than 20,000 members, charges people just $1 a year to lease a plot. Other costs involve soil, tools, seeds, fencing, and so on. However, because they’ve shared by many people, individual gardeners pay very littleA community garden can quickly pay off, in terms of delicious fruits vegetables, in addition be beautiful flowers. Excess produce can be sold for a profit at farmers markets. But a garden’sbenefits don’t stop there. They also beautify cities, foster strong relationships among residents, and lower an area’s crime rate. Award-winning spaces like London’s Culpeper Community Garden even attract tourists. Beautiful and affordable, community gardens are often described as oases in crowded cities.56. Community gardens are designed for those whoA. are concerned about food safetyB. live in a house with a private plotC. can’t afford to buy organic foodD. don’t have their own property57. New York CityA. is owned by 20,000 individual gardensB. charges residents a lot to lease tools and fencingC. contains more than 750 community gardensD. is tended by professional gardeners and local residents58. What’s the benefit of community gardens?A. People can enjoy safe and delicious vegetables and animal meat.B. Residents are more familiar and related with each other.C. The neighborhood is becoming safer but of lower taste.D. People can make some Profits from the visiting tourists.59. The understood word “oases” is closest in meaning toA. cultural and art centers B, popular platforms for exchangesC. peaceful and safe landsD. commercial and prosperous places(B)African SafariEssential information you need to know before booking your African Safari in Southern Africa-These tips will enhance The experience that you have Things to Consider Before Booking an African Safari1)Book in AdvanceAfrican Safaris are now hugely popular and good safari camps often get booked out more than a year in advance, especially during the high season from July through to October. Show more... 2)Choosing which game parkDifferent parks have different topography and weather patterns -this greatly affects animal movements at different times of the year. If you want to target certain species of animals, then some parks are better than others for certain species. Show more...3)Choosing which lodge or safari campA typical safari camp has between 10 and 20 beds, it is an intimate safari experience and very personalised. However, there are also hotels in some places, either inside or just outside a national park, which can sleep anything up to 300people. Show more...4)GuidingThe quality, experience and knowledge of the game guides at any Safari camp is almost the most important factor to consider. Good guides can transform your experience from ordinary to exceptional. Show more...5)What’s the Best Time of Year to go on SafariUnderstandably as the seasons change so does the safari experience. It is highly advisable to find out the best time of year for the safari area that you are intending to visit Prices will change dramatically between the high and the low season, so good deals are to be had in the low season but it is important to know the difference, as your experience will be vastly different. Show more...6)The PricesGoing on Safari is not cheap whichever way you do it, but the price range can be enormous. Unfortunately, safaris in most cases a case of “you pay for what you get”. Show more...7)Fly-in safari or