最新大学物理第一章质点运动学习题答案教程文件
大学物理习题册及解答_第二版_第一章_质点的运动

(A,皆为常数) (2) 质点通过原点的时刻 .
(1)任意时刻t质点的加速度
t
Ae [ cost sin t ](SI) 解: x a x Ae cos t 2 sin t
d adx (3 6 x )dx
2
0
d (3 6 x 2 )dx
0
x
6x 4x
3
2.一质点沿半径为R的圆周运动,其路程S随时间t变化的规律为:
2 (S I)S ,式中 、ct c为大于零的常数,且 b2>R c. bt b 0.5
( 1 ) 质 点 运 动 的 切 向 加 速 度 at = -c(m/s2) , 法 向 加 速 度 an =
dr dt
(A)只有(1)、(4)是对的. (C)只有(2)是对的.
5 以下五种运动形式中,a保持不变的运动是 (A) 单摆的运动. (D) 抛体运动. (B) 匀速率圆周运动. (C) 行星的椭圆轨道运动.
(E) 圆锥摆运动.
6 下列说法哪一条正确?
(A) 加速度恒定不变时,物体运动方向也不变. (B) 平均速率等于平均速度的大小. ( v1 , v 2 分别为初、末速率) (C) 不管加速度如何,平均速率表达式总可以写成 v v1 v 2 / 2
2
C
2
0 C R
三计算题 1.有一质点沿x轴作直线运动,t时刻的坐标为 x=5t2-3t3(SI).试求(1)在第2秒内的平均速度;(2)第 2秒末的瞬时速度;(3)第2秒末的加速度.
解: (1)第2秒内的平均速度表示为:
Δx x(t 2) x(t 1) v 6(m / s) Δt 2 1
大学物理第1章 质点运动学习题解答

第1章 质点运动学习题解答1-9 质点运动学方程为k j e i e r t t ˆ2ˆˆ22++=- .⑴求质点轨迹;⑵求自t= -1到t=1质点的位移。
解:⑴由运动学方程可知:1,2,,22====-xy z e y e x t t ,所以,质点是在z=2平面内的第一像限的一条双曲线上运动。
⑵j e e i e e r r r ˆ)(ˆ)()1()1(2222---+-=--=∆j i ˆ2537.7ˆ2537.7+-=。
所以,位移大小:︒==∆∆=︒==∆∆=︒=-=∆∆==+-=∆+∆=∆900arccos ||arccos z 45)22arccos(||arccos y 135)22arccos(||arccos x ,22537.72537.7)2537.7()()(||2222r zr y r x y x rγβα轴夹角与轴夹角与轴夹角与1-10 ⑴k t j t R i t R r ˆ2ˆsin ˆcos ++= ,R 为正常数,求t=0,π/2时的速度和加速度。
⑵kt j t i t r ˆ6ˆ5.4ˆ332+-= ,求t=0,1时的速度和加速度(写出正交分解式)。
解:⑴kj t R i t R dt r d v ˆ2ˆcos ˆsin /++-== jR a k i R v iR a k j R v j t R i t R dt v d a t t t t ˆ|,ˆ2ˆ|,ˆ|,ˆ2ˆ|.ˆsin ˆcos /2/2/00-=+-=-=+=∴--======ππ ⑵kt j dt v d a k t j t i dt r d v ˆ36ˆ9/,ˆ18ˆ9ˆ3/2+-==+-== ; kj a k j i v j a i v t t t t ˆ36ˆ9|,ˆ18ˆ9ˆ3|,ˆ9|,ˆ3|1100+-=+-=-======1-12质点直线运动的运动学方程为x=acost,a 为正常数,求质点速度和加速度,并讨论运动特点(有无周期性,运动范围,速度变化情况等)解:t a dt dv a t a dt dx v t a x x x x cos /,sin /,cos -==-=== 显然,质点随时间按余弦规律作周期性运动,运动范围:a a a a v a a x a x x ≤≤-≤≤-≤≤-,,1-13图中a 、b 和c 表示质点沿直线运动三种不同情况下的x-t 图像,试说明每种运动的特点(即速度,计时起点时质点的位置坐标,质点位于坐标原点的时刻)解:质点直线运动的速度 dt dx v /=,在x-t 图像中为曲线斜率。
大学物理习题册及解答第二版第一章质点的运动

7 汽车在半径为200m的圆弧形公路上刹车,刹车开始阶段的路程
随时间的变化关系为 S 20t 0.2t3(SI),汽车在t=1s时的切向加速
度
,法向加速度大小为 ,加速度的大小和方向为
和
。
at
d 2S dt 2
1.2t
1.2m / s2
an
2
R
1 dS R dt
2
(20 0.6t 2 )2 R
第一章 质点的运动(一)
一、选择题
1 某质点作直线运动的运动学方程为x=3t-5t3+6(SI),则
该质点作 (A)匀加速直线运动,加速度沿x轴正方向. (B)匀加速直线运动,加速度沿x轴负方向. (C)变加速直线运动,加速度沿x轴正方向. (D)变加速直线运动,加速度沿x轴负方向.
