微机线路继电保护装置功能介绍及作用
WXJ50微机继电保护测控装置技术说明书

保护测控装置保护功能
主要功能项目 适用范围
无时限过流保护 两段式定时限过流保护 三段式零序过流保护 三相一次重合闸(检无压/检同期) 合闸后加速功能 低频减载功能 PT 断线监视 两段式相间过流保护 零序过流保护 零序电压保护 过电压保护 失电压保护 不平衡保护(差压和差流) 无时限过流保护 两段式定时限过流保护 反时限过负荷保护 高压侧零序过流保护 低压侧零序反时限过流保护 非电量保护 短路保护 启动时间过长保护 两段式过流保护 低电压保护 零序电流保护 两段式负序电流保护 反时限电流保护 过热保护 堵转保护 零序过压保护 自启动功能 分为桥备自投装置和进线备自投装置 可实现逆向备自投
1.2.7过载能力
( 1) ( 2) ( 3) 交流电流回路:2 倍额定电流连续工作;10 倍额定电流工作 10s;20 倍额定电流工作 1s。 交流电压回路:1.2 倍额定电压连续工作。 电源回路:80%-120%额定电压正常工作。
1.2.8绝缘性能
( 1) ( 2) 所有电路与外壳间的绝缘电阻在标准实验条件下小于 100MΩ。 所有电路与外壳间的介质强度能耐受交流 50Hz、电压 2kV(有效值) 、历时 1min 的试验 而无绝缘击穿或闪络现象。
பைடு நூலகம்
1.1产品分类
WXJ-50 系列装置包括以下 6 类保护装置:
WXJ-51 线路保护测控装置 WXJ-52 电容器保护测控装置 WXJ-53 厂用变保护测控装置 WXJ-54 电动机保护测控装置 WXJ-55 备用电源自投装置
WXJ-56 PT 切换装置
可靠
系列装置元器件全部采用军品或工业品,稳定性、可靠性高,可以在工业恶劣环境下 稳定运行; 系列装置硬件设计采用多种隔离、屏蔽措施,软件设计采用数字滤波技术和先进的保 护算法及其它抗干扰措施,使得保护的抗干扰性能大大提高; 采用SoC解决方案,数据处理、逻辑运算和信息储存能力强,运行速度快,可靠性高。
WXB-10系列微机线路保护装置说明书

-1-
WXB-10 系列微机线路保护说明
技术说明书
………………………………………………………………………………..3
一、装置概述 ………………………………………………………………………………..4 二、主要技术数据 …………………………………………………………………………..6 2.1 额定数据 ………………………………………………………………………………..6 2.2 主要技术性能指标 ……………………………………………………………………..6 2.3 绝缘性能 ………………………………………………………………………………..7 2.4 冲击电压 ………………………………………………………………………………..7 2.5 抗电磁干扰性能 ……………………………………………………………………..7 2.6 机械性能 ………………………………………………………………………………..7 2.7 环境条件 ………………………………………………………………………………..7 三、结构 ……………………………………………………………………………………..8 四、硬件说明 ………………………………………………………………………………..8 4.1 交流及直流电源插件(AC/POWER) …………………………………………………….8 4.2 逻辑继电器及出口插件(LOGIC/TRIP) ……………………………………………….9 4.3 CPU 插件 ……………...