航空航天钛合金零件的铣削加工

合集下载

航天航空产品中钛合金的铣削加工技术

航天航空产品中钛合金的铣削加工技术

以 上 呈体 心 立 方 品格 结 构 ,称 为 卢钛 。利 用钛 的上 述 两 种 结构 的 不 同特 点 ,添 加 适 当 的 合金 元素 ,使 其 相 变温 度 及 相 分含 量 逐 渐改 变 而 得 到不 同组织 的 钛 合 金 。室 温 下 ,钛 合 金 有三 种 基 体组 织 ,钛合 金
三 、结语
在砂 轮 抛 光 机 设备 上 ,使 用 白刚 玉 、碳 化硅 砂 轮 和 磨料 进 行 钛 合金 叶 片 型面 的 连续 打 磨 抛 光时 ,
会 出现表 面 烧 蚀现 象 ,同 时伴 随 烧 伤现 象 产 生 ;在
磨抛 光不会 出现表面烧蚀 现象 ,但 会 出现烧 伤现 象 ;利用砂带抛光机设备进行钛合金叶片型面打磨
( ) 钛合金 1
它 是 相 固 溶 体 组 成 的 单 相
合 金 ,不 论 是 在一 般 温 度 下还 是 在较 高 的 实 际应 用 温 度 下 ,均 是 相 ,组 织稳 定 ,耐 磨 性 高 于纯 钛 , 抗 氧化 能 力 强 。在 50 0 C的 温 度下 ,仍保 持 其 0 ~6 0
强度 和 抗蠕 变 性 能 ,但 不 能进 行 热 处理 强化 ,室温 强度 不高 。 ( ) 钛 合金 2 它是 相 固溶体 组 成 的单 相 合
过程 中容 易产生粘 刀、剥落 、咬合等现象 ,刀具 温度迅速升高 ,导致 刀具 磨损 ,甚至完全破坏 。
正 因为 钛 合 金具 有 比强 度 高 、耐 腐 蚀性 好 、耐 高 温 等优 点 ,从2 世 纪 5 年 代开 始 ,钛 合 金 在航 空 0 0 航 天领 域 中得 到 了迅 速 的 发展 。钛 合金 是 当 代飞 机 和 发动 机 的 主要 结 构 材料 之 一 ,可 以减 轻 飞机 的 重 量 ,提 高结 构 效率 。在 飞 机用 材 中钛 的 比例 ,客 机

钛合金的铣削加工技术

钛合金的铣削加工技术

钛合金的铣削加工技术钛及钛合金因密度小、比强度高、耐腐蚀、耐高温、无磁、焊接性能好等优异综合性能,在航空航天等领域得到越来越广泛应用。

但是,钛合金的一些物理力学性能给切削加工带来了许多困难。

切削时钛合金变形系数小、刀尖应力大、切削温度高、化学活性高、粘结磨损及扩散磨损较突出、弹性恢复大、化学亲合性高等特点,因此在切削加工过程中容易产生粘刀、剥落、咬合等现象,刀具温度迅速升高,导致刀具磨损,甚至完全破坏。

正因为钛合金具有比强度高、耐腐蚀性好、耐高温等优点,从20世纪50年代开始,钛合金在航空航天领域中得到了迅速的发展。

钛合金是当代飞机和发动机的主要结构材料之一,可以减轻飞机的重量,提高结构效率。

在飞机用材中钛的比例,客机波音777为7%,运输机C-74为10.3%,战斗机F-4为8%。

但是由于钛合金价格高,耐磨性差等原因,限制了其使用领域。

近几十年以来,国内外针对航天航空应用所研究的钛合金等均取得了很大进步,许多合金也得到广泛应用。

本文针对航天航空产品中钛合金铣削加工技术进行论述,供同行们参考。

1. 钛合金简介钛是同素异构体,熔点为1 720℃,在低于882℃时呈密排六方晶格结构,称为α钛;在882℃以上呈体心立方品格结构,称为β钛。

利用钛的上述两种结构的不同特点,添加适当的合金元素,使其相变温度及相分含量逐渐改变而得到不同组织的钛合金。

室温下,钛合金有三种基体组织,钛合金也就分为以下三类:(1)α钛合金它是α相固溶体组成的单相合金,不论是在一般温度下还是在较高的实际应用温度下,均是α相,组织稳定,耐磨性高于纯钛,抗氧化能力强。

