2015年成人高等学校招生全国统一考试数学(理工农医类)试卷答案
2015年高考数学(理)试题(重庆题)含答案

2015年普通高等学校招生全国统一考试(重庆卷)数学(理工类)数学试题卷(理工农医类)共4页。
满分150分。
考试时间120分钟。
注意事项:1、答题前,务必将自己的姓名、准考证号写在答题卡规定的位置上;2、答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,在选涂其它答案标号。
3、答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。
4、所有题目必须在答题卡上作答,在试卷上答题无效。
5、考试结束后,将试题卷和答题卡一并交回。
特别提醒:(14)、(15)、(16)三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分。
一、选择题:本大题10个小题,每小题5分,共50分,在每小题给出的四个备选项中,只有一项是符合题目要求的。
(1)已知集合{}1,2,3A =,{}2,3B =,则()(A)A=B (B)A B =∅∩(C)A BÜ(D)B A Ü(2)在等差数列{}n a 中,若244,2a a ==,则6a =()(A)-1(B)0(C)1(D)6(3)重庆市2013年各月的平均气温(ºC)数据的茎叶图如下:则这组数据的中位数是()(A)19(B)20(C)21.5(D)23(4)“1x >”是“1log (2)0x +<的”()(A)充要条件(B)充分而不必要条件(C)必要而不充分条件(D)既不充分也不必要条件(5)某几何体的三视图如图所示,则该几何体的体积为()(A)13π+(2)23π+(3)123π+(4)223π+(6)若非零向量a,b满足a =,且()(32)a b a b -⊥+,则a 与b 的夹角为()(A)4π(B)2π(C)34π(D)π(7)执行如题(7)图所示的程序框图,若输出k 值为8,则判断框内可填入的条件是()(A)3s ≤(B)5s ≤(C)1112s ≤(D)2524s ≤(8)已知直线l :10()x ay a R +-=∈是圆C:224210x y x y +--+=的对称轴,过点A(-4,a )作圆C 的一条切线,切点为B,则AB =()(A)2(B)(C)6(D)(9)若tan 2tan 5πα=,则3cos(10sin()5παπα--=()(A)1(B)2(C)3(D)410、设双曲线22221x y a b-=(0,0a b >>)的右焦点为F,右顶点为A,过F 作AF 的垂线与双曲线交于B、C 两点,过B、C 分别作AC、AB 的垂线,两垂线交于点D。
2015年普通高等学校招生全国统一考试理科数学(陕西卷)(含答案全解析)

2015年普通高等学校招生全国统一考试陕西理科数学1.本试卷分为两部分,第一部分为选择题,第二部分为非选择题.2.考生领到试卷后,先按规定在试卷上填写姓名、准考证号,并在答题卡上填上对应的试卷类型信息.3.所有解答必须填写在答题卡上指定区域内.考试结束后,将本试卷及答题卡一并交回.第一部分(共60分)一、选择题:在每小题给出的四个选项中,只有一项符合题目要求(本大题共12小题,每小题5分,共60分).1.(2015陕西,理1)设集合M={x|x2=x},N={x|lg x≤0},则M∪N=()A.[0,1]B.(0,1]C.[0,1)D.(-∞,1]答案:A解析:解x2=x,得x=0或x=1,故M={0,1}.解lg x≤0,得0<x≤1,故N=(0,1].故M∪N=[0,1],选A.2.(2015陕西,理2)某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为()A.93B.123C.137D.167答案:C解析:由题图知,初中部女教师有110×70%=77人;高中部女教师有150×(1-60%)=60人.故该校女教师共有77+60=137(人).选C.3.(2015陕西,理3)如图,某港口一天6时到18时的水深变化曲线近似满足函数y=3sinπx+φ +k.据此函数6可知,这段时间水深(单位:m)的最大值为()A.5B.6C.8D.10答案:C解析:因为sinπx+φ ∈[-1,1],所以函数y=3sinπx+φ +k的最小值为k-3,最大值为k+3.由题图可知函数最小值为k-3=2,解得k=5.所以y的最大值为k+3=5+3=8,故选C.4.(2015陕西,理4)二项式(x+1)n(n∈N+)的展开式中x2的系数为15,则n=()A.7B.6C.5D.4答案:B解析:(x+1)n的展开式通项为T r+1=C n r x n-r.令n-r=2,即r=n-2.则x2的系数为C n n−2=C n2=15,解得n=6,故选B.5.(2015陕西,理5)一个几何体的三视图如图所示,则该几何体的表面积为()A.3πB.4πC.2π+4D.3π+4答案:D解析:由三视图可知,该几何体是一个半圆柱,圆柱的底面半径r=1,高h=2.所以几何体的侧面积S1=C底·h=(π×1+2)×2=2π+4.几何体的底面积S2=12π×12=12π.故该几何体的表面积为S=S1+2S2=2π+4+2×π2=3π+4.故选D.6.(2015陕西,理6)“sin α=cos α”是“cos 2α=0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案:A解析:由cos 2α=0,得cos2α-sin2α=0,即cos α=sin α或cos α=-sin α.故“sin α=cos α”是“cos 2α=0”的充分不必要条件.7.(2015陕西,理7)对任意向量a,b,下列关系式中不恒成立的是()A.|a·b|≤|a||b|B.|a-b|≤||a|-|b||C.(a+b)2=|a+b|2D.(a+b)·(a-b)=a2-b2答案:B解析:A项,a·b=|a||b|cos<a,b>≤|a||b|,所以不等式恒成立;B项,当a与b同向时,|a-b|=||a|-|b||;当a与b非零且反向时,|a-b|=|a|+|b|>||a|-|b||.故不等式不恒成立;C项,(a+b)2=|a+b|2恒成立;D项,(a+b)·(a-b)=a2-a·b+b·a-b2=a2-b2,故等式恒成立.综上,选B.8.(2015陕西,理8)根据右边框图,当输入x为2 006时,输出的y=()A.2B.4C.10D.28答案:C解析:由算法框图可知,每运行一次,x的值减少2,当框图运行了1 004次时,x=-2,此时x<0,停止循环,由y=3-x+1可知,y=3-(-2)+1=10,故输出y的值为10,故选C.9.(2015陕西,理9)设f(x)=ln x,0<a<b,若p=f(ab),q=f a+b2,r=12(f(a)+f(b)),则下列关系式中正确的是()A.q=r<pB.p=r<qC.q=r>pD.p=r>q答案:B解析:因为0<a<b,所以a+b>ab.又因为f(x)=ln x在(0,+∞)上单调递增,所以f a+b2>f(ab),即p<q.而r=1(f(a)+f(b))=1(ln a+ln b)=12ln(ab)=ln ab,所以r=p,故p=r<q.选B.10.(2015陕西,理10)某企业生产甲、乙两种产品均需用A,B两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为()A.12万元B.16万元C.17万元D.18万元答案:D解析:设该企业每天生产甲产品x吨,乙产品y吨,获利z元.则由题意知3x+2y≤12,x+2y≤8,x≥0,y≥0,利润函数z=3x+4y.画出可行域如图所示,当直线3x+4y-z=0过点B 时,目标函数取得最大值.