………………………………………………………………..11 4.4 人机对话板(MMI) …………………………………………………………………….11 4.5 选供的打印机接口 …………………………………………………………………….11 五、装置功能说明 ………………………………………………………………………….12 5.1 装置的启动元件 …………………………………………………………………….12 5.2 低电压元件 ………………………………………………………………………….12 5.3 三段过流元件 ………………………………………………………………………….12 5.4 两相式、三相式电流元件 ………………………………………………………….12 5.5 反时限过流保护元件 ……………………………………………………………….13 5.6 零序过电流元件 …………………………………………………………………….13 5.7 三相一次自动重合闸 ……………………………………………………………….13 5.8 手合及重合后加速 …………………………………………………………………….14 5.9 低周元件 ……………………………………………………………………………….14 5.10 过负荷元件 ………………………………………………………………………….15 5.11 PT 断线检测 ………………………………………………………………………….15 六、装置端子说明 ………………………………………………………………………….15 6.1 模拟量输入 ………………………………………………………………………….15 6.2 开关量输入 ………………………………………………………………………….16 6.3 跳合闸接线 ………………………………………………………………………….16 6.4 电源 …………………………………………………………………………………….16 七、定值清单及整定说明 ……………………………………………………………….16 7.1 定值清单 ……………………………………………………………………………….16 7.2 整定说明 ……………………………………………………………………………….18
继电保护装置讲解

继电保护装置讲解继电保护装置是一种用于保护电力系统设备的重要装置。
它的作用是在电力系统发生故障时,迅速断开故障电路,以保护电力设备的安全运行。
本文将从继电保护装置的基本原理、分类以及应用场景等方面进行讲解。
一、继电保护装置的基本原理继电保护装置基于电力系统中的电流、电压等物理量的变化来判断系统是否发生故障。
当电力系统中发生故障时,电流和电压等物理量会发生异常变化,继电保护装置会通过对这些异常变化进行监测和分析,判断故障的类型和位置,并通过控制开关来实现对故障电路的断开。
二、继电保护装置的分类根据不同的保护对象和保护功能,继电保护装置可以分为过电流保护、差动保护、距离保护、过压保护等多种类型。
其中,过电流保护是最常见的一种保护方式,它通过检测电流的大小来判断电力系统中是否存在过电流故障。
差动保护则是通过对电流差值进行监测,判断系统中是否存在线路接地或相间短路等故障。
距离保护则是根据电力系统中电流和电压之间的相对关系,来判断故障的位置。
过压保护则是用于检测电力系统中是否存在过电压故障。
三、继电保护装置的应用场景继电保护装置广泛应用于电力系统的发电、输配电等环节,以保护电力设备的安全运行。
在发电环节,继电保护装置可用于保护发电机、变压器等设备的安全运行。
在输电和配电环节,继电保护装置可用于保护线路、变电站等设备的安全运行。
此外,继电保护装置还可以应用于工业生产、铁路、矿山等领域,以确保电力设备的正常工作。
继电保护装置是一种重要的电力设备保护装置,它通过监测和分析电力系统中的物理量变化,判断系统是否发生故障,并通过控制开关来实现对故障电路的断开。
根据不同的保护对象和保护功能,继电保护装置可分为多种类型,并广泛应用于电力系统的各个环节。
它的作用在于保护电力设备的安全运行,确保电力系统的稳定运行。
微机继电保护装置

微机继电保护装置一、引言微机继电保护装置是一种新型的电力保护装置,它采用了微机技术和现代电力保护原理相结合的方式,使得电力系统的保护更加灵活、可靠和高效。
二、发展历程随着电力系统的发展和电力负荷的增加,传统的继电保护装置已经难以满足对电力保护的需求。
因此,微机继电保护装置应运而生。
从上世纪80年代开始,微机技术逐渐应用于电力保护领域,取得了显著的成果。