notUsing small charter planes is sometimes an absolute necessity for camps in remote areas, where road transfers are just not practical or viable. These flights can increase the overall cost of the safari substantially but generally they are worth it and allow you the flexibility to visit a variety of safari camps in different locations. Show more...8)Use an AgentAs you can see from all the information and options detailed above, there is great deal tounderstand and unless you go on safari several times a year it is impossible to know all this stuff. Show more...CONTACT US NOW TO HELP YOU PLAN YOUR SAFARIWe are qualified travel agents who know this area intimately!Click on the below buttons for some fantastic safari ideas60.Which is a determining factor in choosing a Safari camp?A.Means of transport.B.Accommodation.C. Weather patterns.D. Game guides61.John is planning to have an African Safari in August 2018. He should book it in ____.A.July 2018B.January 2018C.July 2017D.October 201762.Which of the following is FALSE about African Safari?A.You can have a good price but same experience if you travel in low season.B.If you visit different camps in remote areas, flights may be unavoidable.C.The more money you pay, the better experience you’ll get.D.Not all the parks have the same species of animals.(C)A busy brain can mean a hungry body. We often seek food after focused mental activity, like preparing for an exam. Researchers think that heavy bouts of thinking drain energy from the brain. Whose capacity to store fuel is very limited.So the brain, sensing that it may soon require more calories to keep going, apparently stimulates bodily hunger, and even though there has been little in the way of physical movement or caloric expenditure, we eat. This process may partly account for the weight gain so commonly seen in college students.Scientists at the University of Alabama at Birmingham and another institution recently experimented with exercise to counter such post-study food binges.Gary Hunter, an exercise physiologist at U.A.B., oversaw the study, which was published this month in the journal Medicine & Science in Sports & Exercise. Hunter notes that strenuous activity both increases the amount of blood sugar and lactate(乳酸盐) — a byproduct of intense muscle contractions(收缩)— circulating in the blood and augments blood flow to the head. Because the brain uses sugar and lactate as fuel, researchers wondered if the increased flow of fuel-rich blood during exercise could feed an exhausted brain and reduce the urge to overeat.Thirty--eight healthy college students were invited to U.A.B.’s exercise lab to report what their favorite pizza was. At a later date, the volunteers returned and spent 20 minutes tackling selections from college and graduate--school entrance exams. Next, half the students sat quietly for 15 minutes, before being given pizza. The rest of the volunteers spent those 15 minutes doing intervals on a treadmill: two minutes of hard running followed by about one minute of walking, repeated five times. Hunter says, that should prompt the release of sugar and lactate into the bloodstream. These students were then allowed to gorge on pizza, too. But by and large, they did not overeat. In fact, the researchers calculated that the exercisers consumed about 25 fewer calories than they did during their baseline session. The non-exercisers, however, consumed about 100 calories