由 3x +2y =12,x +2y =8,解得 x =2,y =3.故利润函数的最大值为z=3×2+4×3=18(万元).故选D .11.(2015陕西,理11)设复数z=(x-1)+y i (x ,y ∈R ),若|z|≤1,则y ≥x 的概率为( )A.34+12π B.12+1πC.12-1πD.14-12π答案:D解析:由|z|≤1,得(x-1)2+y 2≤1.不等式表示以C (1,0)为圆心,半径r=1的圆及其内部,y ≥x 表示直线y=x 左上方部分(如图所示). 则阴影部分面积S=1π×12-S △OAC =1π-1×1×1=π-1.故所求事件的概率P=S 阴S 圆=π4−12π×12=14-12π.12.(2015陕西,理12)对二次函数f (x )=ax 2+bx+c (a 为非零整数),四位同学分别给出下列结论,其中有且只有一个结论是错误的,则错误的结论是( ) A.-1是f (x )的零点 B.1是f (x )的极值点 C.3是f (x )的极值 D.点(2,8)在曲线y=f (x )上 答案:A解析:f'(x )=2ax+b.若A 正确,则f (-1)=0,即a-b+c=0, ① 若B 正确,则f'(1)=0,即2a+b=0, ② 若C 正确,则f'(x 0)=0,且f (x 0)=3, 即f −b=3,即c-b2=3.③ 若D 项正确,则f (2)=8,即4a+2b+c=8.④假设②③④正确,则由②得b=-2a ,代入④得c=8,代入③得8-4a 24a=3,解得a=5,b=-10,c=8.此时f (x )=5x 2-10x+8,f (-1)=5×(-1)2-10×(-1)+8=5+10+8=23≠0,即A 不成立.故B ,C ,D 可同时成立,而A 不成立.故选A .第二部分(共90分)二、填空题:把答案填写在答题卡相应题号后的横线上(本大题共4小题,每小题5分,共20分).13.(2015陕西,理13)中位数为1 010的一组数构成等差数列,其末项为2 015,则该数列的首项为 . 答案:5解析:由题意知,1 010为数列首项a 1与2 015的等差中项,故a 1+2 015=1 010,解得a 1=5.14.(2015陕西,理14)若抛物线y 2=2px (p>0)的准线经过双曲线x 2-y 2=1的一个焦点,则p= .答案:2解析:双曲线x 2-y 2=1的焦点为F 1(- 2,0),F 2( 2,0).抛物线的准线方程为x=-p 2.因p>0,故-p2=- 2,解得p=2 2.15.(2015陕西,理15)设曲线y=e x 在点(0,1)处的切线与曲线y=1(x>0)上点P 处的切线垂直,则P 的坐标为 . 答案:(1,1)解析:曲线y=e x 在点(0,1)处的切线斜率k=y'=e x |x=0=1;由y=1,可得y'=-12,因为曲线y=1(x>0)在点P 处的切线与曲线y=e x 在点(0,1)处的切线垂直,故-1P2=-1,解得x P =1,由y=1,得y P =1,故所求点P 的坐标为(1,1). 16.(2015陕西,理16)如图,一横截面为等腰梯形的水渠,因泥沙沉积,导致水渠截面边界呈抛物线型(图中虚线所示),则原始的最大流量与当前最大流量的比值为 .答案:1.2解析:以梯形的下底为x 轴,上、下底边的中点连线为y 轴,建立如图所示的坐标系,设抛物线的方程为y=ax 2,则抛物线过点(5,2),故2=25a ,得a=2,故抛物线的方程为y=2x 2.最大流量的比,即截面的面积比,由图可知,梯形的下底长为6,故梯形的面积为(10+6)×2=16,而当前的截面面积为2 52−2x 2 d x=2 2x −2x 3 |05=40,故原始流量与当前流量的比为16403=1.2. 三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6小题,共70分).17.(本小题满分12分)(2015陕西,理17)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,向量m=(a , 3b )与n=(cos A ,sin B )平行. (1)求A ;(2)若a= 7,b=2,求△ABC 的面积.(1)解:因为m ∥n ,所以a sin B- b cos A=0.由正弦定理,得sin A sin B- 3sin B cos A=0. 又sin B ≠0,从而tan A= 3. 由于0<A<π,所以A=π3.(2)解法一:由余弦定理,得a 2=b 2+c 2-2bc cos A ,而a= 7,b=2,A=π3,得7=4+c 2-2c ,即c 2-2c-3=0. 因为c>0,所以c=3.故△ABC 的面积为12bc sin A=3 3.解法二:由正弦定理,得 7sin π3=2sin B ,从而sin B= 21.又由a>b ,知A>B ,所以cos B=2 7.故sin C=sin (A+B )=sin B +π=sin B cos π3+cos B sin π3=3 2114.所以△ABC 的面积为12ab sin C=3 32. 18.(本小题满分12分)(2015陕西,理18)如图①,在直角梯形ABCD 中,AD ∥BC ,∠BAD=π,AB=BC=1,AD=2,E 是AD 的中点,O 是AC 与BE 的交点,将△ABE 沿BE 折起到△A 1BE 的位置,如图②.图①图②(1)证明:CD ⊥平面A 1OC ;(2)若平面A 1BE ⊥平面BCDE ,求平面A 1BC 与平面A 1CD 夹角的余弦值.(1)证明:在题图①中,因为AB=BC=1,AD=2,E 是AD 的中点,∠BAD=π,所以BE ⊥AC ,即在题图②中,BE ⊥OA 1,BE ⊥OC , 从而BE ⊥平面A 1OC ,又CD ∥BE ,所以CD ⊥平面A 1OC. (2)解:由已知,平面A 1BE ⊥平面BCDE ,又由(1)知,平面A 1BE ⊥平面BCDE , 又由(1)知,BE ⊥OA 1,BE ⊥OC ,所以∠A 1OC 为二面角A 1-BE-C 的平面角, 所以∠A 1OC=π.如图,以O 为原点,建立空间直角坐标系,因为A 1B=A 1E=BC=ED=1,BC ∥ED , 所以B 2,0,0 ,E −2,0,0 ,A 1 0,0,2,C 0,2,0 ,得BC = − 2, 2,0 ,A 1C = 0, 2,− 2,CD =BE =(-2,0,0).设平面A 1BC 的法向量n 1=(x 1,y 1,z 1),平面A 1CD 的法向量n 2=(x 2,y 2,z 2),平面A 1BC 与平面A 1CD 夹角为θ,则 n 1·BC =0,n 1·A 1C =0,得 −x 1+y 1=0,y 1−z 1=0,取n 1=(1,1,1); n 2·CD =0,n 2·A 1C =0,得x 2=0,y 2−z 2=0,取n 2=(0,1,1), 从而cos θ=|cos <n 1,n 2>|=3× 2= 63, 即平面A 1BC 与平面A 1CD 夹角的余弦值为 6.19.(本小题满分12分)(2015陕西,理19)设某校新、老校区之间开车单程所需时间为T ,T 只与道路畅通状况有关,对其容量为100的样本进行统计,结果如下:(1)求T的分布列与数学期望ET;(2)刘教授驾车从老校区出发,前往新校区做一个50分钟的讲座,结束后立即返回老校区,求刘教授从离开老校区到返回老校区共用时间不超过120分钟的概率.解:(1)由统计结果可得T的频率分布为以频率估计概率得T的分布列为从而ET=25×0.2+30×0.3+35×0.4+40×0.1=32(分钟).(2)设T1,T2分别表示往、返所需时间,T1,T2的取值相互独立,且与T的分布列相同.设事件A表示“刘教授共用时间不超过120分钟”,由于讲座时间为50分钟,所以事件A对应于“刘教授在路途中的时间不超过70分钟”.