经过多年的发展和改进,微机继电保护装置已经成为电力系统安全稳定运行的重要组成部分。
三、工作原理微机继电保护装置采用了微机技术和数字信号处理技术,能够对电力系统中的各种异常情况进行精确的检测和判断,并在出现故障时快速做出保护动作。
其工作原理主要包括以下几个方面:1. 信号采集和处理:微机继电保护装置通过传感器采集电力系统中的各种信号,包括电压、电流、功率等参数,并将其转化为数字信号进行处理。
2. 信号分析和判断:微机继电保护装置通过对采集到的信号进行分析和判断,可以准确地判断出电力系统中是否存在故障或异常情况。
3. 保护动作控制:微机继电保护装置在判断出故障或异常情况后,会对电力系统进行保护动作控制,如切断故障回路、断开电源等,以保证电力系统的安全运行。
四、特点和优势微机继电保护装置相较于传统的继电保护装置具有如下特点和优势:1. 灵活性:微机继电保护装置可以根据电力系统的实际需求进行配置和调整,以适应不同的保护要求。
2. 可靠性:微机继电保护装置采用了先进的数字信号处理技术,提高了保护的精度和可靠性,并能够自动监测和诊断故障。
3. 高效性:微机继电保护装置具有快速的保护动作速度和精确的保护动作,可以在最短的时间内切断故障回路,避免电力系统的损坏。
4. 易维护性:微机继电保护装置采用了模块化设计,易于维护和故障排除。
五、应用领域微机继电保护装置广泛应用于各种规模的电力系统,包括电力变电站、电力配电系统、工矿企业的电力系统等。
它可以对电力系统中的各种异常情况进行保护,并确保电力系统的安全运行。
分享微机继电保护装置基础知识

分享微机继电保护装置基础知识分享微机继电保护装置基础知识微机继电保护装置是由高集成度、总线不出芯片单片机、高精度电流电压互感器、高绝缘强度出口中间继电器、高可靠开关电源模块等部件组成。
下面为大家带来了分享微机继电保护装置基础知识,欢迎大家参考。
组成微机继电保护的硬件是一台计算机,由硬件、软件组成,各种复杂的功能是由相应的程序来实现。
用简单的操作就可以检验微机的硬件是否完好。
同时,微机继电保护装置具有自诊断功能,对硬件各部分和存放在EPROM中的程序不断进行自动检测,一旦发现异常就会报警。
通常只要接通电源后没有报警,就可确认装置是完好的,从而大大减轻运行维护的工作量。
计算机在程序指挥下,有综合分析和判断能力,而微机继电保护装置可以实现常规保护很难办到的自动纠错,自动识别和排除干扰,防止由于干扰而造成误动作。
另外,微机继电保护装置有自诊断能力,能够自动检测出计算机本身硬件的异常部分,配合多重化可以有效地防止拒动,因此可靠性很高。
使用微型计算机可以在系统发生故障后提供多种信息。
如保护各个部分的动作顺序和动作记录,故障类型和相别及故障前后电压和电流的波形记录等,还可以提供故障点到保护安装处的距离。
这样有助于运行部门对事故的分析处理。
由于微机继电保护的特性主要由程序决定,所以不同原理的保护可以采用通用的硬件,只要改变程序就可以改变保护的特性和功能,因此可灵活地适应于电力系统运行方式的`变化。
微机继电保护装置的特点1、用于可根椐实际运行的需要配制相应保护,真正实现用户“量身定制”。
2、各种保护功能相对独立,保护定值、实现、闭锁条件和保护投退可独立整定和配制。
3、可以满足库存配制有二十几种保护,满足用户对不同电气设备或线路保护要求。
4、自定义保护功能,可实现标准保护库中未提供的特殊保护,最大限度满足用户要求。
5、保护功能实现不依赖于通讯网络,满足电力系统保护的可靠性。
微机继电保护装置的优点1、集保护、测量、监视、控制、人机接口、通信等多种功能于一体;代替了各种常规继电器和测量仪表,节省了大量的安装空间和控制电缆。
分享微机继电保护装置基础知识PPT

某智能建筑
03
采用微机继电保护装置实现对楼宇自动化系统的保护和控制,
提高了建筑的能源利用效率和安全性故障与处理方法
常见故障类型
采样故障
模拟量输入回路故 障,导致采样数据 异常。
软件故障
程序运行错误或死 机。
电源故障
电源模块故障,导 致装置无法正常工 作。
算法处理
微处理器根据预设的保护算法对采集 到的数据进行处理,判断是否发生故 障或异常。