more.The study has limitations, of course. We only looked at lunch, Hunter says; the researchers do not know if the runners consumed extra calories at dinner. They also cannot tell whether other types of exercise would have the same effect as running although Hunter says they suspect that if an activity causes someone to break into a sweat, it should also increase blood sugar and lactate, feeding the brain and weakening hunger’s call.63.According to the passage, ____may cause many college students to overeat and gain weight.A.A lot of energy-consuming mental activitiesB.Numerous physical movements or calorie burningC.Failure to resist the temptation of delicious foodD.Bodily hunger caused by physical growth64.The underlined word “counter” is closest in meaning to ___.A.StimulateB.MaximizeC.BalanceD.Prevent65.What can be inferred from the passage?A.Running is more beneficial than walking.B.Sweating in exercise can make people hungrierC.The amount of blood sugar and lactate can affect people’s appetite.D.When the brain feels exhausted, people tend to do exercise for relaxation.66.Which of the following statements is FALSE?A.Mental activities can make people feel hungry.B.Physical exercise can make people refreshed and stay hungry.C.Sugar and lactate can help energize and restore people’s brain.D.It’s uncertain what types of exercise can effectively feed the brain.Section CDirections: Read the following passage. Fill in each blank with a proper sentence given in the box. Each sentence can be used only once. Note that there are two more sentences than you need.Self-talk helps us allTalking to yourself may seem a little shameful. If you’ve ever been overheard criticizing yourself for a foolish mistake or practicing a speech, you’ll know the social problems it can cause.67But there’s no need for embarrassment. Talking to ourselves, whether out loud or silently in our head, is -valuable. Far from being a sign of insanity, self-talk allows us to plan what we are going to do, manage our activities and control our emotions.For example, take a trip to any preschool and watch a small girl playing with her toys. Your are very likely to hear her talking to herself: offering herself directions and talking about her problems.68 We do a lot of it when we are young.As according to the Russian Psychologist Lev Vygotsky, we use private speech to control our actions in the same way that we use public speech to control the behavior of others. As we grow older, we keep this system inside.Psychological experiments have shown that this so-called inner speech can improve our performance in tasks like telling what other people are thinking. Our words give us an interesting view of our actions. One recent study suggested that self-talk is most effective when we talk to ourselves in the second person: as “you” rather than “I”.69 if you want proof, turn on sports channel. You’re sure to see an athlete shouting at himself or herself.Talking to ourselves seems to be a very good way of solving problem and working through ideas. Hearing different points of view means our thoughts can end up in different places, just like a regular dialogue, and might turn out to be one of the keys to human creativity.Both kinds of self-talk – silent and out loud – seem to bring many different benefits to our thinking. 