解法一:P(A)=P(T1+T2≤70)=P(T1=25,T2≤45)+P(T1=30,T2≤40)+P(T1=35,T2≤35)+P(T1=40,T2≤30)=0.2×1+0.3×1+0.4×0.9+0.1×0.5=0.91.解法二:P(=P(T1+T2>70)=P(T1=35,T2=40)+P(T1=40,T2=35)+P(T1=40,T2=40)=0.4×0.1+0.1×0.4+0.1×0.1=0.09,故P(A)=1-P(A)=0.91.20.(本小题满分12分)(2015陕西,理20)已知椭圆E:x2a2+y2b2=1(a>b>0)的半焦距为c,原点O到经过两点(c,0),(0,b)的直线的距离为12c.(1)求椭圆E的离心率;(2)如图,AB是圆M:(x+2)2+(y-1)2=5的一条直径,若椭圆E经过A,B两点,求椭圆E的方程.(1)解:过点(c,0),(0,b)的直线方程为bx+cy-bc=0,则原点O到该直线的距离d=bcb+c2=bc,由d=1c,得a=2b=2 a2−c2,解得离心率c=3.(2)解法一:由(1)知,椭圆E 的方程为x 2+4y 2=4b 2.①依题意,圆心M (-2,1)是线段AB 的中点,且|AB|= 10.易知,AB 与x 轴不垂直,设其方程为y=k (x+2)+1,代入①得,(1+4k 2)x 2+8k (2k+1)x+4(2k+1)2-4b 2=0. 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=-8k (2k +1)1+4k2,x 1x 2=4(2k +1)2−4b21+4k2.由x 1+x 2=-4,得-8k (2k +1)1+4k2=-4,解得k=1.从而x 1x 2=8-2b 2.于是|AB|= 1+ 122|x 1-x 2|= 52 (x 1+x 2)2−4x 1x 2= 10(b 2−2). 由|AB|= 10,得 2−2)= 10,解得b 2=3. 故椭圆E 的方程为x 212+y 23=1.解法二:由(1)知,椭圆E 的方程为x 2+4y 2=4b 2.②依题意,点A ,B 关于圆心M (-2,1)对称,且|AB|= 10. 设A (x 1,y 1),B (x 2,y 2),则x 12+4y 12=4b 2,x 22+4y 22=4b 2,两式相减并结合x 1+x 2=-4,y 1+y 2=2, 得-4(x 1-x 2)+8(y 1-y 2)=0. 易知AB 与x 轴不垂直,则x 1≠x 2, 所以AB 的斜率k AB =y 1−y 2x 1−x 2=12. 因此,直线AB的方程为y=12(x+2)+1,代入②得,x 2+4x+8-2b 2=0.所以x 1+x 2=-4,x 1x 2=8-2b 2. 于是|AB|= 1+ 122|x 1-x 2|= 5(x 1+x 2)2−4x 1x 2= 10(b 2−2). 由|AB|= 10,得 10(b 2−2)= 10,解得b 2=3.故椭圆E 的方程为x 2+y 2=1.21.(本小题满分12分)(2015陕西,理21)设f n (x )是等比数列1,x ,x 2,…,x n 的各项和,其中x>0,n ∈N ,n ≥2.(1)证明:函数F n (x )=f n (x )-2在 12,1 内有且仅有一个零点(记为x n ),且x n =12+12x n n +1;(2)设有一个与上述等比数列的首项、末项、项数分别相同的等差数列,其各项和为g n (x ),比较f n (x )和g n (x )的大小,并加以证明.(1)证明:F n (x )=f n (x )-2=1+x+x 2+…+x n -2,则F n (1)=n-1>0,F n 12 =1+12+ 12 2+…+ 12 n-2 =1− 12n +11−12-2=-1n <0,所以F n (x )在 1,1 内至少存在一个零点. 又F n '(x )=1+2x+…+nx n-1>0, 故F n (x )在 12,1 内单调递增,所以F n (x )在 1,1 内有且仅有一个零点x n . 因为x n 是F n (x )的零点,所以F n (x n )=0,即1−x nn +1n -2=0,故x n =1+1x n n +1. (2)解法一:由假设,g n (x )=(n +1)(1+x n )2.设h (x )=f n (x )-g n (x )=1+x+x 2+…+x n -(n +1)(1+x n ),x>0. 当x=1时,f n (x )=g n (x ).当x ≠1时,h'(x )=1+2x+…+nx n-1-n (n +1)x n−1. 若0<x<1,h'(x )>x n-1+2x n-1+…+nx n-1-n (n +1)x n-1=n (n +1)x n-1-n (n +1)x n-1=0. 若x>1,h'(x )<x n-1+2x n-1+…+nx n-1-n (n +1)2x n-1=n (n +1)2x n-1-n (n +1)2x n-1=0.所以h (x )在(0,1)上递增,在(1,+∞)上递减, 所以h (x )<h (1)=0,即f n (x )<g n (x ). 综上所述,当x=1时,f n (x )=g n (x ); 当x ≠1时,f n (x )<g n (x ).解法二:由题设,f n (x )=1+x+x 2+…+x n ,g n (x )=(n +1)(x n +1)2,x>0. 当x=1时,f n (x )=g n (x ).当x ≠1时,用数学归纳法可以证明f n (x )<g n (x ).①当n=2时,f 2(x )-g 2(x )=-1(1-x )2<0, 所以f 2(x )<g 2(x )成立.②假设n=k (k ≥2)时,不等式成立,即f k (x )<g k (x ). 那么,当n=k+1时,f k+1(x )=f k (x )+x k+1<g k (x )+x k+1=(k +1)(1+x k )2+x k+1 =2x k +1+(k +1)x k +k +1.又g k+1(x )-2x k +1+(k +1)x k +k +12=kx k +1−(k +1)x k +1,令h k (x )=kx k+1-(k+1)x k +1(x>0),则h k '(x )=k (k+1)x k -k (k+1)x k-1=k (k+1)x k-1(x-1). 所以,当0<x<1时,h k '(x )<0,h k (x )在(0,1)上递减; 当x>1时,h k '(x )>0,h k (x )在(1,+∞)上递增. 所以h k (x )>h k (1)=0, 从而g k+1(x )>2x k +1+(k +1)x k +k +12.故f k+1(x )<g k+1(x ),即n=k+1时不等式也成立. 由①和②知,对一切n ≥2的整数,都有f n (x )<g n (x ).解法三:由已知,记等差数列为{a k },等比数列为{b k },k=1,2,…,n+1.则a 1=b 1=1,a n+1=b n+1=x n , 所以a k =1+(k-1)·x n −1(2≤k ≤n ), b k =x k-1(2≤k ≤n ),令m k (x )=a k -b k =1+(k−1)(x n −1)n-x k-1,x>0(2≤k ≤n ), 当x=1时,a k =b k ,所以f n (x )=g n (x ). 当x ≠1时,m k '(x )=k−1·nx n-1-(k-1)x k-2=(k-1)x k-2(x n-k+1-1). 而2≤k ≤n ,所以k-1>0,n-k+1≥1. 若0<x<1,x n-k+1<1,m k '(x )<0;若x>1,x n-k+1>1,m k '(x )>0,从而m k (x )在(0,1)上递减,在(1,+∞)上递增, 所以m k (x )>m k (1)=0.