在500~600℃的温度下,仍保持其强度和抗蠕变性能,但不能进行热处理强化,室温强度不高。

(2)β钛合金它是β相固溶体组成的单相合金,未热处理即具有较高的强度,淬火、时效后合金得到进一步强化,室温强度可达1 372~1 666MPa;但热稳定性较差,不宜在高温下使用。

(3)α +β钛合金它是双相合金,具有良好的综合性能,组织稳定性好,有良好的韧性、塑性和高温变形性能,能较好地进行热压力加工,能进行淬火、时效使合金强化。

《钛合金Ti-6A1-4V修正本构模型在高速铣削中的应用研究》

《钛合金Ti-6A1-4V修正本构模型在高速铣削中的应用研究》

《钛合金Ti-6A1-4V修正本构模型在高速铣削中的应用研究》篇一钛合金Ti-6Al-4V修正本构模型在高速铣削中的应用研究一、引言随着制造业的飞速发展,高速铣削技术已成为现代机械加工领域的重要技术之一。

钛合金Ti-6Al-4V(以下简称Ti-6-4合金)因其具有高强度、耐腐蚀和轻量化等特性,广泛应用于航空、医疗、船舶等众多领域。

然而,由于其材料加工过程中的特殊性质和工艺需求,本构模型作为连接材料物理特性和工艺参数之间的桥梁,显得尤为重要。

本研究致力于将修正后的本构模型应用于高速铣削过程中,以期优化加工性能和提高生产效率。

二、钛合金Ti-6Al-4V的物理特性及本构模型修正钛合金Ti-6Al-4V具有优异的力学性能和良好的加工性能。

然而,其加工过程中往往伴随着高硬度和低导热率等特性,使得传统本构模型难以准确描述其加工行为。

因此,本部分首先介绍了Ti-6-4合金的物理特性及其在高速铣削中的重要性。

随后,针对传统本构模型的不足,提出了修正本构模型的必要性,并详细阐述了修正本构模型的构建过程和关键参数的确定方法。

三、修正本构模型在高速铣削中的应用本部分首先分析了高速铣削过程中,修正本构模型如何通过优化工艺参数、预测切削力和温度变化等,以提高加工质量和生产效率。

在此基础上,我们利用实验手段,对比了应用修正本构模型前后的加工效果。

实验结果表明,应用修正本构模型后,切削力更为均匀,切削温度得到有效控制,从而提高了加工表面的质量和精度。

此外,我们还通过仿真模拟手段,进一步验证了修正本构模型在高速铣削过程中的有效性和优越性。

四、结果与讨论通过对实验结果和仿真数据的分析,我们发现修正后的本构模型在高速铣削过程中具有显著的优越性。

首先,它能够更准确地描述Ti-6-4合金的加工行为,为优化工艺参数提供了有力支持。

其次,通过预测切削力和温度变化,有效控制了加工过程中的热损伤和变形,提高了加工表面的质量和精度。

最后,通过仿真模拟手段,我们进一步验证了修正本构模型在提高生产效率方面的潜力。

钛合金零件机械加工工艺

钛合金零件机械加工工艺

钛合金零件机械加工工艺本文档将介绍钛合金零件的机械加工工艺,以帮助读者了解如何有效地进行钛合金零件的加工过程。

1. 钛合金概述钛合金是一种轻质但强度高、耐腐蚀性好的金属材料,常用于航空航天、汽车制造、医疗器械等领域。

钛合金具有良好的机械性能和热特性,但其机械加工相对困难,需要采用适当的工艺来实现加工目标。

2. 钛合金零件机械加工过程钛合金零件的机械加工主要包括以下几个步骤:2.1 设计和材料准备在进行钛合金零件的机械加工之前,首先需要进行设计和材料准备。

设计阶段需要考虑零件的结构和功能要求,并制定相应的加工方案。

材料准备则包括采购适当规格的钛合金材料,并进行表面处理以去除氧化层等。

2.2 切削加工钛合金零件的切削加工是最常用的机械加工方法之一。

切削加工可以通过车削、铣削、钻削等工艺来实现。

在进行切削加工时,需要选择适当的切削工具和切削参数,以确保加工质量和效率。

2.3 磨削加工钛合金零件的磨削加工一般用于提高零件的精度和表面质量。

常用的磨削加工方法包括平面磨削、外圆磨削、内孔磨削等。

在进行磨削加工时,需要选择适当的砂轮和加工参数,以实现所需的加工效果。

2.4 钻孔和攻丝钻孔和攻丝是钛合金零件常见的加工操作之一。

在进行钻孔时,需要选择适当的钻孔工具和冷却液,以确保钻孔质量和效率。

攻丝时则需要选择适当的攻丝工具和攻丝参数,以保证精度和牢固度。

2.5 表面处理钛合金零件在机械加工完成后,常需要进行表面处理以提高其耐腐蚀性和美观度。

常用的表面处理方法包括电镀、阳极氧化、喷涂涂层等。

2.6 检测和质量控制钛合金零件机械加工完成后,需要进行检测和质量控制,以确保零件符合设计要求和标准。

常用的检测方法包括尺寸测量、外观检查、金相显微镜观察等。

3. 安全注意事项在进行钛合金零件的机械加工时,需要注意以下安全事项:- 确保操作人员具备相关的机械加工知识和技能;- 使用适当的个人防护装备,如手套、护目镜等;- 操作机床和工具时,要遵循操作规程和安全操作规范;- 避免产生过多的粉尘、废料和切屑,及时清理工作区域;- 定期检查和维护机床和工具的状态,以确保其正常运行和安全性。

钛合金的车削加工策略

钛合金的车削加工策略

钛合金的车削加工策略钛合金材料因比强度高、密度小、耐腐蚀、耐高温和焊接性好等优异性能,在航空领域得到越来越广泛的应用。

基于上述优点,钛合金材料成一些零部件的首选材料。

随着航空航天领域发动机产品的更新换代,钛合金的使用比重越来越大,成为飞机发动机理想的制造材料。

标签:钛合金;车削;加工;方法钛合金以其比强度高、机械性能及抗蚀性良好而成为飞机及发动机理想的制造材料,但由于其车削加工性差,长期以来在很大程度上制约了它的应用。