输出执行
根据算法处理结果,通过输出接口发 出跳闸或合闸等控制信号,实现对一 次设备的保护。
人机交互
通过人机界面显示装置的运行状态和 故障信息,方便用户进行监控和维护 。
PART 03
微机继电保护装置的应用 场景与优势
通信故障
与外部设备或控制 系统的通信中断。
硬件故障
装置内部硬件损坏 。
故障处理方法
采样故障处理
检查模拟量输入回路,确保采 样数据准确。
软件故障处理
重启装置或重新下载程序。
电源故障处理
检查电源模块,确保正常供电 。
通信故障处理
检查通信接口和线路,确保通 信正常。
硬件故障处理
更换损坏的硬件模块。
故障预防措施
WENKU DESIGN
WENKU DESIGN
WENKU
KEEP VIEW
分享微机继电保护装 置基础知识
REPORTING
ONE
2023-2026
WENKU DESIGN
WENKU DESIGN
CATALOGUE
目 录
• 微机继电保护装置概述 • 微机继电保护装置的组成与原理 • 微机继电保护装置的应用场景与优势 • 微机继电保护装置的常见故障与处理方法 • 微机继电保护装置的未来发展趋势与挑战
微机线路继电保护装置功能介绍及作用

微机线路继电保护装置功能介绍及作用微机线路继电保护装置功能介绍及作用线路保护装置主要功能有:uuuuuuuuu uuuuu 三段式过流保护(方向闭锁、低电压闭锁)过负荷保护反时限过流保护(3种标准特性方程)三段式零序方向过流保护低电压保护零序过压保护非电量保护小电流接地低压解载保护断线报警三相二次重合闸(检无压、同期、不检);独立整定的合闸加速保护(前/后加速);独立的操作回路及故障录波。
测控功能有:uuuu 16路遥信开入采集正常断路器遥控分合闸;模拟量的遥测;开关事故分合次数统计保护信息功能有:uuuu 保护定值远方/就地查看、修改;保护功能远方/就地查看、修改;装置状态的远方/就地查看;装置保护动作信号的远方/就地复归。
以上各种保护均有软件开关,可分别投入和退出。
录波功能:装置具有故障录波功能,记忆最新8套故障波形,记录故障前3个周波,故障后5个周波,进行故障分析,上传当地监控或调度。
微机线路保护装置解决策略我国微机保护装置经过近二十年的发展、更新、升级,其理论、原理、性能、功能、硬件已经相当完善,能够最大程度适应电力系统运行需要,过多对微机保护装置的干预,对电网的安全运行反而是不利的。
目前,我们运行管理的理念和观念却还处在一个趋向保守的状态,在微机保护装置运行、管理上存在不少的误区,已经严重影响到变电站自动化进程。
本文主要分析了微机线路保护装置重合闸的充电条件及发生“异常自动重合”的主要原因,并提出了相应的现场解决方案。
1. 故障事例电力系统的故障中,大多数是送电线路的故障(特别是架空线路),电力系统的运行经验表明架空线路的故障大都是瞬时的,因此,线路保护动作跳开开关后再进行一次合闸,就可提高供电的可靠性。
进入20世纪90年代后,微机保护装置开始推广应用,继电保护微机化率已达100%。
但多年的现场实际应用中,发现中低压线路微机保护(如:10KV 线路微机保护)的控制回路与重合闸回路之间的配合有问题,导致微机线路保护出现多次“异常自动重合”的现象。
继电保护装置的作用是什么

问答题1、继电保护装置的作用是什么?答:当被保护元件发生故障时,自动、迅速、有选择地将故障从电力系统切除,以保证其余部分恢复正常运行,并使故障元件免于继续受损害。
当被保护元件发生异常运行状态时,经一定延时动作于信号,以使值班人员采取措施。
2、继电保护按反应故障和按其功用的不同可分为哪些类型?答:(1)按反应故障可分为:相间短路保护,接地短路保护,匝间短路保护,失磁保护等。
(2)按其功用可分为:主保护、后备保护、辅助保护。
3、xx主保护、后备保护和辅助保护?答:(1)能反应整个保护元件上的故障,并能以最短延时有选择地切除故障的保护称为主保护。
(2)主保护或其断路器拒动时,由于切除故障的保护称为后备保护。
(3)为补充主保护和后备保护的不足而增设的比较简单的保护称为辅助保护。