所以当m>0且m ≠1时,a k >b k (2≤k ≤n ), 又a 1=b 1,a n+1=b n+1,故f n (x )<g n (x ). 综上所述,当x=1时,f n (x )=g n (x ); 当x ≠1时,f n (x )<g n (x ).考生注意:请在22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分,作答时用2B 铅笔在答题卡上把所选题目的题号后的方框涂黑.22.(本小题满分10分)(2015陕西,理22)选修4—1:几何证明选讲 如图,AB 切☉O 于点B ,直线AO 交☉O 于D ,E 两点,BC ⊥DE ,垂足为C.(1)证明:∠CBD=∠DBA ;(2)若AD=3DC ,BC= 2,求☉O 的直径. (1)证明:因为DE 为☉O 直径,则∠BED+∠EDB=90°.又BC ⊥DE ,所以∠CBD+∠EDB=90°, 从而∠CBD=∠BED.又AB 切☉O 于点B ,得∠DBA=∠BED , 所以∠CBD=∠DBA. (2)解:由(1)知BD 平分∠CBA ,则BA =AD=3, 又BC= 2,从而AB=3 2.所以AC=2−BC 2=4,所以AD=3. 由切割线定理得AB 2=AD ·AE ,即AE=AB 2=6,故DE=AE-AD=3,即☉O 直径为3.23.(本小题满分10分)(2015陕西,理23)选修4—4:坐标系与参数方程在直角坐标系xOy 中,直线l 的参数方程为 x =3+12t ,y = 3t(t 为参数),以原点为极点,x 轴正半轴为极轴建立极坐标系,☉C 的极坐标方程为ρ=2 3sin θ. (1)写出☉C 的直角坐标方程;(2)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标. 解:(1)由ρ=2 θ,得ρ2=2 3ρsin θ,从而有x 2+y 2=2 3y ,所以x 2+(y- 3)2=3. (2)设P 3+1t , 3t ,又C (0, 3),则|PC|= 3+1t + 3t − 3 2= t 2+12,故当t=0时,|PC|取得最小值, 此时,P 点的直角坐标为(3,0).24.(本小题满分10分)(2015陕西,理24)选修4—5:不等式选讲已知关于x的不等式|x+a|<b的解集为{x|2<x<4}.(1)求实数a,b的值;(2)求at+12+bt的最大值.解:(1)由|x+a|<b,得-b-a<x<b-a,则−b−a=2,b−a=4,解得a=-3,b=1.(2)−3t+12+t=34−t+t≤[(3)2+12][(4−t)2+(t)2]=24−t+t=4,当且仅当4−t3=t,即t=1时等号成立.故(−3t+12+t)max=4.11。
2015(数学)成人高等学校招生全国统一考试5年真题

2014年成人高等学校招生全国统一考试数学答案必须答在答题卡上指定的位置,答在试卷上无效.......。
选择题一、选择题:本大题共17小题,每小题5分,共85分。
在每小题给出的四个选项中,只有一项是符合题目要求的,将所选项的字母填涂在答题卡相应的题号的信息点上.............。
(1)设集合M={x ︱-1≤x <2},N={x ︱x ≤1},则集合M ∩N= (A){x ︱x >-1} (B ){x ︱x >1} (C ){x ︱-1≤x ≤1} (D ){x ︱1≤x ≤2} (2)函数y=51-x 的定义域为 (A)(-∞,5) (B )(-∞,+∞) (C )(5,+∞) (D )(-∞,5)∪(5,+∞) (3)函数y=2sin6x 的最小正周期为 (A)3π (B )2π(C )2π (D )3π (4)下列函数为奇函数的是(A)y=log 2x (B )y=sinx (C )y=x2(D )y=3x(5)抛物线y 2=3x 的准线方程为(A)x=﹣23 (B )x=﹣43(C )x=21 (D )x=43(6)已知一次函数y=2x+b 的图像经过点(-2,1),则该图像也经过点 (A)(1,-3) (B )(1,-1,) (C )(1,7) (D )(1,5) (7)若a,b,c 为实数,且a ≠0设甲:b 2-4ac ≥0 , 乙:ax 2+bx+c=0有实数根,则 (A)甲是乙的必要条件,但不是乙的充分条件 (B )甲是乙的充分条件,但不是乙的必要条件 (C )甲既不是乙的充分条件,也不是乙的必要条件 (D )甲是乙的充分必要条件(8)二次函数y=x 2+x-2的图像与x 轴的交点坐标为(A)(-2,0)和(1,0) (B )(-2,0)和(-1,0)(9)不等式︱x-3︱>2的解集是(A){x ︱x <1} (B ){x ︱x >5} (C ){x ︱x >5或x ︱x <1} (D ){x ︱1<x <5}(10)已知圆x 2+y 2+4x-8y+11=0,经过点P (1,0)作该圆的切线,切点为Q ,则线段PQ 的长为 (A)4 (B )8 (C )10 (D )16(11)已知平面向量a=(1,1),b=(1,-1),则两向量的夹角为(A)6π (B )4π(C )3π (D )2π(12)若0<lga <lgb <2,则(A)0<a <b <1 (B )0<b <a <1 (C )1<b <a <100 (D )1<a <b <100 (13)设函数xx x f 1)(+=,则)1(-x f = (A)1+x x (B )1-x x (C )11+x (D )11-x(14)设两个正数a ,b 满足a+b=20,则ab 的最大值为(A)400 (B )200 (C )100 (D )50(15)将5本不同的历史书和2本不同的数学书排成一行,则2本数学书恰好在两端的概率为(A) 101 (B )141 (C )201 (D )211(16)在等腰三角形ABC 中,A 是顶角,且cosA=21,则cosB=(A)23 (B )21(C )-21(D )-23 (17)从1,2,3,4,5中任取3个数,组成的没有重复数字的三位数共有 (A)80个 (B )60个 (C )40个 (D )30个非选择题二、填空题:本大题共4小题,每小题4分,共16分。
2015年成人高考高起点数学考试真题及参考答案

2015 年成人高等学校招生全国统一考试数学(高起点)第Ⅰ卷(选择题,共 85 份)一. 选择题:本大题共 17 小题,每小题 5 份,共 85 分。
在每小题给出的四个选项中只有一项是符合题目要求的。
1. 设集合 M={2,5,8 }, N={6,8 },则 M∪N =() CA.{8}B. {6}C. {2,5,6,8 }D. {2,5 ,6}2. 函数 y = 的值域为( ) AA.[3 ,+∞)B.[0, + ∞)C. [9, + ∞)D.R3. 若<θ<π,sin θ=1\4, 则 cosθ=( ) AA. 15B.15C.15D.15 4 16 16 44.已知平面向量α=(-2,1 )与 b=(λ,2)垂直,则λ=( ) DA.-4B.-1C.1D.45.下列函数在各自定义域中为增函数的是 ( ) DA.y=1-xB.y=1-xC.y=1+2-xD.y=1+2 2 x6. 设甲:函数 y=kx+b 的图像过点( 1,1 ),乙 :k+b=1, 则( ) DA.甲是乙的必要条件,但不是乙的充分条件B.甲是乙的充分条件,但不是乙的必要条件C.甲不是乙的充分条件,也不是乙的必要条件D.甲是乙的充分必要条件7. 设函数 y k 的图像经过点(,),则K=( ) D x2 -2A.4B.1C.-1D.-48. 若等比数列a x 的公比为 3,ax = 9,则1=( ) BaA. 1B. 1C.3D.279 39.log 10-log52=( ) B5A.0B. 1C.5D.810.tan θ=2, 则 tan (θ+π)=( ) A1A.2B.C.-2 1D.-2 211.