70 .IV. Summery WritingDirections: Read the following passage. Summarize the main idea and the main point(s) of the passage in no more than 60 words. Use your own words as far as possible.For thousands of years, people have across the oceans to trade, explore, and transport goods. However ,not every ship arrives at its port of destination. Weather, war, navigation mistakes, and bad luck have caused many ships to sink to the bottom of the ocean. These shipwrecks, which are estimated to number more than three million, have long fascinated us. In addition to being historically important, they sometimes contain great riches.Historical research is a key motivator for shipwreck hunters. Ships carrying documents and artifacts can teach us about ancient civilizations and important events. For instance, in 1977 the Pandora, which sank in 791, was discovered off the coast of Australia. The findings from the ship helped us understand the events surrounding the famous mutiny(暴动) on another ship—the Bounty. Another important discovery of the US coast is 1996 is widely believed to be the Queen Ann’s Revenge, the flagship of the private Blackbeard.Profit is another motive for shipwreck exploration, as companies use advanced sonar, robots, and retrieval equipment to find treasure ships. One such firm is Odyssey Marine Exploration. The company has found hundreds of ships, including, in 2007, Spanish sailing ship containing 500,000 silver coins. The ship, which sank 200 years ago in the Atlantic Ocean, Carried a treasure estimated to be worth $500 million. Soon after the discovery, a long legal battle over ownership rights tool place between the company and the Spanish government. Cases like these are part of an ongoing debates about protecting historically important ships from treasure hunters.________ ________ ________ ________ ________ ________ ________ ________ ________ ________ ________ ________ ________ ________ ________ ________ ________ ________ ________ ________ ________ ________ ________ ________ ________ ________ ________ ________ ________ ________ ________ ________ ________ ________ ________ ________ ________ ________ ________ ________ ________ ________ ________ ________ ________ ________ ________ ________ ________ ________ ________ ________ ________ ________ ________ ________ ________ ________ ________ ________60第II卷(共46分)I TranslationDirections: Translation the following sentences into English, using the words given in the brackets.1.新颁布的禁烟令得到了广大市民的支持。
上海市杨浦区2017届高三上学期期末质量调研数学试题(全WORD版,含官方答案)

杨浦区2016学年度第一学期期末高三年级质量调研数学学科试卷 2016.12考生注意: 1.答卷前,考生务必在答题纸写上姓名、考号, 并将核对后的条形码贴在指定位置上.2.本试卷共有21道题,满分150分,考试时间120分钟.一.填空题(本大题满分54分)本大题共有12题,1-6每题4分,7-12每题5分。
考生应在答题纸相应编号的空格内直接填写结果.1、 若“a b >”,则“33a b >”是________命题.(填:真、假)2、 已知(0]A =-∞,,()B a =+∞,,若A B =R ,则a 的取值范围是________.3、 294z z i +=+(i 为虚数单位),则||z =________.4、 若ABC △中,4a b +=,30C ∠=︒,则ABC △面积的最大值是_________.5、 若函数2()log 1x af x x -=+的反函数的图像过点(2,3)-,则a =________. 6、 过半径为2的球O 表面上一点A 作球O 的截面,若OA 与该截面所成的角是60︒,则该截面的面积是__________.7、 抛掷一枚均匀的骰子(刻有1、2、3、4、5、6)三次,得到的数字依次记作a 、b 、c ,则a bi +(i 为虚数单位)是方程220x x c -+=的根的概率是___________. 8、 设常数0a >,9()a x x+展开式中6x 的系数为4,则2lim()n n a a a →∞++⋅⋅⋅+=_______. 9、 已知直线l 经过点(50)-,且方向向量为(21)-,,则原点O 到直线l 的距离为__________. 10、 若双曲线的一条渐近线为20x y +=,且双曲线与抛物线2y x =的准线仅有一个公共点,则此双曲线的标准方程为_________.11、 平面直角坐标系中,给出点(1,0)A ,(4,0)B ,若直线10x my +-=上存在点P ,使得||2||PA PB =,则实数m 的取值范围是___________.12、 函数()y f x =是最小正周期为4的偶函数,且在[]2,0x ∈-时,()21f x x =+,若存在12,,,n x x x 满足120n x x x ≤<<< ,且()()()()1223f x f x f x f x -+-+()()12016n n f x f x -+-=,则n n x +最小值为__________.二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,填上正确的答案,选对得5分,否则一律得零分.13、若a 与b c - 都是非零向量,则“a b a c ⋅=⋅ ”是“()a b c ⊥-”的( )(A) 充分但非必要条件 (B) 必要但非充分条件 (C) 充要条件(D) 既非充分也非必要条件14、行列式147258369中,元素7的代数余子式的值为()(A) 15-(B) 3-(C) 3(D) 1215、一个公司有8名员工,其中6位员工的月工资分别为5200,5300,5500,6100,6500,6600,另两位员工数据不清楚。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
