概率论与数理统计公式整理(完整精华版)

合集下载

概率论与数理统计公式大全

概率论与数理统计公式大全

概率论与数理统计公式大全一、概率基本公式1.事件的概率:对于事件A,在随机试验中发生的次数记为n(A),则事件A的概率为P(A)=n(A)/n,其中n为试验总次数。

2.互斥事件的概率:对于互斥事件A和B,有P(A∪B)=P(A)+P(B)。

3.事件的余事件概率:设事件A为必然事件,全集的概率为P(S)=1,事件A的余事件为A',则有P(A')=1-P(A)。

4.条件概率:对于两个事件A和B,假设事件B已经发生,事件A发生的概率记为P(A,B),则P(A,B)=P(A∩B)/P(B)。

二、随机变量及其概率分布1.离散型随机变量:设X是一个离散型随机变量,其概率函数为P(X=k),其中k为X的取值,概率函数满足P(X=k)≥0,且∑P(X=k)=12. 连续型随机变量:设X是一个连续型随机变量,其概率密度函数为f(x),概率密度函数满足f(x)≥0,且∫f(x)dx = 13. 随机变量的数学期望:对于离散型随机变量X,其数学期望为E(X) = ∑k*P(X=k);对于连续型随机变量X,其数学期望为E(X)=∫xf(x)dx。

4. 随机变量的方差:对于离散型随机变量X,其方差为Var(X) =E(X^2) - [E(X)]^2;对于连续型随机变量X,其方差为Var(X) = E(X^2) - [E(X)]^2三、常见的概率分布1.伯努利分布:表示一次实验成败的概率分布,概率函数为P(X=k)=p^k(1-p)^(1-k),其中0≤p≤12.二项分布:表示n次独立重复的伯努利试验中成功次数的概率分布,概率函数为P(X=k)=C(n,k)*p^k(1-p)^(n-k),其中C(n,k)为组合数。

3. 泊松分布:表示单位时间或单位面积内发生事件次数的概率分布,概率函数为P(X=k) = (lambda^k)/(k!)*e^(-lambda),其中lambda为平均发生率。

4.均匀分布:表示在一个区间内取值相等的概率分布,概率密度函数为f(x)=1/(b-a),其中[a,b]为区间。

概率论与数理统计超全公式总结

概率论与数理统计超全公式总结

Cov(aX , bY ) = abCo若v(UX~,Yχ)2(n1),
F 分布 正态总体条件下 样本均值的分布:
V ~ χ 2 (n2 ),
则 U / n1 V / n2
~
F (n1, n2 )
σ2 X ~ N(µ, )
n
X − µ ~ N (0,1) σ/ n
样本方差的分布:
(n −1)S 2 σ2
k =1
第二章
二项分布(Bernoulli 分布)——X~B(n,p)
F (x, y) = P{X ≤ x,Y ≤ y} 联合密度与边缘密度
+∞
∫ fX (x) = −∞ f (x, y)dy
+∞
∫ fY (y) = −∞ f (x, y)dx
P(X =k)=Cnkpk(1−p)n−k,(k=0,1,...n, )
泊松分布——X~P(λ)
P( X = k) = λk e−λ, (k = 0,1,...) k!
概率密度函数
+∞
∫ f (x)dx = 1 −∞
怎样计算概率 P(a ≤ X ≤ b)
b
P(a ≤ X ≤ b) = ∫a f (x)dx
均匀分布 X~U(a,b)
1
f (x) =
(a ≤ x ≤ b)
b−a
n — 样本容量(大样本要求n > 50) zα /2 — 正态分布的分位点
⎜⎛ x ± zα / 2 ⎝
σ ⎟⎞ n⎠
(3) H0 : µ ≤ µ0 H1 : µ > µ0 右边检验
单正态总体均值的 Z 检验
小样本、正态总体、标 准差σ已知
(大样本情形σ未知时用SZ代=替X)− µ 0 σ/ n