随着加工工艺技术的发展,近年来,钛合金已广泛应用于飞机发动机的压气机段、发动机罩、排气装置等零件的制造以及飞机的大梁隔框等结构框架件的制造。

传统的钛合金车削加工因其车削速度低,刀具耐用度低,加工质量难于控制,导致加工效率低。

提高机床、夹具、工件和刀具组成的工艺系统刚度,可解决钛合金薄壁件车削加工变形问题。

一、刀具材料选择刀具是高速车削加工中最活跃的因素之一,它直接影响着加工效率、制造成本和产品的加工精度。

刀具在高速加工过程中要承受高温、高压、摩擦、冲击和振动,因此其硬度和耐磨性、强度和韧性、耐热性、工艺性能和经济性等基本性能是实现高速加工的关键因素。

钛合金的硬度高、耐磨性高等特点也给加工带来了极大的挑战,尤其是车削刀具,因钛合金的车削性差而导致刀具磨损快等加工难题频繁出现,严重影响了加工精度和效率。

刀具材料是影响车削加工的重要因素之一,所以合理选择刀具材料是解决难加工材料车削的一条有效途径。

满足以上要求的刀具有:陶瓷刀具、涂层硬质合金刀具、立方氮化硼刀具(CBN)及类金刚石刀具(PCD)等。

选择刀具材料时,要考虑刀具材料的导热性能,YG类优于YT类。

车削钛合金产生单元切屑,变形系数近似为1,刀屑接触长度很短,车削力集中于刃口附近,单位车削力大,易崩刃。

钛合金材料车削用刀具有硬质合金刀具、涂层刀具、金刚石刀具和高性能高速钢刀具等。

因此,要选择韧性要好,sbb≥200kg/mm2。

刃口要锋利,后角要大,钝圆半径要小。

钛合金加工工艺

钛合金加工工艺

钛合金加工工艺
钛合金是一种具有优异机械性能和抗腐蚀性能的新型材料,成为了航空、航天、船舶、生物医学等领域中非常重要的结构材料。

本文将介绍钛合金的加工工艺。

一、钛合金的切削加工
钛合金的切削加工是目前钛合金加工中最为常见的一种方法。

钛合金的加工难度主要在于它的高强度和难加工性。

钛合金在切削过程中,容易附着在刀具上,形成大量热量,导致刀具磨损严重。

因此,钛合金的切削必须选用硬质合金刀具,并注意掌握合理的加工速度和切削深度等参数。

二、钛合金的冲压加工
钛合金的冲压加工主要包括剪切、弯曲和深冲。

在冲压加工中,钛合金材料具有优异的塑性,因此冲压加工可以做出各种形状的钛合金部件。

在冲压钛合金时,要注意铣削过程中的火花可能引起钛合金粉尘爆炸的危险,因此需要在加工场地设置防爆设备。

三、钛合金的拉伸加工
钛合金的拉伸加工是指利用钛合金材料的塑性形变,来使得钛合金材料变为带有特定形状的工件。

拉伸加工时,必须选择适宜的冷加工方法,如冷挤压、镦锻、卷曲等。

此外,拉伸加工还需要配合热处理,以保证钛合金的性能优良。

四、钛合金的焊接加工
钛合金的焊接加工是比较困难的工艺。

常用的钛合金焊接方法包括手工气焊、手工电弧焊、氩弧焊、电子束焊、激光焊等。

应用不同的焊接方法可以获得不同的焊接质量。

在焊接加工过程中,应注意预加热以及所有焊接接头的准备和清洁。

综上所述,钛合金的加工工艺是比较复杂的。

在加工过程中需要注意掌握加工参数以及选择适合的加工工具。

同时,还需要设置防爆设备以及进行预加热和热处理等措施,以保证钛合金材料的加工质量和性能。

飞机用钛合金的加工

飞机用钛合金的加工

引起 的突发性 打刀 , 实现了稳定加
图7 加 工 中的 铣 刀

表 4 jn条件 J - D
图9 压 缩机 壳 体 断面
工件名称 工件材料 使用刀具 :
刀杆
刀 片
压缩机壳体 T一 A14 i6 - V
轴 内部 的通道 ( 而不是外部管道) 输 材料 ” 。加工此类材料的切削刀具 差 ; 温度超 过4 0 ② 0 %则 强度 降低
送 。冷却液流 经山特维 克C po at 快 也必须能够适应难切削材料特有的 ( 因此用于发动机的低温部分) 。 换工具夹头上 的一个专用连接器 , 加工条件和加工方法。
() 3锯齿切削刃刀具 的使用 由于锯齿切削刃可减小接触宽 度, 从而可减少热量 的产生。此外 , 切 削液可从 锯齿 之 间到达被 切 削 面, 因此锯齿切削 刃刀具对钛合金
图 5 插 铣 加 工 实例
的加工十分有效 ( ) 图6 。
图4超 高压冷却刀具B C8 H
图6 锯齿刃刀具的切削情况
钛合金与各种金属材料 的特 眭
比较见表 1 。
资购买专用刀具夹头和安装 了高压 冷却系统的机床。这种高压冷却系 统在车削钛合金时具有独特优势 ,
因为不会像加工其它工件材料那样 产生月牙洼磨损 。
( 胡红兵 编 译 )
图 1 典 型 的钛 合 金航 空 零 部件
Hale Waihona Puke 钛合金 的N T方法 ②缩短刀具与工件的接触时间 可能使用小直径刀具 。
刀具 与工件 接触 时间越长 , 产
果、 防止产生积屑瘤 。从 而能够提 高切削速度和生产率。 () 2 提高刀具刚性
③不宜加大切削宽度 ( ) 图2