2
一质点在某瞬时位于位矢 r(
2
4 一质点沿x方向运动,其加速度随时间变化关系为a =3+2t(SI) , 如果初始时质点的速度v0为5m/s,则当t为3s时,质点的速度v
=_2__3_m_/_s_
5.一质点作半径为 0.1 m的圆周运动,其角位置的运动学方程为:
π
1 t2
(SI)
42
则其切向加速度为 a
R
R d 2
0.1m / s2
定要经过2m的路程. (B) 斜向上抛的物体,在最高点处的速度最小,加速度最大. (C) 物体作曲线运动时,有可能在某时刻的法向加速度为零. (D) 物体加速度越大,则速度越大.
3. 在相对地面静止的坐标系内, A、B 二船都以3m/s 的速率匀
速行驶, A 船沿x轴正向, B船沿y轴正向,今在船 A 上设置与静
(A)
1 2
(完整版)大学物理01质点运动学习题解答

第一章质点运动学一选择题1.以下说法中,正确的选项是:()A.一物体若拥有恒定的速率,则没有变化的速度;B.一物体拥有恒定的速度,但仍有变化的速率;C.一物体拥有恒定的加快度,则其速度不行能为零;D. 一物体拥有沿x 轴正方向的加快度而有沿x 轴负方向的速度。
解:答案是 D。
2.长度不变的杆 AB,其端点 A 以 v0匀速沿 y 轴向下滑动, B 点沿 x 轴挪动,则 B 点的速率为:()A . v0 sinB .v0 cos C.v0 tan D.v0 / cos解:答案是 C。
简要提示:设 B 点的坐标为 x, A 点的坐标为 y,杆的长度为l,则x2y2l 2对上式两边关于时间求导:dx dy0,因dxv,dyv0,所以2 x 2 ydtdt dt dt2xv2yv0 = 0即v=v0 y/x =v0tan所以答案是 C。
3.如图示,路灯距地面高为 H,行人身高为 h,若人以匀速 v 背向路灯行走,灯y人头A H vv0hθvx影sB选择题 3图选择题 2图则人头影子挪动的速度u 为()H h Hv h HA.vB.H H h H h 解:答案是 B 。
简要提示:设人头影子到灯杆的距离为 x ,则x s h , x Hs , x H H hdx H ds HvuH h dt Hdt h所以答案是 B 。
4. 某质点作直线运动的运动学方程为x = 3t-5t 3 + 6 (SI),则该质点作A. 匀加快直线运动,加快度沿 x 轴正方向.B. 匀加快直线运动,加快度沿 x 轴负方向.C. 变加快直线运动,加快度沿 x 轴正方向.D. 变加快直线运动,加快度沿x 轴负方向.()解: 答案是 D5. 一物体从某一确立高度以v 0 的初速度水平抛出,已知它落地时的速度为v t ,那么它的运动时间是: ()v t - v 0v t v 0v t2 22v v 0 v t A.B.C.gD.2 gg2 g解:答案是 C 。
大学物理第一章 质点运动学-习题及答案

第一章 质点运动学1-1 一质点在平面上运动,已知质点位置矢量的表示式为j i r 22bt at += (其中b a ,为常量) 则该质点作(A )匀速直线运动 (B )变速直线运动(C )抛物线运动 (D )一般曲线运动 [B]解:由j i rv bt at t 22d d +==知 v 随t 变化,质点作变速运动。
又由x aby bt y at x =⎪⎭⎪⎬⎫==22 知质点轨迹为一直线。
故该质点作变速直线运动。
1-2 质点作曲线运动,r 表示位置矢量,s 表示路程,t a 表示切向加速度,下列表达式中,① a t v =d ② v t r =d ③ v t s =d d ④ t a t =d d v (A )只有(1)、(4)是对的。
(B )只有(2)、(4)是对的。
(C )只有(2)是对的。
(D )只有(3)是对的。
[D]解:由定义:t vt a d d d d ≠=v ; t r t s t v d d d d d d ≠==r ; t t v a d d d d v ≠=τ只有③正确。
1-3 在相对地面静止的坐标系内,A 、B 二船都以21s m -⋅的速率匀速行驶,A 船沿x 轴正向,B 船沿y 轴正向。