- - - 1 -杨浦区2016学年度第二学期高三年级质量调研 数学学科试卷 2017.4考生注意: 1.答卷前,考生务必在答题纸写上姓名、考号, 并将核对后的条形码贴在指定位置上.2.本试卷共有21道题,满分150分,考试时间120分钟.一.填空题(本大题满分54分)本大题共有12题,1-6每题4分,7-12每题5分。
考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1. 行列式123456789中, 元素5的代数余子式的值为_________.2. 设实数0ω>, 若函数()cos()sin()f x x x ωω=+的最小正周期为π, 则ω=_________.3. 已知圆锥的底面半径和高均为1, 则该圆锥的侧面积为_________.4. 设向量(2,3)a =, 向量(6,)b t =. 若a 与b 的夹角为钝角, 则实数t 的取值范围 为 _________.5. 集合2{1,3,}A a =, 集合{1,2}B a a =++. 若B A A ⋃=, 则实数 a =_______.6. 设12,z z 是方程2230z z ++=的两根, 则12||z z -= _________.7. 设()f x 是定义在R 上的奇函数, 当0x >时, 3()2xf x =-. 则不等式()5f x <-的解为________.- - - 2 -8. 若变量,x y 满足约束条件12,20,20,x y x y x y +≤⎧⎪-≥⎨⎪-≤⎩则z y x =-的最小值为_________.9. 小明和小红各自掷一颗均匀的正方体骰子, 两人相互独立地进行. 则小明掷出的点 数不大于2或小红掷出的点数不小于3的概率为_________.10. 设A 是椭圆()22221 04x y a a a +=>-上的动点, 点F 的坐标为(2,0)-, 若满足||10AF =的点A 有且仅有两个, 则实数a 的取值范围为_________.11. 已知0a >, 0b >, 当21(4)a b ab++取到最小值时, b =_________. 12. 设函数()||||a f x x x a =+-. 当a 在实数范围内变化时, 在圆盘221x y +≤内,且不在任一()a f x 的图像上的点的全体组成的图形的面积为_________.二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,填上正确的答案,选对得5分,否则一律得零分. 13. 设z ∈C 且0z ≠. “z 是纯虚数”是“2z ∈R ”的 ( )(A) 充分非必要条件 (B) 必要非充分条件(C) 充要条件(D) 既非充分又非必要条件14.设等差数列{}n a 的公差为d , 0d ≠. 若{}n a 的前10项之和大于其 前21项之和, 则 ()(A) 0d <(B) 0d > (C) 160a <(D) 160a >- - - 3 -S15.如图, N 、S 是球O 直径的两个端点. 圆1C 是经过N 和S 点的大圆, 圆2C 和圆3C 分别是所在平面与NS 垂直的大圆和小圆. 圆1C 和2C 交于点A 、B , 圆1C 和3C 交于点C 、D .设a 、b 、c 分别表示圆1C 上劣弧CND 的弧长、圆2C 上半圆弧AB 的弧长、圆3C 上半圆弧CD 的弧长. 则,,a b c 的大小关系为 ()(A) b a c >= (B) b c a => (C) b a c >>(D) b c a >>16.对于定义在R 上的函数()f x , 若存在正常数,a b , 使得()()f x a f x b +≤+对一切x ∈R 均成立, 则称()f x 是“控制增长函数”。
在以下四个函数中: ①2()1f x x x =++②()f x ③ 2()sin()f x x =④()sin f x x x =⋅是“控制增长函数”的有 ()(A) ②③ (B) ③④ (C) ②③④ (D) ①②④三、解答题(本大题满分76分)本大题共5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤 .- - - 4 -A 1B 1C 1D 1Q P DCBA17.(本题满分14分)本题共有2个小题,第1小题满分8分,第2小题满分6分. 如图, 正方体1111ABCD A B C D -中, 4AB =. P 、Q 分别是棱BC 与11B C 的中点. (1) 求异面直线1D P 和1A Q 所成的角的大小;(2) 求以11,,,A D P Q 四点为四个顶点的四面体的体积.- - - 5 -18.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.已知函数121()22x x f x +-+=+.(1) 判断函数()f x 的奇偶性, 并证明;(2) 若不等式()9()log 21f x c >-有解,求c 的取值范围.- - - 6 -RQPC BA19.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分 如图所示: 扇形ABC 是一块半径为2千米, 圆心角为60的风景区, P 点在弧BC 上, 现欲在风景区中规划三条商业街道. 要求街道PQ 与AB 垂直, 街道PR 与AC 垂直,线段RQ 表示第三条街道.(1) 如果P 位于弧BC 的中点,求三条街道的总长度;(2) 由于环境的原因, 三条街道PQ , PR , QR 每年能产生的经济效益分别为每千米300万元, 200万元及400万元,问:这三条街道每年能产生的经济总效益最高为多少?(精确到1万元).- - - 7 -20.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.设数列{}n a 满足4nn a A B n =⋅+⋅, 其中,A B 是两个确定的实数, 0B ≠.(1) 若1A B ==, 求{}n a 的前n 项之和; (2) 证明: {}n a 不是等比数列;(3) 若12a a =, 数列{}n a 中除去开始的两项之外, 是否还有相等的两项? 并证明你的结论.- - - 8 -21、(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.设双曲线Γ的方程为2213y x -=.过其右焦点F 且斜率不为零的直线1l 与双曲线交于,A B 两点, 直线2l 的方程为x t =, ,A B 在直线2l 上的射影分别为,C D(1) 当1l 垂直于x 轴, 2t =-时, 求四边形ABDC 的面积;(2) 当0t =, 1l 的斜率为正实数, A 在第一象限, B 在第四象限时, 试比较||||||||AC FB BD FA ⋅⋅和1的大小, 并说明理由;(3) 是否存在实数(1,1)t ∈-, 使得对满足题意的任意直线1l , 直线AD 和直线BC 的交点总在x 轴上, 若存在, 求出所有的t 的值和此时直线AD 与BC 交点的位置; 若不存在, 说明理由.数学评分参考一.填空题(本大题满分54分)本大题共有12题,1-6每题4分,7-12每题5分。