概率论与数理统计公式定理全总结

概率论与数理统计公式定理全总结

概率论与数理统计公式定理全总结一、概率论公式:1.基本概率公式:对于随机试验E,事件A的概率可以表示为P(A)=事件A的样本点数/所有样本点数。

2.条件概率公式:对于事件A和事件B,若P(B)>,则事件A在事件B发生的条件下的概率可以表示为P(A,B)=P(A∩B)/P(B)。

3.全概率公式:对于互不相容事件A1,A2,...,An,它们的和事件为全样本空间S,且概率P(Ai)>,则对于任意事件B有P(B)=Σ(P(Ai)×P(B,Ai))。

4.贝叶斯公式:对于互不相容事件A1,A2,...,An,它们的和事件为全样本空间S,且概率P(Ai)>,则对于任意事件B,有P(Ai,B)=(P(B,Ai)×P(Ai))/Σ(P(B,Ai)×P(Ai))。

二、数理统计公式:1.期望:随机变量X的期望E(X)=Σ(Xi×P(Xi)),其中Xi为随机变量X的取值,P(Xi)为随机变量X取值为Xi的概率。

2. 方差:随机变量X的方差Var(X) = Σ((Xi - E(X))^2 ×P(Xi)),其中Xi为随机变量X的取值,E(X)为随机变量X的期望,P(Xi)为随机变量X取值为Xi的概率。

3. 协方差:随机变量X和Y的协方差Cov(X,Y) = E((X - E(X))(Y - E(Y))),其中E(X)和E(Y)分别为随机变量X和Y的期望。

4. 相关系数:随机变量X和Y的相关系数ρ(X,Y) = Cov(X,Y) / √(Var(X) × Var(Y)),其中Cov(X,Y)为随机变量X和Y的协方差,Var(X)和Var(Y)分别为随机变量X和Y的方差。

三、概率论与数理统计定理:1.大数定律:对于独立同分布的随机变量X1,X2,...,Xn,它们的均值X̄=(X1+X2+...+Xn)/n,当n趋向于无穷大时,X̄趋向于X的期望E(X)。