今在A 船上设置与静止坐标系方向相同的坐标系(x ,y 方向单位矢用j i ,表示),那么在A 船上的坐标系中,B 船的速度(以1s m -⋅为单位)为(A )j i 22+ (B )j i 22+-(C )j i 22-- (D )j i 22- [B]解:由i v 2=对地A ,j v 2=对地B 可得 A B A B 地对对地对v v v +=⎰对地对地A B v v -=i j 22-=j i 22+-= (1s m -⋅)1-4 一质点沿x 方向运动,其加速度随时间变化关系为)SI (23t a +=如果初始时质点的速度0v 为51s m -⋅,则当t 为3s 时,质点的速度1s m 23-⋅=v解:⎰+=tta v v 00d13s m 23d )23(5-⋅=++=⎰tt1-5 一质点的运动方程为SI)(62t t x -=,则在t 由0至4s 的时间间隔内,质点的位移大小为 8m ,在t 由0到4s 的时间间隔内质点走过的路程为 10m 。
《新编大学物理》(上、下册)教材习题答案

答案:[A]
提示: ,
题:
答案:[C]
提示:由时间的相对性, ,长度为
题 :
答案:[D]
提示: 得
题:
答案:[D]
提示: , ,故
题:
答案:[A]
提示: ; ; ;故
二、填空题
题:
答案:
提示:设痕迹之间距离为 ,由公式 ( 为静长度)。则车上观察者测得长度为
题:
答案:(1) ,(2)
提示:(1)相对论质量和相对论动量: ,
简谐振动的表达式为:x= (πt –π/3).
(2)当t=T/4时物体的位置为;x= (π/2–π/3) = π/6 = (m).
速度为;v= -πAsin(π/2–π/3) = πsinπ/6 = (m·s-1).
加速度为:a= dv/dt= -ω2Acos(ωt + φ)= -π2Acos(πt -π/3)= π2cosπ/6 = (m·s-2).
[解答]物体的总能量为:E = Ek+ Ep= (J).
(1)根据能量公式E = kA2/2,得振幅为: = (m).
(2)当动能等于势能时,即Ek= Ep,由于E = Ek+ Ep,可得:E =2Ep,
即 ,解得: = ±(m).
(3)再根据能量公式E = mvm2/2,得物体经过平衡位置的速度为:
(2)速度的最大值为:vm= ωA= π = (m·s-1); 题解答图
加速度的最大值为:am= ω2A= π2= (m·s-2).
(3)弹簧的倔强系数为:k = mω2,最大回复力为:f = kA = mω2A= (N);
振动能量为:E = kA2/2 =mω2A2/2 = ×10-2(J),
《新编大学物理》(上、下册)教材习题答案

第1章 质点运动学一、选择题 题1.1 : 答案:[B]提示:明确∆r 与r ∆的区别题1.2: 答案:[A]题1.3: 答案:[D]提示:A 与规定的正方向相反的加速运动, B 切向加速度, C 明确标、矢量的关系,加速度是d dtv题1.4: 答案:[C] 提示: 21r r r ∆=-,12,R R r j ri ==-,21v v v ∆=-,12,v v v i v j =-=-题1.5: 答案:[D]提示:t=0时,x=5;t=3时,x=2得位移为-3m ;仅从式x=t 2-4t+5=(t-2)2+1,抛物线的对称轴为2,质点有往返题1.6: 答案:[D]提示:a=2t=d dt v ,2224t v tdt t ==-⎰,02tx x vdt -=⎰,即可得D 项题1.7:答案:[D]北v 风v 车1v 车2提示: 21=2v v 车车,理清=+v v v 绝相对牵的关系二、填空题 题1.8:答案: 匀速(直线),匀速率题1.9:答案:2915t t -,0.6 提示: 2915dxv t t dt==-,t=0.6时,v=0题1.10:答案:(1)21192y x =-(2)24t -i j 4-j(3)411+i j 26-i j 3S提示: (1) 联立22192x t y t =⎧⎨=-⎩,消去t 得:21192y x =-,dx dydt dt =+v i j (2) t=1s 时,24t =-v i j ,4d dt==-va j (3) t=2s 时,代入22(192)x y t t =+=+-r i j i j 中得411+i j t=1s 到t=2s ,同样代入()t =r r 可求得26r∆=-i j ,r 和v 垂直,即0∙=r v ,得t=3s题1.11: 答案:212/m s 提示:2(2)2412(/)dv d x a v x m s dt dt=====题1.12: 答案:1/m sπ提示: 200tdvv v dt t dt =+=⎰,11/t v m s ==,201332tv dt t R θπ===⎰,r π∆==题1.13:答案:2015()2t v t