钛合金加工

钛合金加工

钛合金加工钛合金加工是一种高级金属加工工艺,用于将钛合金材料加工成各种形状和尺寸的零件或产品。

钛合金具有优异的力学性能、耐腐蚀性能和高温性能,因此广泛应用于航空航天、船舶制造、化工、医疗器械等领域。

本文将介绍钛合金加工的工艺流程、常见的加工方法和注意事项。

一、钛合金加工的工艺流程1. 材料准备:选择合适的钛合金材料,包括纯钛和钛合金。

钛合金的成分可以根据具体需求进行调整,以满足不同的性能要求。

2. 材料切割:将钛合金材料切割成所需的形状和尺寸。

常用的切割方法包括锯切、激光切割和水刀切割等。

3. 热处理:对切割后的材料进行热处理,以提高材料的硬度和耐磨性。

热处理过程包括加热、保温和冷却等步骤。

4. 成型加工:将热处理后的材料进行成型加工,包括冷冲压、热冲压、挤压和锻造等。

这些工艺可以将钛合金材料加工成各种复杂的形状和结构。

5. CNC加工:采用计算机数控(CNC)加工技术对钛合金进行精密加工。

这种加工方法可以实现高精度、高效率的加工,适用于制作钛合金零件的高要求。

6. 表面处理:对加工完成的钛合金零件进行表面处理,以提高其装饰性和耐腐蚀性。

常用的表面处理方法包括阳极氧化、喷砂和化学镀等。

7. 装配和检测:将加工和处理完毕的钛合金零件进行装配,并进行质量检测。

这些检测方法包括外观检查、物理性能测试和化学成分分析等。

二、常见的钛合金加工方法1. 机械加工:包括车削、铣削、钻孔和车床加工等。

这些方法适用于加工大尺寸和复杂形状的钛合金零件。

2. 焊接:钛合金的焊接方法包括电弧焊、气体保护焊和激光焊等。

在焊接过程中,需要注意保护气氛和控制焊接温度,以确保焊接质量。

3. 粉末冶金:将钛合金粉末制成复杂形状的零件。

这种方法可以实现高精度、高效率的生产,适用于批量生产钛合金零件。

4. 热等静压:将钛合金粉末经过高温和高压的作用,使其烧结成密实的零件。

这种方法可以得到高致密度、高强度的钛合金零件。

5. 化学加工:例如化学刻蚀、电解抛光和化学蚀刻等方法,用于对钛合金零件进行表面清洁和加工处理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

航空航天钛合金零件的铣削加工来源:作者: 江苏泰州市德基数控机床技术部发表于:2008-11-7 已阅读131次在许多航空航天应用中,钛及其合金正在取代传统的铝合金。

如今,航空航天业消耗的钛材料约占全球生产总量的42%,并且从现在到2010年,预计对钛材料的需求将继续以两位数的速度增长。

新一代飞机需要充分利用钛合金提供的性能,无论是商用机还是军用机市场,都正在推动对钛合金的需求。

波音787、空客A380、F-22猛禽战斗机、F-35联合攻击战斗机(也称为闪电Ⅱ)等新机型都采用了大量钛合金材料。

钛合金材料的优势钛合金具有高强度、高断裂韧性以及良好的抗腐蚀性和可焊接性。

随着飞机机身越来越多地采用复合材料结构,钛基材料用于机身的比例也将日益增大,因为钛与复合材料的结合性能远远优于铝合金。

例如:与铝合金相比,钛合金可使机身结构的寿命提高60%。

钛合金极高的强度/密度比(达20∶1,即重量可减轻20%)为减轻大型构件的重量(这是对飞机设计师的主要挑战)提供了解决方案。

此外,钛合金固有的高耐蚀性(与钢材相比)可以节省飞机日常运行和维护保养的成本。

需要更大加工能力由于比普通合金钢的加工更为困难,因此通常认为钛合金属于难加工材料。

典型钛合金的金属去除率仅为大多数普通钢或不锈钢的25%左右,因此加工一个钛合金工件需要花费的时间约为加工钢件的4倍。

为了满足航空制造业对钛合金加工日益增长的需求,制造商需要增加生产能力,因此需要更好地理解钛合金加工策略的有效性。

典型的钛合金工件的加工是从锻造开始的,直到80%的材料被去除而获得最终的工件外形。

随着航空零部件市场的快速增长,制造商们已经感到力不从心,加上因钛合金工件加工效率较低而增加的加工需求,导致钛合金加工能力明显处于紧张状态。

一些航空制造业的领军企业甚至公开质疑现有的机械加工能力能否完成全部新型钛合金工件的加工任务。

由于这些工件通常是由新型合金制成,因此需要改变加工方式和刀具材料。

钛合金Ti-6Al-4V钛合金有三种不同的结构形式:α钛合金、α-β钛合金和β钛合金。

商用纯钛和α钛合金不能进行热处理,但通常具有良好的可焊接性;α-β钛合金可进行热处理,大多数也具有可焊接性;β和准β钛合金完全能进行热处理,且一般也具有可焊接性。

用于涡轮发动机和机身构件的大部分普通α-β钛合金为Ti-6Al-4V(Allvac Ti-6-4,简称Ti-6-4),本文用Ti-6-4代表ATI Allvac公司生产的钛合金,该公司是钛合金的主要供应商(最近与波音公司签订了一项25亿美元的钛合金长期供货合同)。