概率论与数理统计公式大全

概率论与数理统计公式大全

概率论与数理统计公式概率公式整理1.随机事件及其概率吸收律:AAB A AA A =∪=∅∪Ω=Ω∪)(A B A A A A A =∪∩∅=∅∩=Ω∩)()(AB A B A B A −==−反演律:B A B A =∪BA AB ∪=∩∪n i i n i iA A 11===∪∩n i i n i i A A 11===2.概率的定义及其计算)(1)(A P A P −=若B A ⊂)()()(A P B P A B P −=−⇒对任意两个事件A ,B ,有)()()(AB P B P A B P −=−加法公式:对任意两个事件A ,B ,有)()()()(AB P B P A P B A P −+=∪)()()(B P A P B A P +≤∪)()1()()()()(2111111n n n n k j i k j i n j i j i n i i n i i A A A P A A A P A A P A P A P ⋯⋯∪−≤<<≤≤<≤==−+++−=∑∑∑3.条件概率()=A B P )()(A P AB P 乘法公式())0)(()()(>=A P A B P A P AB P ()())0)(()()(12112112121>=−−n n n n A A A P A A A A P A A P A P A A A P ⋯⋯⋯⋯w w w .k h d a w .c o m 课后答案网全概率公式∑==n i i AB P A P 1)()()()(1i ni i B A P B P ⋅=∑=Bayes 公式)(A B P k )()(A P AB P k =∑==n i i i k k B A P B P B A P B P 1)()()()(4.随机变量及其分布分布函数计算)()()()()(a F b F a X P b X P b X a P −=≤−≤=≤<5.离散型随机变量(1)0–1分布1,0,)1()(1=−==−k p p k X P k k (2)二项分布),(p n B 若P (A )=pnk p p C k X P k n k k n ,,1,0,)1()(⋯=−==−*Possion 定理0lim >=∞→λn n np 有⋯,2,1,0!)1(lim ==−−−∞→k k e p p C k k n n k n k n n λλ(3)Poisson 分布)(λP ⋯,2,1,0,!)(===−k k e k X P kλλw w w .k h d a w .c o m 课后答案网6.连续型随机变量(1)均匀分布),(b a U ⎪⎩⎪⎨⎧<<−=其他,0,1)(b x a ab x f ⎪⎪⎩⎪⎪⎨⎧−−=1,,0)(ab a x x F (2)指数分布)(λE ⎪⎩⎪⎨⎧>=−其他,00,)(x e x f x λλ⎩⎨⎧≥−<=−0,10,0)(x e x x F x λ(3)正态分布N (µ,σ2)+∞<<∞−=−−x e x f x 222)(21)(σµσπ∫∞−−−=x t t e x F d 21)(222)(σµσπ*N (0,1)—标准正态分布+∞<<∞−=−x e x x 2221)(πϕ+∞<<∞−=Φ∫∞−−x t e x x t d 21)(22π7.多维随机变量及其分布二维随机变量(X ,Y )的分布函数∫∫∞−∞−=xy dvdu v u f y x F ),(),(w w w .k h d a w .c o m 课后答案网边缘分布函数与边缘密度函数∫∫∞−+∞∞−=xX dvdu v u f x F ),()(∫+∞∞−=dv v x f x f X ),()(∫∫∞−+∞∞−=yY dudv v u f y F ),()(∫+∞∞−=du y u f y f Y ),()(8.连续型二维随机变量(1)区域G 上的均匀分布,U (G )⎪⎩⎪⎨⎧∈=其他,0),(,1),(G y x A y x f (2)二维正态分布+∞<<−∞+∞<<∞−×−=⎥⎥⎦⎤⎢⎢⎣⎡−+−−−−−−y x e y x f y y x x ,121),(2222212121212)())((2)()1(21221σµσσµµρσµρρσπσ9.二维随机变量的条件分布0)()()(),(>=x f x y f x f y x f X X Y X 0)()()(>=y f y x f y f Y Y X Y ∫∫+∞∞−+∞∞−==dy y f y x f dy y x f x f Y Y X X )()(),()(∫∫+∞∞−+∞∞−==dxx f x y f dx y x f y f X X Y Y )()(),()()(y x f Y X )(),(y f y x f Y =)()()(y f x f x y f Y X X Y =)(x y f X Y )(),(x f y x f X =)()()(x f y f y x f X Y Y X =w w w .k h d a w .c o m 课后答案网10.随机变量的数字特征数学期望∑+∞==1)(k kk p x X E ∫+∞∞−=dx x xf X E )()(随机变量函数的数学期望X 的k 阶原点矩)(k X E X 的k 阶绝对原点矩)|(|k X E X 的k 阶中心矩)))(((k X E X E −X 的方差)()))(((2X D X E X E =−X ,Y 的k +l 阶混合原点矩)(l k Y X E X ,Y 的k +l 阶混合中心矩()l k Y E Y X E X E ))(())((−−X ,Y 的二阶混合原点矩)(XY E X ,Y 的二阶混合中心矩X ,Y 的协方差()))())(((Y E Y X E X E −−w ww .k h d a w .c o m 课后答案网X ,Y 的相关系数XY Y D X D Y E Y X E X E ρ=⎟⎟⎠⎞⎜⎜⎝⎛−−)()())())(((X 的方差D (X )=E ((X -E (X ))2))()()(22X E X E X D −=协方差()))())(((),cov(Y E Y X E X E Y X −−=)()()(Y E X E XY E −=())()()(21Y D X D Y X D −−±±=相关系数)()(),cov(Y D X D Y X XY =ρw w w .k h d a w .c o m 课后答案网。