gt -+-i j 提示: 先对20(/2)v tg t =-r j 求导得,0()y v gt =-v j 与5=v i 合成得05()v gt =-+-v i j 合 201=5()2t v t gt -+-∴⎰r v i j t合0合dt=题1.14: 答案:8, 264t提示:8dQ v R Rt dt τ==,88a R τ==,2264n dQ a R t dt ⎛⎫== ⎪⎝⎭三、计算题 题1.15:解:(1)3t dv a t dt == 003v tdv tdt =∴⎰⎰ 232v t ∴=又232ds v t dt == 20032stds t dt =∴⎰⎰ 312S t =∴(2)又S R θ= 316S tRθ==∴(3)当a 与半径成45角时,n a a τ=2434n v a t R == 4334t t =∴t =∴题1.16:解:(1)dva kv dt ==- 00v tdv kdt v =-∴⎰⎰, 0ln v kt v =-(*) 当012v v =时,1ln 2kt =-,ln 2t k=∴ (2)由(*)式:0ktv v e-=0kt dxv e dt -=∴,000xtkt dx v e dt -=⎰⎰ 0(1)kt v x e k-=-∴第2章 质点动力学一、选择题 题2.1: 答案:[C]提示:A .错误,如:圆周运动B .错误,m =p v ,力与速度方向不一定相同 D .后半句错误,如:匀速圆周运动题2.2: 答案:[B]提示:y 方向上做匀速运动:2y y S v t t == x 方向上做匀加速运动(初速度为0),Fa m=22tx v a d t t ==⎰,223tx x t S v dt ==⎰2223t t =+∴S i j题2.3: 答案:[B]提示:受力如图MgF杆'F 猫mg设猫给杆子的力为F ,由于相对于地面猫的高度不变'F mg = 'F F = 杆受力 1()F Mg F M m g =+=+ 1()F M m ga M M+==题2.4 :答案:[D] 提示:a a A22A B AB m g T m a T m a a a ⎧⎪-=⎪=⎨⎪⎪=⎩ 得45Aa g = (2A B a a =,通过分析滑轮,由于A 向下走过S ,B 走过2S) 2A B a a =∴题2.5: 答案:[C]提示: 由题意,水平方向上动量守恒, 故 0(cos60)()1010m mv m v =+ 共 0=22v v 共题2.6: 答案:[C] 提示:RθθRh-R由图可知cos h RRθ-=分析条件得,只有在h 高度时,向心力与重力分量相等所以有22cos ()mv mg v g h R Rθ=⇒=-由机械能守恒得(以地面为零势能面)22001122mv mv mgh v =+⇒=题2.7: 答案:[B]提示: 运用动量守恒与能量转化题2.8: 答案:[D] 提示:v v y由机械能守恒得2012mgh mv v =⇒=0sin y v v θ=sin Gy Pmgv mg ==∴题2.9: 答案: [C]题2.10: 答案: [B]提示: 受力如图fT F由功能关系可知,设位移为x (以原长时为原点)2()xF mg Fx mgx kxdx x kμμ--=⇒=⎰弹性势能 2212()2p F mg E kx kμ-==二、填空题题2.11: 答案:2mb提示: '2v x bt == '2a v b == 2F m a m b==∴题2.12:答案:2kg 4m/s 2 提示:4N8Nxy 0由题意,22/x a m s = 4x F N =8y F N = 2Fm k ga== 24/y y F a m s m==题2.13: 答案:75,1110提示: 由题意,32()105F a t m ==+ 27/5v adt m s ⇒==⎰当t=2时,1110a =题2.14: 答案:180kg提示:由动量守恒,=m S -S m 人人人船相对S ()=180kg m ⇒船题2.15: 答案:11544+i j 提示:各方向动量守恒题2.16:答案: ()mv +i j ,0,-mgR提示:由冲量定义得 ==()()mv mv mv --=+I P P i j i j 末初- 由动能定律得 0k k E W E ∆=⇒∆=,所以=0W 合 =W m g R -外题2.17: 答案:-12提示:3112w Fdx J -==⎰题2.18:答案: mgh ,212kx ,Mm G r - h=0,x=0,r =∞ 相对值题2.19: 答案: 02mgk ,2mg,题2.20: 答案: +=0A∑∑外力非保守力三、计算题 题2.21:解:(1)=m F xg L 重 ()mf L xg L μ=- (2)1()(1)ga F f x g m Lμμ=-=+-重(3)dv a v dx =,03(1)v LL g vdv x g dx L μμ⎡⎤=+-⎢⎥⎣⎦⎰⎰,v =题2.22: 解:(1)以摆车为系统,水平方向不受力,动量守恒。