已知点 A(1,1 ), B(2,1 ),C(-2,3 ),则过点 A及线段 BC中点的直线方程为:( ) AA.x+y-2=0B.x+y+2=0C.x-y=0D.x-y+2=012.设二次函数 y=ax2 +bx+c 的图像过点( -1,2 )和( 3,2 ),则其对称轴的方程为 ( ) CA.x=3B.x=2C.x=1D.x=-113. 以点(0,1 )为圆心且与直线 3 x-y-3=0 相切的圆的方程为 () BA.x 2+(y-1) 2 =2B.x 2 +(y-1) 2 =4C. x 2+(y-1) 2 =16D.(x-1) 2 +y2=114. 设 f ( x) 为偶函数,若 f ( 2)3 ,则 f (2) ()CA.-3B.0C. 3D. 615. 下列不等式成立的是 ( ) DA.( 1 )5>( 1 )3B. 1 1 522 2C. log1 5>log1 3D. log25> log2 32 216.某学校为新生开设了 4 门选修课程,规定每位新生至少要选其中3 门,则一位新生的不同的选课方案共有( ) BA.4 种B.5 种C.6 种D.7 种17.甲乙两人单独地破译一个密码,设两人能破译的概率分别为 P1 ,P 2 , 则恰有一人能破译的概率为( ) CA.P P2 B. (1- P1)P1 2C.(1- P 1 )P2 + (1- P 2)P1 D.1-(1-P1 )(1- P 2)第 II 卷(非选择题,共65 分)二、填空题:本大题共 4 小题,每小题 4 分,共 16 分。
2015年福建高考数学含答案(word版)

2015年普通高等学校招生全国统一考试(福建卷)数 学(理工类) 第I 卷(选择题共50分)一、选择题:本题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1、若集合{}234,,,A i i i i = (i 是虚数单位),{}1,1B =- ,则AB 等于A.{}1-B.{}1C.{}1,1-D.φ 2、下列函数为奇函数的是 A.y x =B.sin y x =C.cos y x =D.x x y e e -=-3、若双曲线22:1916x y E -= 的左、右焦点分别为12,F F ,点P 在双曲线E 上,且13PF =,则2PF 等于A.11B.9C.5D.34、为了解某社区居民的家庭年收入所年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:收入x (万元) 8.28.610.011.311.9支出y (万元)6.27.58.08.59.8根据上表可得回归本线方程ˆˆˆybx a =+ ,其中ˆˆˆ0.76,b a y bx ==- ,据此估计,该社区一户收入为15万元家庭年支出为A.11.4万元B.11.8万元C.12.0万元D.12.2万元5、若变量,x y 满足约束条件20,0,220,x y x y x y +≥⎧⎪-≤⎨⎪-+≥⎩则2z x y =- 的最小值等于A.52-B.2-C.32- D.2 6、阅读如图所示的程序框图,运行相应的程序,则输出的结果为 A.2 B.1 C.0 D.1-7、若,l m 是两条不同的直线,m 垂直于平面α ,则“l m ⊥ ”是“//l α ”的 A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件8、若,a b 是函数()()20,0f x x px q p q =-+>> 的两个不同的零点,且,,2a b - 这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q + 的值等于 A.6 B.7 C.8 D.99、已知1,,AB AC AB AC t t⊥== ,若P 点是ABC ∆ 所在平面内一点,且4A B A C AP ABAC=+,则PB PC ⋅ 的最大值等于 A.13 B.15 C.19 D.2110、若定义在R 上的函数()f x 满足()01f =- ,其导函数()f x ' 满足()1f x k '>> ,则下列结论中一定错误的是 A.11f k k ⎛⎫< ⎪⎝⎭ B.111f k k ⎛⎫>⎪-⎝⎭ C.1111f k k ⎛⎫< ⎪--⎝⎭ D. 111k f k k ⎛⎫> ⎪--⎝⎭第II 卷(非选择题共100分)二、填空题:本大题共5小题,每小题4分,共20分.把答案填在答题卡的相应位置. 11、()52x + 的展开式中,2x 的系数等于 .(用数字作答)12、若锐角ABC ∆ 的面积为103 ,且5,8AB AC == ,则BC 等于 .13、如图,点A 的坐标为()1,0 ,点C 的坐标为()2,4 ,函数()2f x x = ,若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于 .14、若函数()6,2,3log ,2,a x x f x x x -+≤⎧=⎨+>⎩(0a > 且1a ≠ )的值域是[)4,+∞ ,则实数a 的取值范围是 .15、一个二元码是由0和1组成的数字串()*12n x x x n N ∈ ,其中()1,2,,k x k n =称为第k 位码元,二元码是通信中常用的码,但在通信过程中有时会发生码元错误(即码元由0变为1,或者由1变为0)已知某种二元码127x x x 的码元满足如下校验方程组:4567236713570,0,0,x x x x x x x x x x x x ⊕⊕⊕=⎧⎪⊕⊕⊕=⎨⎪⊕⊕⊕=⎩其中运算⊕ 定义为:000,011,101,110⊕=⊕=⊕=⊕= .现已知一个这种二元码在通信过程中仅在第k 位发生码元错误后变成了1101101,那么利用上述校验方程组可判定k 等于 .16.某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定,小王到银行取钱时,发现自己忘记了银行卡的密码,但是可以确定该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定.(1)求当天小王的该银行卡被锁定的概率;(2)设当天小王用该银行卡尝试密码次数为X ,求X 的分布列和数学期望.17.如图,在几何体ABCDE 中,四边形ABCD 是矩形,AB ^平面BEG ,BE ^EC ,AB=BE=EC=2,G ,F 分别是线段BE ,DC 的中点.(1)求证:GF 平面ADE (2)求平面AEF 与平面BEC 所成锐二面角的余弦值.18. 已知椭圆E :22221(a 0)x y b a b +=>>过点(0,2),且离心率为22.(1)求椭圆E 的方程; (2)设直线1x my m R =- ,()交椭圆E 于A ,B 两点,判断点G 9(4-,0) 与以线段AB 为直径的圆的位置关系,并说明理由.19.已知函数f()x 的图像是由函数()cos g x x =的图像经如下变换得到:先将()g x 图像上所有点的纵坐标伸长到原来的2倍(横坐标不变),再将所得到的图像向右平移2p个单位长度.(1)求函数f()x 的解析式,并求其图像的对称轴方程;(2)已知关于x 的方程f()g()x x m +=在[0,2)p 内有两个不同的解,a b 1)求实数m 的取值范围;2)证明:22cos ) 1.5m a b -=-(20.已知函数f()ln(1)x x =+,(),(k ),g x kx R = (1)证明:当0x x x ><时,f();(2)证明:当1k <时,存在00x >,使得对0(0),x x Î任意,恒有f()()x g x >;(3)确定k 的所以可能取值,使得存在0t >,对任意的(0),x Î,t 恒有2|f()()|x g x x -<.21.本题设有三个选考题,请考生任选2题作答. 选修4-2:矩阵与变换 已知矩阵2111,.4301A B 骣骣琪琪==琪琪-桫桫(1)求A 的逆矩阵1A -; (2)求矩阵C ,使得AC=B.选修4-4:坐标系与参数方程在平面直角坐标系xoy 中,圆C 的参数方程为13cos (t )23sin x ty tì=+ïí=-+ïî为参数.在极坐标系(与平面直角坐标系xoy 取相同的长度单位,且以原点O 为极点,以x 轴非负半轴为极轴)中,直线l 的方程为2sin()m,(m R).4pr q -= (1)求圆C 的普通方程及直线l 的直角坐标方程; (2)设圆心C 到直线l 的距离等于2,求m 的值.选修4-5:不等式选讲已知函数()||||f x x a x b c =++++的最小值为4.(1)求a b c ++的值; (2)求2221149a b c ++的最小值为.数学试题(理工农医类)参考答案一、选择题:本大题考查基础知识和基本运算,每小题5分,满分50分。