概率论与数理统计公式大全

概率论与数理统计公式大全

概率论与数理统计公式大全概率论和数理统计作为数学的两个重要分支,被广泛应用于各个领域。

无论是在学术研究还是实际应用中,熟悉并掌握相关的公式是非常重要的。

本文将为您提供概率论与数理统计公式的大全,帮助您更好地理解和应用这两门学科。

一、概率论公式1. 概率公式- 概率的定义:P(A) = N(A) / N(S),其中P(A)表示事件A发生的概率,N(A)代表事件A的样本点个数,N(S)表示样本空间中的样本点总数。

- 加法法则:P(A∪B) = P(A) + P(B) - P(A∩B),其中P(A∪B)表示事件A或事件B发生的概率,P(A∩B)表示事件A和事件B同时发生的概率。

- 乘法法则:P(A∩B) = P(A) × P(B|A),其中P(B|A)表示在事件A 发生的条件下,事件B发生的概率。

2. 条件概率公式- 条件概率的定义:P(A|B) = P(A∩B) / P(B),其中P(A|B)表示在事件B发生的条件下,事件A发生的概率。

- 全概率公式:P(A) = ∑[P(Bi) × P(A|Bi)],其中Bi为样本空间的一个划分,P(Bi)表示事件Bi发生的概率,P(A|Bi)表示在事件Bi发生的条件下,事件A发生的概率。

3. 事件独立性公式- 事件A和事件B独立的定义:P(A∩B) = P(A) × P(B),即事件A和事件B同时发生的概率等于事件A发生的概率乘以事件B发生的概率。

- 事件的相互独立:若对于任意的事件A1,A2,...,An,有P(A1∩A2∩...∩An) = P(A1) × P(A2) × ... × P(An),则称事件A1,A2,...,An相互独立。

4. 随机变量- 随机变量的定义:随机变量X是样本空间到实数集的映射。

- 随机变量的分布函数:F(x) = P(X≤x),表示随机变量X小于等于x的概率。

- 随机变量的概率密度函数(连续型随机变量):f(x)是非负函数,且对于任意实数区间[a, b],有P(a≤X≤b) = ∫[a, b]f(x)dx。

概率论与数理统计公式整理(完整精华版)

概率论与数理统计公式整理(完整精华版)

j 1
此公式即为贝叶斯公式。
P(Bi ) ,〔 i 1 ,2 ,…,n 〕,通常叫先验概率。P(Bi / A) ,〔 i 1 ,2 ,…, n 〕,通常称为后验概率。贝叶斯公式反映了“因果〞的概率规律,并作出了
〔17〕伯努 利概型
“由果朔因〞的推断。
我们作了 n 次试验,且满足
每次试验只有两种可能结果, A 发生或 A 不发生;
x nex dx n!
0
x 0,
x<0。
设随机变量 X 的密度函数为
f (x)
1
( x )2
e 2 2 ,
x ,
2 其中 、 0 为常数,则称随机变量 X 服从参数为 、
的正态分布或高斯〔Gauss〕分布,记为 X ~ N(, 2) 。
f (x) 具有如下性质:
表示为 A-AB 或者 AB ,它表示 A 发生而 B 不发生的事件。
A、B 同时发生:A B,或者 AB。A B=Ø,则表示 A 与 B 不可能同时发生,
称事件 A 与事件 B 互不相容或者互斥。根本领件是互不相容的。
.
精品文档
-A 称为事件 A 的逆事件,或称 A 的对立事件,记为 A 。它表示 A 不发生
假设事件 A 、B 相互独立,则可得到 A 与 B 、 A 与 B 、 A 与 B 也都相互
独立。
必定事件 和不可能事件 Ø 与任何事件都相互独立。 Ø 与任何事件都互斥。
②多个事件的独立性
设 ABC 是三个事件,如果满足两两独立的条件,
P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A)
如果事件 A 的组成局部也是事件 B 的组成局部,〔A 发生必有事件 B 发生〕:

概率论与数理统计公式整理(超全免费版)

概率论与数理统计公式整理(超全免费版)
第 1 章随机事件及其概率
(1)排列组合公式
Pmn

m!
从 m 个人中挑出 n 个人进行排列的可能数。
(m n)!
C
n m

m!
从 m 个人中挑出 n 个人进行组合的可能数。
n!(m n)!
(2)加法和乘法原理
(3)一些常见排列 (4)随机试验和随机事

(5)基本事件、样本空 间和事件
加法原理(两种方法均能完成此事):m+n 某件事由两种方法来完成,第一种方法可由 m 种方法完成,第二种方法可由 n 种方法来完成,则这件事
A、B 中至少有一个发生的事件:A B,或者 A+B。
(6)事件的关系与运算
属于 A 而不属于 B 的部分所构成的事件,称为 A 与 B 的差,记为 A-B,也可表示为 A-AB 或者 AB ,
它表示 A 发生而 B 不发生的事件。
A、B 同时发生:A B,或者 AB。A B=?,则表示 A 与 B 不可能同时发生,称事件 A 与事件 B 互不
它们是 的子集。 为必然事件,?为不可能事件。
不可能事件(?)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率 为 1,而概率为 1 的事件也不一定是必然事件。 ①关系:
如果事件 A 的组成部分也是事件 B 的组成部分,(A 发生必有事件 B 发生): A B 如果同时有 A B , B A ,则称事件 A 与事件 B 等价,或称 A 等于 B:A=B。
P(X=xk)=pk,k=1,2,…,
则称上式为离散型随机变量 X 的概率分布或分布律。有时也用分布列的形式给出:
X
| x1, x2,, xk,

概率论与数理统计公式整理(超全免费版)

概率论与数理统计公式整理(超全免费版)

第1章 随机事件及其概率(1)排列组合公式)!(!n m m P nm -=从m 个人中挑出n 个人进行排列的可能数。

)!(!!n m n m C nm -=从m 个人中挑出n 个人进行组合的可能数。

(2)加法和乘法原理加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m 种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。

乘法原理(两个步骤分别不能完成这件事):m ×n 某件事由两个步骤来完成,第一个步骤可由m 种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m ×n 种方法来完成。

(6)事件的关系与运算②运算:结合率:A(BC)=(AB)C A ∪(B ∪C)=(A ∪B)∪C 分配率:(AB)∪C=(A ∪C)∩(B ∪C) (A ∪B)∩C=(AC)∪(BC)德摩根率: ∞=∞==11i ii iAAB A B A =,B A B A =(7)概率的公理化定义设Ω为样本空间,A 为事件,对每一个事件A都有一个实数P(A),若满足下列三个条件:1° 0≤P(A)≤1, 2° P(Ω) =13° 对于两两互不相容的事件1A ,2A ,…有∑∞=∞==⎪⎪⎭⎫⎝⎛11)(i ii iA P A P常称为可列(完全)可加性。

则称P(A)为事件A的概率。

(8)古典概型1° {}n ωωω 21,=Ω,2°nP P P n 1)()()(21===ωωω 。

设任一事件A,它是由m ωωω 21,组成的,则有P(A)={})()()(21m ωωω=)()()(21m P P P ωωω+++ nm =基本事件总数所包含的基本事件数A =(9)几何概型)()()(Ω=L A L A P 。

其中L 为几何度量(长度、面积、第一章随机事件及其概率§1.1 随机事件一、给出事件描述,要求用运算关系符表示事件:二、给出事件运算关系符,要求判断其正确性:§1.2 概率古典概型公式:P (A )=所含样本点数所含样本点数ΩA实用中经常采用“排列组合”的方法计算补例1:将n 个球随机地放到n 个盒中去,问每个盒子恰有1个球的概率是多少?解:设A :“每个盒子恰有1个球”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档