(完整版)大学物理01质点运动学习题解答

第一章 质点运动学一 选择题1. 下列说法中,正确的是:( )A. 一物体若具有恒定的速率,则没有变化的速度;B. 一物体具有恒定的速度,但仍有变化的速率;C. 一物体具有恒定的加速度,则其速度不可能为零;D. 一物体具有沿x 轴正方向的加速度而有沿x 轴负方向的速度。
解:答案是D 。
2. 长度不变的杆AB ,其端点A 以v 0匀速沿y 轴向下滑动,B 点沿x 轴移动,则B 点的速率为:( )A . v 0 sin θB . v 0 cos θC . v 0 tan θD . v 0 / cos θ 解:答案是C 。
简要提示:设B 点的坐标为x ,A 点的坐标为y ,杆的长度为l ,则222l y x =+ 对上式两边关于时间求导:0d d 2d d 2=+t y y t x x ,因v =tx d d ,0d d v -=t y ,所以 2x v -2y v 0 = 0 即 v =v 0 y /x =v 0tan θ所以答案是C 。
3. 如图示,路灯距地面高为H ,行人身高为h ,若人以匀速v 背向路灯行走,则人头影子移动的速度u 为( ) A.v H h H - B. v h H H - C. v H h D. v hH 解:答案是B 。
v x选择题2图灯s选择题3图简要提示:设人头影子到灯杆的距离为x ,则H h x s x =-,s hH H x -=, v hH H t s h H H t x u -=-==d d d d 所以答案是B 。
4. 某质点作直线运动的运动学方程为x =3t -5t 3 + 6 (SI),则该质点作A. 匀加速直线运动,加速度沿x 轴正方向.B. 匀加速直线运动,加速度沿x 轴负方向.C. 变加速直线运动,加速度沿x 轴正方向.D. 变加速直线运动,加速度沿x 轴负方向. ( )解:答案是D5. 一物体从某一确定高度以v 0的初速度水平抛出,已知它落地时的速度为v t ,那么它的运动时间是:( ) A. g 0v v -t B. g 20v v -t C. g 202v v -t D. g2202v v -t 解:答案是C 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
an
v2 (v0bt)2 RR
a与at方向间夹角为
arctan(a an t )arctan(v0bRbt)2
(2) 当a= 2b时
b2
(v0
bt)4 R2
2b2
t bR v0 b
1-9
an
v2
102 0.25m/2s 400
aat2an 20.220.225 0.3m 22/s
设总加速度与法向加速度间的夹角为
习 题 课(一)
1-1
某物体的运动规律为
dv dt
k v 2t
,式中k为常数。
当t = 0时,初速度为v0,则速度v与时间t的函数关系是
(A)
v
1 2
kt
2
v0
(B)
v
1 2
kt2
v0
✓(C) 1 1 1 kt2 v v0 2
(D) 1 1 1 kt 2
v v0 2
解:
v v0
dvv2
解: ( M A M B ) g N ( M A M B ) a
N (M A M B )g ( a )
1-5 质量分别为mA和mB的两滑块A和B通过一轻弹 簧水平连结后置于水平桌面上,滑块与桌面间的摩擦
系数均为 ,系统在水平拉力F 作用下匀速运动,如
图所示。如突然撤消拉力,则刚撤消后瞬间,二者的
一质量m为0.8kg的物块。转台以角速度 = 4 rad/s绕
竖直中心轴转动,求:转台上面的物块与转台相对静
止时,物块转动半径的最大值rmax和最小值rmin。
解:
Fn M2r
M
F m am x g sM M g2 r max
m
rma x mM g s2M g0.03m 7
F m in mg sM M g2 rmin rmin mM g s2M g0.01m 24
力的值为。
解: A: TNma
Nmgma