另外,与ATI Allvac公司合作开发加工解决方案的ATI Stellram公司也采用这些钛合金代号来描述加工要求。

Ti-6-4具有优异的强度、断裂韧性和抗疲劳综合性能,可制成各种产品形态。

退火态的Ti-6-4可广泛应用于结构件。

通过化学成分的微小变化以及不同的热机械处理工艺,用Ti-6-4可生产出各种不同用途的零部件。

钛合金Ti-5Al-5V-5Mo-3CrTi-5Al-5V-5Mo-3Cr(简称Ti-5-5-5-3)是一种颇具市场影响力的新型钛合金。

与β钛合金和α-β钛合金相比,这种准β钛合金可以提供在要求更高抗张强度的飞机构件应用中所需的疲劳断裂韧性。

与传统钛合金(如Ti-6-4和Ti-10-2-3)相比,Ti-5-5-5-3具有的可锻造成复杂形状、热处理后最终抗张强度可达180ksi(每平方英寸数千磅)等性能使其成为制造飞机高级构件和起落装置最有前途的材料。

通过在β转变温度以下进行溶解热处理或在β转变温度以上进行退火处理,同时适当控制显微结构中的晶粒尺寸和沉淀,Ti-5-5-5-3可获得优异的机械性能。

β转变温度是合成物的特定温度,在此温度下合金从α-β显微结构转变为全β显微结构。

化学性能与微观结构的变化使钛合金可获得宽范围的性能组合,并因此在航空构件中获得广泛应用。

Ti-5-5-5-3的加工难度与Ti-6-4相比大约增加了30%,因此应用这种新型合金的零件制造商正致力于开发能够不缩短刀具寿命、不延长生产周期的相应的加工工艺。

加工钛合金时,材料硬度是一个关键因素。

如果硬度值太低(<38HRC,钛合金会发粘,切削刃容易产生积屑瘤。

而硬度值较高(>38HRC)的钛合金会对刀具材料产生磨蚀作用并使切削刃磨损。

因此,正确选择加工速度、进给量和切削刀具至关重要。

对切削刀具的要求为了满足生产成本、加工质量和按期交货等方面的要求,新的工件材料和零件设计给航空零部件制造商增加了压力。

这些新材料的加工改变了对切削刀具的要求,提高金属去除率、刀具寿命、产品质量和可预期的刀具无破损寿命对于高效、安全的加工至关重要。

“难加工”是一个相对的概念,通过切削刀具与加工参数的正确组合,也能获得高效的生产率。

在加工航空级钛合金工件时,切削刀具制造商通过增加基体密度、设计特殊的刀具几何形状、采用精确的切削刃研磨技术以及开发新的涂层技术以控制刀—工界面产生的切削热等方法,大大提高了刀具的性能。