4、继电保护装置由哪些部分组成?答:继电保护装置由测量部分、逻辑部分和执行部分组成。
5、xx电流互感器10%误差特性曲线?答:10%误差曲线是指电流误差10%,角度误差不超过7°时,电流互感器的一次电流倍数和允许负荷阻抗之间的关系曲线。
6、怎样用10%误差曲线校验电流互感器?答:(1)根据接线方式,确定负荷阻抗计算;(2)根据保护装置类型和相应的一次电流最大值,计算电流倍数;(3)由已知的10%曲线,查出允许负荷阻抗;(4)按允许负荷阻抗与计算阻抗比较,计算值应小于允许值,否则应采用措施,使之满足要求。
7、保护装置常用的变换器有什么作用?答:(1)按保护的要求进行电气量的变换与综合;(2)将保护设备的强电二次回路与保护的弱电回路隔离;(3)在变换器中设立屏蔽层,提高保护抗干扰能力;(4)用于定值调整。
8、用哪些方法可以调整电磁型电流继电器定值?答:调整动作电流可采用:(1)改变线圈连接方式;(2)改变弹簧反作用力;(3)改变舌片起始位置。
9、信号继电器有何作用?答:装置动作的信号指示并接通声光信号回路。
10、电流变换器和电抗变换器最大的区别是什么?答:(1)电流变换器二次侧接近短路状态,可看成电流源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微机线路继电保护装置功能介绍及作用
微机线路继电保护装置功能介绍及作用
线路保护装置主要功能有:
u
u
u
u
u
u
u
u
u u
u
u
u
u 三段式过流保护(方向闭锁、低电压闭锁)过负荷保护反时限过流保护(3种标准特性方程)三段式零序方向过流保护低电压保护零序过压保护非电量保护小电流接地低压解载保护断线报警三相二次重合闸(检无压、同期、不检);独立整定的合闸加速保护(前/后加速);独立的操作回路及故障录波。
测控功能有:
u
u
u
u 16路遥信开入采集正常断路器遥控分合闸;模拟量的遥测;开关事故分合次数统计
保护信息功能有:
u
u
u
u 保护定值远方/就地查看、修改;保护功能远方/就地查看、修改;装置状态的远方
/就地查看;装置保护动作信号的远方/就地复归。
以上各种保护均有软件开关,可分别投入和退出。
录波功能:
装置具有故障录波功能,记忆最新8套故障波形,记录故障前3个周波,故障后5个
周波,进行故障分析,上传当地监控或调度。
微机线路保护装置解决策略
我国微机保护装置经过近二十年的发展、更新、升级,其理论、原理、性能、功能、
硬件已经相当完善,能够最大程度适应电力系统运行需要,过多对微机保护装置的干预,
对电网的安全运行反而是不利的。
目前,我们运行管理的理念和观念却还处在一个趋向保
守的状态,在微机保护装置运行、管理上存在不少的误区,已经严重影响到变电站自动化
进程。
本文主要分析了微机线路保护装置重合闸的充电条件及发生“异常自动重合”的主
要原因,并提出了相应的现场解决方案。
1. 故障事例
电力系统的故障中,大多数是送电线路的故障(特别是架空线路),电力系统的运行
经验表明架空线路的故障大都是瞬时的,因此,
线路保护动作跳开开关后再进行一次合闸,就可提高供电的可靠性。
进入20世纪90
年代后,微机保护装置开始推广应用,继电保护微机化率已达100%。
但多年的现场实际
应用中,发现中低压线路微机保护(如:10KV 线路微机保护)的控制回路与重合闸回路
之间的配合有问题,导致微机线路保护出现多次“异常自动重合”的现象。
事例1:2019
年10月28日,某110kV 变电站1台10kV 出线开关(该开关为SIEMENS-8BK20手车开关,保护配置为LFP-966微机线路保护)在线路故障时重合未成,调度发令将该开关置于“试验”位置(即将线路转为检修状态),值班员在将手车开关由“工作”位置移至“试验”
位置后开关即自行合上,保护装置的保护动作报告为重合闸动作。
2019年11月1日,事例2:某220kV 变电站1台110kV 出线开
关(该开关为GIS 组合电气开关,保护配置110KV 微机线路保护)在线路故障时重
合未成,调度发令该出线改线路检修状态,值班员在将该单元的线路刀闸拉开后,将GIS 汇控柜内的“远方/就地”开关切至“远方”时开关自行合上,保护装置的保护动作报告