B: Tm gm (aa)
a
A Ba a
T 3(1)mg
4
1-10 质量为m的子弹以速度v0水平射入沙土中,设 子弹所受阻力与速度反向,大小与速度成正比,比例
系数为k,忽略子弹重力,求: (1)子弹射入沙土后,速度随时间变化的函数式; (2)子弹进入沙土的最大深度。
加速度aA和aB分别为
(A) aA0, (C) aA0,aB 0 (D) aA0,aB0
解: 刚撤消瞬间,
B
弹簧弹力没变。
A
F
aA 0
aB 0
1-6 如图所示,小球沿固定的光滑 圆弧从A点由静 止开始下滑,圆弧半径为 R,则小球在A点处的切向 加速度at = ,小球在B点处的法向加速度an = 。
解: vBAxvA2
vBAy vB 2
v BAx
v B A 2 i 2 j
vB vA
1-3 一质量为M的质点沿x轴正向运动,假设该质点通
过坐标为x时的速度为kx(k为正常量),则此时作用于
该质点上的力F =
,该质点从x = x0点出发运动
到x = x1处所经历时间 t =
。
解: a d v k dx kvk2x FMaM2xk dt dt
大学物理第一章质点运动 学习题答案
• 6、切向加速度和法向加速度
at
dv dt
an
v2
a
a2 t
an2
• 7、角速度和角加速度
y
d dt
vr
at r
d d 2 dt d 2t
an 2r
A
r
o
x
• 8、速度变换 v v u
• 9、牛顿第二定律 F m a md dv tmd d2r2 t
dxkx
dt
t
k
dt
x1dx
0
x x0
t 1 ln x1 k x0
1-4 升降机内地板上放有物体A,其上再放另一物体 B,二者的质量分别为MA、MB。当升降机以加速度a 向下加速运动时(a < g),物体A对升降机地板的压力在 数值上等于
(A) M A g
(B) (MAMB)(ga)
✓ (C) (MAMB)g (D) (MAMB)(ga)
1-8 一条轻绳跨过摩擦可被忽略的轻滑轮,在绳的
一端挂一质量为m1的物体,在另一侧有一质量为m2的 环,求当环相对于绳以恒定的加速度a2沿绳向下滑动 时,物体和环相对地面的加速度各是多少?环与绳间
的摩擦力多大?
解:设m1及绳的加速度为a1,则m2 相对地面的加速度为 a2a1a2
m 1 : m 1gTm 1 a 1 m 2 : f m 2 g m 2 (a 1 a 2 )
t
ktdt
0
1 1 1 kt2 v v0 2
1-2 在相对地面静止的坐标系内,A、B二船都以2m/s 的速率匀速行驶,A船沿X轴正向,B船沿Y轴正向。今 在A船上设置与静止坐标系方向相同的坐标系,那么在 A船上的坐标系中,B船的速度为(以m/s为单位)
✓ (A) 2i 2j
(B) 2i 2j
(C) 2i 2j (D) 2i 2j
绳: f T
f a1
a1 T
a2
m2 g
m1 g
a1
(m1m2)gm2a2 m1m2
a2
(m1m2)gm1a2 m1m2
f (2ga2)m1m2 m1 m2
1-9 如图所示系统置于加速度a=g/2的上升的升降机内, A、B两物体的质量相等,均为m。若滑轮与绳的质量不
计,而A与水平桌面间的滑动摩擦系数为,则绳中张
解: Fkvmdv
dt
k t ln v
m
v0
t k dt v dv
0m
v v0
k t
v v0e m
Fkvmdv mdvdxmvdv dt dxdt dx
xm a xkdx
0
mdv
0
v0
xmax
mv0 k
课后题 答案
1-3 (1) 将 t x 代入 y (t 1)2 整理得 y x 1
解: A: a t g
B:
an
v2 R
A
mg N
Ft mcgos
m
dv dt
d d
m v dv
R d
mgF t
B
2Rcgo d svv d v
0
0
v2 2Rg
an
v2 R
2g
1-7 水平转台上放置一质量M为2kg的小物块,物块
与转台间的静摩擦系数s=0.2 ,一条光滑的绳子一端
系在物块上,另一端则由转台中心处的小孔穿下并悬
(2) r t2i (t 1 )2j
adv2i2j dt
vdr2ti2(t 1 )j dt
t 2s时, v4i2j a2i2j
1-6
dvdvdxvdvKv2 dt dx dt dx
v
v0
dv v
0x
Kdx
ln v K x v0
v v0eKx
1-7
(1)
vds dt
v0
bt
at
dv dt
b
a an2at2 b2(v0R 2bt)4
tan at 0.8