考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分 1. 12- 2. 24. (,4)-∞-5. 26.7. (,3)-∞- 8. 4- 9.79 10. (8,12) 11. 14 12. 34π- - - 9 -二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,填上正确的答案,选对得5分,否则一律得零分. 13、(A) 14、(C) 15、(D) 16、(C)三、解答题(本大题满分76分)本大题共5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤 .17、(本题满分14分)本题共有2个小题,第1小题满分8分,第2小题满分6分. (1) 以D 为原点, DA 方向为x 轴正方向, DC 方向为y 轴正方向, 1DD 方向为z 轴正方向建立空间直角坐标系. (2分) 得1(0,0,4)D , (2,4,0)P , 1(4,0,4)A , (2,4,4)Q . 故1(2,4,4)D P =-, 1(2,4,0)AQ =-. (4分) 设1D P 与1A Q 所成的角的大小为θ.则1111||16cos 5||||36D P AQD P AQ θ⋅===⋅(6分)故1D P 与1A Q 所成的角的大小为arccos5. (8分) (2) 该四面体是以11A D Q 为底面, P 为顶点的三棱锥. (10分)P 到平面11AQD 的距离4h PQ ==. 11A D Q 的面积1111182A B C D S S ==. (12分)- - - 10 -因此四面体11A D PQ 的体积113248333V Sh ==⋅⋅=. (14分)18、(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分. (1) 奇函数 (2分) 证明:定义域 x ∈R (4分)()111121122()2222222xx x x x x f x f x --++-+-+-+-====-+++(6分) 所以()f x 为奇函数(2) 令:2x t = 则0t > 原函数为()1022t y t t -+=>+ (8分) 值域为11,22y ⎛⎫∈- ⎪⎝⎭(10分)因为不等式()9()log 21f x c >-有解 所以()91log 212c -<有解 (12分) 即:0213c <-<122c << (14分)19、(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分- - - 11 -(1) 由题意, 30PAQ ︒∠=, 因此2sin 301PQ ︒==, 同理1PR = (2分) 36029060120QPR ︒︒︒︒∠=-⨯-=,故QR PQ =⨯= (4分)因此三条步道的总长度为2 (6分)(2) 设0,3PAQ πθ⎛⎫∠=∈ ⎪⎝⎭. 则2sin PQ θ=, 2sin 3PR πθ⎛⎫=- ⎪⎝⎭(8分) ,,,A Q P R 均在以AP 为直径的圆上由正弦定理 2sin QR AP RAQ==∠ 得QR = (10分)效益3002sin 2002sin 4003T πθθ⎛⎫=⨯+⨯-+ ⎪⎝⎭()2003sin sin θθθ=-+arctan 2θ⎛=++ ⎝⎭(12分)当arctan 0,23ππθ⎛⎫=- ⎪⎝⎭时 T的最大值为1222=+≈万元 (14分)20、(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.- - - 12 -(1) 4n n a n =+, 故前n 项之和2(444)(12)n n S n =+++++++. (2分)4(41)141(1)(41)(1)41232n n n n n n -=++=-++- (4分) (2) 14a A B =+, 2162a A B =+, 3643a A B =+.若{}n a 是等比数列, 则2(162)(4)(643)A B A B A B +=++ (6分)即 2222256644256763A AB B A AB B ++=++, 即212B AB =.因0B ≠, 故12B A =, 且0A ≠. (8分)此时, 240a A =, 3100a A =, 4304a A =, 不满足2324a a a =. 因此{}n a 不是等比数列. (10分)(3) 12a a =即4162A B A B +=+, 即12B A =-, 且0A ≠.此时, (412)n n a A n =⋅-. (12分)设*412,n n c n n =-∈N .111(412(1))(412)341234120n n n n n c c n n ++-=-+--=⋅-≥⋅-=,当且仅当1n =时等号成立, 故1234c c c c =<<<.即除1c 外, {}n c 的各项依次递增. (14分)因此{}n a 中除去1a 和2a 之外, 没有其它的两项相等. (16分)- - - 13 -21、(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.(1) 右焦点的坐标为(2,0)F . 故1:2l x =. (1分)联立222,13x y x =⎧⎪⎨-=⎪⎩解得3y =±. 故||6AB =, (3分) 又||4AC =, 故四边形ABDC 的面积为24. (4分)(2) 设1l 的方程为2x my =+, 这里0m >. 将1l 的方程与双曲线方程联立, 得到 223(2)30my y +--=, 即22(31)1290m y my -++=. (6分)由120y y <知2310m -<, 此时,||||||||||||||||||||A B B A x y AC FB AC BF BD FA BD AF x y ⋅=⋅=⋅==⋅ (8分) 由于212031A B m y y m -=+>-, 故0A B y y >->, 即||||0A B y y >>, 故2211A B y y <. 因此||||1||||AC FB BD FA ⋅<⋅. (10分) (3) 设直线:2AB x my =+, 与2213y x -=联立得- - - 14 -22(31)1290m y my -++=. (有两交点表示m ≠) 设(,)A A A x y , (,)B B B x y , 则(,)A C t y , (,)B D t y .,A B x x 的绝对值不小于1, 故A x t ≠, 且B x t ≠. 又因直线斜率不为零, 故A B y y ≠. 直线AD 的方程为B A B A y y x t y y x t--=--. 直线BC 的方程为A B A B y y x t y y x t --=--. (12分) 若这两条直线相交在x 轴上, 则当0y =时, 两方程的x 应相同, 即 ()()B A A B A B B Ay x t y x t x t t y y y y ----=+=+--. 故(2)(2)0A B B A y my t y my t +-++-=,即2(2)()0A B A B my y t y y +-+=. (14分) 现2931A B y y m =-, 21231A B m y y m +=--, 代入上式, 得1812(2)0m t m --=对一切3m ≠±都成立. 即182412t =-, 12t =. (16分) 此时交点的横坐标为()B A A B y x t x t y y --=+-- - - 15 - 2()(2)(2)11125222224A B B B A A B A B t y y t y my t t y y y y y -+--+--=+=+=+=---. (18分) 综上, t 存在,12t =, 此时两直线的交点为5,04⎛⎫ ⎪⎝⎭.。