2015年普通高等学校夏季招生全国统一考试数学理工农医类(四川卷)(解析版)(部分题)

2015年普通高等学校招生全国统一考试(四川)数学(理科)第Ⅰ卷(共50分)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{|(1)(2)0}A x x x =+-<集合{|13}B x x =<<,则AB =A.{x|-1<x<3}B.{x|-1<x<1}C.{x|1<x<2}D.{x|2<x<3} 【答案】A 【解析】试题分析:{|12},{|13},{|13}A x x B x x AB x x =-<<=<<∴=-<<,选A.2.设i 是虚数单位,则复数32i i-A.-iB.-3iC.i.D.3i 【答案】C 【解析】试题分析:3.执行如图所示的程序框图,输出S 的值是A.2-B.2C.-12D.12【答案】D 【解析】试题分析:4.下列函数中,最小正周期为且图象关于原点对称的函数是A.y cos(2)2.sin(2)2.sin 2cos 2.sin cos x B Y x C Y x x DY x xpp=+=+=+=+【答案】A 【解析】 试题分析:5.过双曲线2213y x -=的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A ,B 两点,则AB =(A(B) (C )6 (D)【答案】D 【解析】 试题分析:6.用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有 (A )144个 (B )120个 (C )96个 (D )72个 【答案】B 【解析】 试题分析:7.设四边形ABCD 为平行四边形,6AB =,4AD =.若点M ,N 满足3BM MC =,2DN NC =,则AM NM ⋅=(A )20 (B )15 (C )9 (D )6 【答案】 【解析】 试题分析:8.设a ,b 都是不等于1的正数,则“333a b>>”是“log 3log 3a b <”的(A )充要条件 (B )充分不必要条件 (C )必要不充分条件 (D )既不充分也不必要条件【答案】B 【解析】 试题分析:9.如果函数()()()()21281002f x m x n x m n =-+-+≥≥,在区间122⎡⎤⎢⎥⎣⎦,单调递减,则mn 的最大值为(A )16 (B )18 (C )25 (D )812【答案】B 【解析】 试题分析:10.设直线l 与抛物线24y x =相交于A ,B 两点,与圆()()22250x y r r -+=>相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是 (A )()13, (B )()14, (C )()23, (D )()24,【答案】D 【解析】 试题分析:第Ⅱ卷(共100分)二、填空题(每题5分,满分25分,将答案填在答题纸上)11.在5(21)x -的展开式中,含2x 的项的系数是 (用数字作答). 【答案】40-. 【解析】 试题分析:12.=+ 75sin 15sin .【解析】试题分析:考点:13.某食品的保鲜时间y (单位:小时)与储存温度x (单位:C )满足函数关系bkx ey +=( 718.2=e 为自然对数的底数,k 、b 为常数)。
2015年普通高等学校招生全国统一考试(上海卷)数学(理工农医类)

2015年普通高等学校招生全国统一考试(上海卷)数学(理工农医类)一㊁填空题:本大题共有14小题,满分56分,每个空格答对得4分,否则一律零分.1.设全集U =R ,若集合A ={1,2,3,4},B ={x 2ɤx ɤ3},则A ɘ∁U B = .2.若复数z 满足3z +z =1+i,其中i 为虚数单位,则z = .3.若线性方程组的增广矩阵为2 3 C 10 1 C 2[],解为x =3,y =5,{则C 1-C 2=.4.若正三棱柱的所有棱长均为a ,且其体积为163,则a = .5.抛物线y 2=2p x (p >0)上的动点Q 到焦点的距离的最小值为1,则p = .6.若圆锥的侧面积与过轴的截面面积之比为2π,则其母线与轴的夹角的大小为 .7.方程l o g 2(9x -1-5)=l o g 2(3x -1-2)+2的解为 .8.在报名的3名男教师和6名女教师中,选取5人参加义务献血,要求男㊁女教师都有,则不同的选取方式的种数为 (结果用数值表示).9.已知点P 和Q 的横坐标相同,P 的纵坐标是Q 的纵坐标的2倍,P 和Q 的轨迹分别为双曲线C 1和C 2,若C 1的渐近线方程为y =ʃ3x ,则C 2的渐近线方程为.10.设f -1(x )为f (x )=2x -2+x 2,x ɪ[0,2]的反函数,则y =f (x )+f -1(x )的最大值为.11.在1+x +1x2015()10的展开式中,x 2项的系数为 (结果用数值表示).12.赌博有陷阱,某种赌博每局的规则是:赌客先在标记有1,2,3,4,5的卡片中随机摸取一张,将卡片上的数字作为其赌金(单位:元);随后放回该卡片,再随机摸取两张,将这两张卡片上数字之差的绝对值的1.4倍作为其奖金(单位:元).若随机变量ξ1和ξ2分别表示赌客在一局赌博中的赌金和奖金,则E ξ1-E ξ2= (元).13.已知函数f (x )=s i n x .若存在x 1,x 2, ,x m 满足0ɤx 1ɤx 2< <x m ɤ6π,且|f (x 1)-f (x 2)|+|f (x 2)-f (x 3)|+ +|f (x m -1)-f (x m )|=12(m ȡ2,m ɪN *),则m 的最小值为 .14.在锐角三角形A B C 中,t a n A =12,D 为边B C 上的点,әA B D 与әA C D 的面积分别为2和4,过D 作D E ʅA B 于E ,D F ʅA C 于F ,则D E ң㊃D F ң=.二㊁选择题:本大题共有4题,满分20分,每题有且只有一个正确答案,选对得5分,否则一律得零分.15.设z 1,z 2ɪC ,则 z 1㊁z 2中至少有一个数是虚数 是 z 1-z 2是虚数的( )A.充分非必要条件B .必要非充分条件C .充要条件 D.既非充分又非必要条件16.已知点A 的坐标为(43,1),将O A 绕坐标原点O 逆时针旋转π3至O B ,则点B 的纵坐标为( )A.332B .532C .112 D.13217.记方程①:x 2+a 1x +1=0,方程②:x 2+a 2x +2=0,方程③:x 2+a 3x +4=0,其中a 1,a 2,a 3是正实数,当a 1,a 2,a 3成等比数列时,下列选项中,能推出方程③无实根的是( )A.方程①有实根,且②有实根B .方程①有实根,且②无实根C .方程①无实根,且②有实根 D.方程①无实根,且②无实根18.