在铣削加工中,钛合金的一个重要特性就是热传导性极差。

由于钛合金材料的高强度和低热传导率,加工时会产生极高的切削热(如果不加控制可高达1200℃)。

热量不是随切屑排出或被工件吸收,而是聚集在切削刃上,如此高的热量将大大缩短刀具寿命。

采用特殊的加工技术,就有可能提高刀具性能与寿命(采用正确的加工技术控制温度,可将温度降低到250~300℃)。

减少热量生成减小刀具与工件的径向和轴向接合可以控制切削热的产生。

对于钛合金而言,在因过热而产生积屑瘤之前,对速度、进给量、径向和轴向接合的调整期限很短。

为了达到适当的刀具寿命,加工钛合金只需最大15%的“接合弧长”,与之相比,加工普通钢材时接合弧长为50%~100%。

减少接触弧长可以提高切削速度,在不损失刀具寿命的前提下提高金属切除率。

采用切入角为45°的刀具或减薄切屑,可增加刀具切削刃与切屑的接触长度,从而减少局部高温,延长切削刃寿命,同时也允许采用更高的切削速度。

刀片几何尺寸设计切削钛合金时,采用外周磨削刀片对于最大限度地减小切削压力以及与被加工表面的摩擦力至关重要。

刀片几何角度必须采用正角,但这还不足以确保获得最佳性能。

如果为了增强切削刃的第一部分而采用强度较高的小初始角,那么采用较大的次级角(以获得较大的正倒棱)对于增强刀片抗压性和延长刀具寿命是最佳的几何设计。

此外,轻微的钝化也有助于保护切削刃,但钝化尺寸必须与切削过程相协调并保持严格的公差。

加工钛合金时,需要利用锋利的切削刃剪切材料,但切削刃过于锋利容易导致崩刃而缩短刀具寿命。

适当的钝化可保护切削刃,避免过早崩刃。

正确的刀片几何参数可减小对刀具材料的应力和压力,使刀具获得更长的寿命和提高加工效率。

刀体和刀片的切削角必须是正角,以获得累进切削效应,并避免切削时对整个切削刃产生冲击而无法获得期望的剪切效果。

如果不这样做,工件结构可能会发生变形,使加工无法进行。

凹腔铣削与螺旋插补铣削在进行凹腔铣削和螺旋插补铣削时,必须使用内冷却刀具,如果可能的话,应采用恒定压力的冷却液,这对于深凹腔或深孔加工尤其重要。

加工深凹腔时,采用带模块式切削头的高密度硬质合金加长刀具可以提高刚性和减小挠曲变形,获得最佳加工效果。

冷却液的功能是将切屑从切削区清除,避免可能造成刀具早期失效的二次切削。

同时,冷却液还有助于降低切削刃的温度,减少工件几何变形,延长刀具寿命。

用铣刀进行螺旋插补铣孔可减少刀库中其它刀具(如钻头等)的使用,采用一种直径的铣刀即可加工出不同尺寸的孔径。

随着钛合金在航空航天工业的应用不断增长,支持高效加工钛合金的切削技术也在不断发展。

由于对钛合金零件加工能力的大量需求,那些采用最有效加工技术的车间或制造商将首先受益。