亦为重合闸动作。
以上2个事例中,实际动作情况均出现“异常自动重合”现象,为现场工作带来极大
困扰。
2. 原因分析
针对上述情况,继电保护人员结合现场操作的步骤及微机线路保护的重合闸充、放电
条件,进行了详细的分析。
的重合闸充电条件有3个(见图1):(1)保护装置内的双位置继电器KKJ 在合闸状态;(2)保护装置内的跳闸位置继电器TWJ 在分闸状态;(3)
外部无闭锁重合闸信号。
这3个条件为“与”的关系,只有三者全部满足,重合闸才会充电。
图1中,KKJ 为
双位置继电器;BC 为外部闭锁合闸开入量;TWJ 为分闸位置继电器;CH 为重合闸投退软
压板;CHJ 为重合闸出口中间继电器;tcd 为重合闸充电时间;tch 为重合闸延时时间。
由此可见,现场运行操作中,必是由于在特定条件下,全部满足了3个条件,才会出现
“异常自动重合”的现象。
事例1中,当开关重合未成后,值班员未将线路综合保护的双位置继电器KKJ 复位,至使开关的控制回路在“不对应”状态(KKJ 在合闸状态,断路器在分闸状态),当手车
开关由“工作”位置移至“试验”位置过程中,开关的联锁机构位置辅助接点S33断开,
造成TWJ 继电器失磁返回,此时满足重合闸充电条件,重合闸开始充电,手车开关到“试验”位置时(时间超过15s ,重合闸已充好电),S33接点接通,TWJ 继电器励磁动作,
此时满足重合闸不对应启动条件,
重合闸保护动作出口合上开关(见图2)。
图中,S33为联锁机构位置行程接点(试验、工作位置通);S1为开关辅助接点;S3
为弹簧储能接点。
事例2中,当开关重合未成后,值班员亦未将保护的双位置继电器KKJ 复位,至使开关的控制回路在“不对应”状态。
而GIS 组合电气开关的二次回路设计,将刀闸的操作切换开关的接点接在断路器的控制回路中,线路差动保护装这种设计考虑了就
地操作刀闸时可以闭锁断路器的操作。
因此实际运行中,当运行人员操作出线刀闸时,一
旦将GIS 汇控柜内“远方/就地”切换开关切至“就地”时,断路器的合闸回路断开,造
成TWJ 失磁返回,此时重合闸开始充电,而操作完出线刀闸后,运行人员将切换开关切至“远方”时又接通断路器的合闸回路,TWJ 励磁动作,此时重合闸充电完成,保护装置又
判断路器在“不对应”状态,满足重合闸不对应启动条件,重合闸保护动作出口合上开关。
而在正常遥控、手动分开断路器时,KKJ 继电器被复位(分闸状态),重合闸不能充电,无论TWJ 如何动作,不能满足重合闸充电条件,也就不会出现“自动重合”的现象了。
3. 解决方案
根据以上分析,解释了断路器在特定条件下发生“异常自动重合”现象的原因。
据此
分析,结合现场情况,继电保护人员提出了4
种解决方案:
(1)运行人员在发生断路器保护动作跳闸、重合不成后调整断路器状态时,必须先
用人工方式对的双位置继电器KKJ 进行复位,使微机线路保护的重合闸不能充电,再进行其他的操作;
(2)运行人员在发生断路器保护动作跳闸、重合不成后调整断路器状态时,必须先
将保护装置的直流电源断开,操作结束后再恢复保护装置的直流电源;
(3)考虑将保护装置的TWJ 、HWJ 继电器的常闭接点串接后作为闭锁重合闸保护的
开入量接入保护,在控制回路断线时闭锁重合闸,但保护装置的备用接点中无符合此要求
的接点,不能实现;
(4)联系厂家修改保护程序,将充电条件的第二条改为由合闸位置继电器HWJ 判别,但改动已成熟运行的保护装置内部程序,是否会对其他保护的正确性和可靠性造成影响,
难以评估。
经过比较,可行的为第一条方案,继电保护人员将造成保护在特定条件下发生“异常
自动重合”的原因给运行人员做了详尽的分析,公司运行部门亦梳理了所有特定条件下会
出现“异常自动重合”现象的线路,并修改现场运行规程,明确规定了操作步骤。
通过规
范操作步骤的方法,一举解决了中、低压线路微机保护控制回路与重合闸回路之间存在的
配合问题,经过实际运行,该措施是有效的。
目前,公司此类线路保护均运行正常,且在
特定条件下均再未出现“异常自动重合”现象。