设P n (x n ,y n )是直线2x -y =n n +1(n ɪN *)与圆x 2+y 2=2在第一象限的交点,则极限l i m n ңɕy n -1x n -1=( )A.-1B .-12C .1 D.2三㊁解答题:本大题共有5题,满分74分.解答下列各题必须在规定区域写出必要的步骤. 19.(本题满分12分)如图,在长方体A B C D-A1B1C1D1中,A A1=1,A B=A D=2,E,F分别是棱A B,B C的中点,证明A1,C1,F,E四点共面,并求直线C D1与平面A1C1F E所成的角的大小.(第19题)20.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.如图,A,B,C三地有直道相通,A B=5千米,A C=3千米,B C=4千米.现甲㊁乙警员同时从A地出发匀速前往B地,经过t小时,他们之间的距离为f(t)(单位:千米).甲的路线是A B,速度为5千米/小时,乙的路线是A C B,速度为8千米/小时.乙到达B地后在原地等待.设t=t1时,乙地达C地.(1)求t1现f(t1)的值;(2)已知警员的对讲机的有效通话距离是3千米.当t1ɤtɤ1时,求f(t)的表达式,并判断f(t)在[t1,1]上的最大值是否超过3?并说明理由.(第20题)21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.已知椭圆x2+2y2=1,过原点的两条直线l1和l2分别与椭圆交于点A,B和C,D.记得到的平行四边形A C B D的面积为S.(1)设A(x1,y1),C(x2,y2).用A,C的坐标表示点C到直线l1的距离,并证明S=2[x1y2-x2y1];(2)设l1与l2的斜率之积为-12,求面积S的值.22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.已知数列{a n}与{b n}满足a n+1-a n=2(b n+1-b n),nɪN*.(1)若b n=3n+5,且a1=1,求{a n}的通项公式;(2)设{a n}的第n0项是最大项,即a n0>a n(nɪN*).求证:{b n}的第n0项是最大项;(3)设a1=λ<0,b n=λn(nɪN*),求λ的取值范围,使得{a n}有最大值M与最小值m,且ɪ(-2,2).23.(本题满分18分)本题共有3个小题,第1小题满分4分.第2小题满分6分.第3小题满分8分.对于定义域R的函数g(x),若存在正常数T,使得c o s g(x)是以T为周期的函数,则称g(x)为余弦周期函数,且称T为其余弦周期,已知f(x)是以T为余弦周期的余弦周期函数,其值域为R,设f(x)单调递增,f(0)=0,f(T)=4π.(1)验证h(x)=x+s i n3是以6π为余弦周期的余弦周期函数;(2)设a<b,证明对任意cɪ[f(a),f(b)],存在x0ɪ[a,b],使得f(x0)=c;(3)证明 u0为方程c o s f(x) =1在[0,T]上的解 的充要条件是 U0+T为方程c o s f(x)=1在[T,2T]上的解 ,并证明对任意xɪ[0,T]都有f(x+T)=f(x)+f(T).。
(完整word版)2015年全国高考理科数学试题及答案-新课标2(详解),推荐文档

2015年普通高等学校招生全国统一考试理 科 数 学一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) 已知集合A={-2,-1,0,1,2},B={x|(x-1)(x+2)<0},则A∩B=( )(A ){-1,0} (B ){0,1} (C ){-1,0,1} (D ){0,1,2}(2)若a 为实数且(2+ai )(a-2i )=-4i,则a=( )(A )-1 (B )0 (C )1 (D )2(3)根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图。
以下结论不正确的是( )(A ) 逐年比较,2008年减少二氧化硫排放量的效果最显著 (B ) 2007年我国治理二氧化硫排放显现(C ) 2006年以来我国二氧化硫年排放量呈减少趋势 (D ) 2006年以来我国二氧化硫年排放量与年份正相关(4)等比数列{a n }满足a 1=3,135a a a ++ =21,则357a a a ++= ( )(A )21 (B )42 (C )63 (D )84 (5)设函数211log (2),1,()2,1,x x x f x x -+-<⎧=⎨≥⎩,2(2)(log 12)f f -+=( )(A )3 (B )6 (C )9 (D )12(6)一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为(A )81 (B )71 (C )61 (D )51 (7)过三点A (1,3),B (4,2),C (1,-7)的圆交于y 轴于M 、N 两点,则MN =(A )26 (B )8 (C )46 (D )10(8)右边程序抗土的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”。
执行该程序框图,若输入a,b 分别为14,18,则输出的a=A.0B.2C.4D.14 (9)已知A,B 是球O 的球面上两点,∠AOB=90,C 为该球面上的动点,若三棱锥O-ABC 体积的最大值为36,则球O 的表面积为A .36π B.64π C.144π D.256π10.如图,长方形ABCD 的边AB=2,BC=1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记∠BOP=x .将动点P 到A 、B 两点距离之和表示为x 的函数f (x ),则f (x )的图像大致为(11)已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,∆ABM为等腰三角形,且顶角为120°,则E 的离心率为(A(B )2 (C(D(12)设函数f’(x)是奇函数()()f x x R ∈的导函数,f (-1)=0,当0x >时,'()()0xf x f x -<,则使得()0f x >成立的x 的取值范围是A .(,1)(0,1)-∞-UB .(1,0)(1,)-+∞UC .(,1)(1,0)-∞--UD .(0,1)(1,)+∞U二、填空题(13)设向量a r ,b r 不平行,向量a b λ+r r 与2a b +r r平行,则实数λ=_________. (14)若x ,y 满足约束条件1020,220,x y x y x y -+≥⎧⎪-≤⎨⎪+-≤⎩,,则z x y =+的最大值为____________.(15)4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a =__________. (16)设n S 是数列{}n a 的前n 项和,且11a =-,11n n n a S S ++=,则n S =________. 三.解答题(17)∆ABC 中,D 是BC 上的点,AD 平分∠BAC ,∆ABD 是∆ADC 面积的2倍。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用前
2015年成人高等学校招生全国统一考试
数 学 (理工农医类)
答案必须答在答题卡上指定的位置,答在试卷上无效.......。
选择题
一、选择题:本大题共17小题,每小题5分,共85分。
在每小题给出的四个选项中,只
有一项是符合题目要求的,将所选项前的字母填涂在答题卡相应题号的信息点上............。
1.设集合{}2,5,8M =,{}6,8N =,则M
N = ( C ).