内部整合产生新的解决方案Allegheny Technologies公司是一家多领域制造商,旗下业务部门既包括金属冶炼又包括金属切削,这两个领域的结合使该公司在开发先进材料(如钛合金)加工新方法方面具有优势。

ATI Stellram公司是Allegheny Technologies旗下ATI Metalworking Products公司的一个业务部门,它负责对由ATI Allvac公司开发的所有新材料进行加工性能试验,以确定最佳的刀片设计、刀具几何结构、基体与涂层结构以及切削参数,使这些新材料在公开上市销售之前能对其进行经济有效地加工。

此外,作为Allvac的代表,Stellram是主要的航空制造企业和一流的航空机械零部件供应商,可以满足对工件材料和切削刀具两方面的共同需求。

对材料固有结构的全面认识使ATI Stellram公司在刀具基体独特配方的设计上具有优势,其成果之一是X-Grade技术,ATI Stellram称,该技术已被证明是加工难加工材料的一种可靠方案。

通过研究和开发X-Grade技术,产生了一种新的硬质合金牌号,它可在不稳定的加工条件下以极高的金属去除率有效切削难加工材料。

X-Grade刀片技术(基体及涂层)X-Grade刀片采用了钌/钴合金基体,可以抵抗热裂纹的产生和扩展,并可获得较高的金属去除率。

该基体具有较强的晶体结合矩阵结构,从而改善了切削刃的韧性。

据ATI Stellram称,该基体材料与新的刀具几何形状和涂层相结合,可为加工航空合金提供卓越的刀具组合。

采用X-Grade刀片可以实现:①金属去除率提高1倍;②刀具寿命增至3倍;③加工表面光洁度提高30%。

可供选用的X-Grade刀片包括3种牌号(X400、X500和X700),每一种刀片都是针对特定的难切削加工而设计的。

它们可采用标准的刀片型式,大多可安装在标准刀体的刀片槽内。

但ATI Stellram 称,最佳方案是采用专门设计的刀具以优化X-Grade刀片的性能。

这些刀具的刀槽设计可实现最大限度的排屑、强化的槽型和最佳的冷却。

该系列的两种刀具包括:①7710VR防转钮扣铣刀:配圆刀片并带有防止刀片在大进给率切削时发生位移的专利锁紧转位系统;②7792VX高进给铣刀:与传统刀具相比,金属去除率可提高1倍。

除高进给表面铣削外,7792VX系列刀具还可用于铣凹腔、铣槽和插铣,由于切削力直接沿轴向传入主轴,因此可减小主轴摩擦,提高切削稳定性。

航空钛合金零件加工案例研究以下是采用ATI Stellram刀具和X-Grade刀片加工航空钛合金零件的两个实例。

(1)加工实例1被加工零件:钛合金外覆盖件(军用)工件材料:Ti-6Al-4V(Allvac Ti-6-4合金)工件尺寸:110"×18"加工描述:采用配XDLT-D41可转位刀片的ATI Stellram 7792VX高进给铣刀进行加工,粗铣加工的刀具寿命达到156分钟。

相关文档
最新文档