A 、{}8
B 、{}6
C 、{}2,5,6,8
D 、{}2,5,6
2. 函数y =
( A ) .
A 、[)3,+∞
B 、[)0,+∞
C 、[)9,+∞
D 、R 3. 若
2
π
θπ<<,1
sin 4
θ=
,则cos θ= ( A ). A 、415-
B 、1615-
C 、1615
D 、4
15 4. 已知平面向量a =(-2,1)与b =(λ,2)垂直,则λ= ( C ).
A 、-4
B 、-1
C 、1
D 、4 5. 下列函数在各自定义域中为增函数的是( D ).
A 、1y x =-
B 、2
1y x =- C 、12
x
y -=+ D 、12x
y =+
6. 设甲:函数y kx b =+的图像过点()1,1,乙:1k b +=,则( D ).
A 、甲是乙的必要条件,但不是乙的充分条件
B 、甲是乙的充分条件,但不是乙的必要条件
C 、甲不是乙的充分条件,也不是乙的必要条件
D 、甲是乙的充分必要条件 7. 设函数x
k
y =
的图像经过点()2,2-,则k =( D ). A 、4 B 、1 C 、-1 D 、-4 8. 若等比数列{}n a 的公比为3,49a = ,则1a =( B ).
A 、
91 B 、3
1
C 、3
D 、27 9. log 510-log 52=( B ).
A 、0
B 、1
C 、5
D 、8
10. 设tan 2θ=,则()tan θπ+= ( A ).
A 、2
B 、
12 C 、1
2
- D 、2- 11. 已知点A (1,1),B (2,1),C (-2,3),则过点A 及线段BC 中点的直线方程为( A ).
A 、20
x y +-= B 、20
x y ++= C 、0
x y -= D 、20x y -+=
12. 设二次函数2
y ax bx c =++的图像过点()1,2-和()3,2,则其对称轴的方程为( C ).
A 、3x =
B 、2x =
C 、1x =
D 、1x =- 13. 以点()0,1330x y --=相切的圆的方程为( B ).
A 、()2
2
12x y +-= B 、()2
2
14x y +-=
C 、()22
116x y +-= D 、()2
2
11x y -+=
14. 设)(x f 为偶函数,若3)2(=-f ,则=)2(f ( C ).
A 、-3
B 、0
C 、3
D 、6
15. 下列不等式成立的是( D ).
A 、 53
1122⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭
B 、11
2253--
>
C 、112
2
log 5log 3> D 、22log 5log 3>
16. 某学校为新生开设了4门选修课程,规定每位新生至少要选其中3门,则一位新生的不同的选课方案共有( B ).
A 、4种
B 、5种
C 、6种
D 、7种 17. 甲乙两人单独地破译一个密码,设两人能破译的概率分别为1p ,2p ,则恰有一人能破译的概率为( C ).
A 、12p p
B 、()121p p -
C 、()()122111p p p p -+-
D 、()()12111p p ---
非选择题
二、填空题:本大题共4小题,每小题4分,共16分。
把答案写在答题卡相应题号后........。
18.不等式1-x <1的解集为
. 19.抛物线2
2y px =的准线过双曲线2
213
x y -=的左焦点,则p = . {}
02x x <<4
20. 曲线2
34y x x =++在点()1,2-处的切线方程为 .
21. 从某公司生产的安全带中随机抽取10条进行断力测试,测试结果(单位:kg )如下:
3722 3872 4004 4012 3972 3778 4022 4006 3986 4026
则该样本的样本方差为________________kg 2 (精确到0.1) .
三、解答题:本大题共4小题,共49分。
解答题应写出推理、演算步骤,并将其写在答题..卡相应题号后......。
22. (本题满分12分) 已知△ABC 中,A=30°,AC=BC=1,求 (I )AB ;
(II )△ABC 的面积. 解:A=30°,AC=BC=1,则B=30°,得C=120° (I )根据正弦定理
1BCsinC 1sin1202AB=
1
sinA sin 302
⨯︒
===︒
…………6分
(II )△ABC 的面积
ABC 111S AB AC sin A=1222∆=
⋅⋅⨯= …………12分 23. (本题满分12分) 已知等差数列{a n }的公差0d ≠,11
2
a =,且125,,a a a 成等比数列. (I )求{a n }的通项公式;
(II )若{a n }的前n 项和50n S =,求n . 解:(I )设212a d =
+,51
42
a d =+, 因为125,,a a a 成等比数列,则2
215a a a =,即2
1114222d d ⎛⎫⎛⎫
+=+ ⎪ ⎪⎝⎭⎝⎭
,
因为0d ≠,解得1d =,
于是{a n }的通项公式为
()()111
111.22
n a a n d n n =+-=
+-⨯=- …………6分 (II )由(I )知1
2n a n =-,由题设,得
()2
11
12250222
n n n n n a a n S ⎛⎫+- ⎪+⎝⎭====,即10n =. …………12分
24. (本题满分12分) 已知函数()3
2
f x x ax b =++在1x =处取得极值-1,求
(I ),a b ;
30x y -+=10928.8
(II )()f x 的单调区间,并指出()f x 在各个单调区间的单调性.
解:(I )已知函数()32f x x ax b =++在1x =处取得极值-1,则
()11f =-,且()10f '=,即11
320
a b a ++=-⎧⎨
+=⎩,
解得32a =-
,12
b =-. (II )由(I )知()3
231
22
f x x x b =-
-,则()()23331f x x x x x '=-=-, 令()0f x '=,得0x =,1x =,列表讨论:
于是()3
222
f x x x b =-
-的单增区间是(),0-∞,()1,+∞; 单增区间是()0,1.
即()3
231
22
f x x x b =-
-在(),0-∞内单调增加,在()0,1内单调减少,
在()1,+∞内单调增加.
25. (本题满分13分) 设椭圆E:22
221x y a b
+=(a >b >0)的左、右焦点分别为F 1和F 2,直
线l 过F 1且斜率为
3
4
,()00A ,x y (0y >0)为l 和E 的交点,AF 2⊥F 1F 2 , (I )求E 的离心率;
(II )若E 的焦距为2,求其方程.
解:(I )由题意,设左、右焦点坐标分别为F 1().0c -和F 2().0c ,因为AF 2⊥F 1F 2 ,则12ΔAF F
是直角三角形,那么(AF 1)2=(AF 2)2+( F 1F 2)2,即AF 1,并且0x c =.
因为l 方程为()304y x c -=
+,将()0A ,c y 代入,得()0304y c c -=+,即03
2
y c =.
所以AF 152c ==.
由AF 1+ AF 2=2a ,得53222c c a +=,即1
2
c a =,于是12e =. …………9分
(II )E 的焦距为2,则1c =,由12
e =
得2a =,那么222
413b a c =-=-=, 于是椭圆方程为22
143
x y +=. …………13分。