(完整版)资料分析计算公式整理
资料分析公式汇总

资料分析公式汇总在现代化的信息时代,各行各业都需要对大量数据进行分析和处理。
而对于数据的分析,公式是必不可少的工具。
在这里,我们将分享一些常用的资料分析公式,帮助你更好地理解和应用它们。
1. 平均数平均数是最常见的资料分析公式之一。
它是指将一组数的总和除以这组数的个数,用数学符号表示为:$$\bar{x} = \frac{\sum\limits_{i=1}^n{x_i}}{n}$$其中,$\bar{x}$代表平均数,$x_i$代表数据集中的每个数字,$n$代表数据集的大小。
2. 中位数中位数是将一组数排序后位于中间的数字。
如果数的个数为偶数,则把中间两个数字的平均数作为中位数。
中位数用数学符号表示为:$$\begin{cases}x_{\frac{n+1}{2}} & \text{n为奇数} \\\frac{x_{\frac{n}{2}}+x_{\frac{n}{2}+1}}{2} & \text{n为偶数} \end{cases}$$其中,$x_{\frac{n+1}{2}}$代表第$\frac{n+1}{2}$个数字,$x_{\frac{n}{2}}$和$x_{\frac{n}{2}+1}$代表第$\frac{n}{2}$和第$\frac{n}{2}+1$个数字。
3. 众数众数是一组数中出现次数最多的数字。
如果一组数中有多个数出现次数相同,则它们都是众数。
4. 方差方差衡量的是一组数与其平均数之间的差异程度。
它的数学公式为:$$\sigma^2=\frac{\sum\limits_{i=1}^n(x_i-\bar{x})^2}{n}$$其中,$\sigma^2$代表方差,$x_i$代表数据集中的每个数字,$\bar{x}$代表平均数,$n$代表数据集的大小。
5. 标准差标准差是方差的平方根,用来衡量数据集的离散程度。
标准差的公式为:$$\sigma=\sqrt{\frac{\sum\limits_{i=1}^n(x_i-\bar{x})^2}{n}}$$其中,$\sigma$代表标准差,$x_i$代表数据集中的每个数字,$\bar{x}$代表平均数,$n$代表数据集的大小。
(完整版)资料分析计算公式

资料分析计算公式
基本概念:
基期:统计中计算指数或变化情况等动态指标时,作为参照标准的时期。
(参照物)现期:相对基期而言,是与基期相比较的后一时期。
同比增长:与上一年同一时期相比的增长情况。
环比增长:与之紧紧相邻的上一个统计周期相比较的增长情况。
贸易顺差与贸易逆差
贸易顺差:进口额< 出口额
贸易顺差= 出口额—进口额
贸易逆差:进口额> 出口额
贸易逆差= 进口额—出口额
年均增长率、年均增长量:
现期量= 基期量()N
⨯,其中n为相差年数;
+
1年均增长率
年均增长量= ()n÷
现期量,其中n为相差年数;
-基期量。
资料分析必背公式及解题方法

资料分析必背公式及解题方法资料分析作为行测的最后一个模块,拿分率是非常高的。
要想提高做题效率,就需要熟练运用基本公式和解题技巧。
下面针对高频考点,给大家整理常见公式:一、基期与现期1.基期量=现期量-增长量=现期量/(1+r),当|r|≤5%,可化除为乘,现期量/(1+r)≈现期量×(1-r)2.现期量=基期量+增长量=基期量×(1+r)常见考法:基期量或现期量计算,基期量、现期量和差计算及大小比较。
基期比较:①当现期相差比较大,直接看量级;②现期相差不大,给出了现期和增长率,直接截位直除(根据选项差距来判断截取几位)。
二、增长量1.增长量=现期量-基期量(选项与材料精确度一样且尾数不同,可用尾数法;选项差距较大,首位法或者截位相加减)2.增长量=现期量×增长率/(1+增长率)(常用特殊分数法,增长率为正,用n+1;增长率为负,用n-1)3.年(月)均增长量=(末期-初期)/年(月)份差常见考法:增长量的计算及大小比较。
增长量比较口诀:“大大则大”,即当现期和增长率都大时,增长量也大。
“一大一小”,主要看现期×增长率。
三、增长率r =(现期量-基期量)/基期量=增长量/基期量=现期量/基期量-1=增长量/(现期量-增长量)常见考法:增长率计算及大小比较增长率比较:①直接用现期量/基期量进行比较;②当基期量相差不大时,直接比较增长量大小;③分数比较(主要方法:首位法、截位直除、差分法)特殊增长率1.混合增长率:混合增长率介于部分增长率之间,且偏向基期较大的一方(用于判断大小范围);用线段法或十字交叉法估算具体数值。
2.间隔增长率:r=r1+r2+r1r2。
3.年均增长率:(1+年均增速)^n=末期/基期,n为年份差,计算时长代入10%、20%等中间值来判断年均增速的范围,进而确定选项。
r=n√(末期/基期)-1≈(末期/基期-1)/n (适用于r<10%)四、比重1.比重=部分量/整体量,部分量=整体量×比重,整体量=部分量/比重2.现期比重=B/A (B为部分量,A为整体量)3.基期比重=B/A×(1+a)/(1+b)(B为部分量,b为部分量增速,A为整体量,a为整体量增速)4.两期比重差=B/A×(b-a)/(1+b)常见考法:比重计算和比较;两期比重判断:部分量增速大于整体量增速,比重上升;部分量增速小于整体量增速,比重下降。
资料分析计算公式整理

资料分析计算公式整理在进行资料分析时,掌握一些关键的计算公式是至关重要的。
这些公式能够帮助我们快速、准确地从大量的数据中提取有价值的信息,做出合理的判断和决策。
下面,我将为大家整理一些常见且实用的资料分析计算公式。
一、增长率相关公式1、增长率=(现期量基期量)÷基期量× 100%这是最基本的增长率计算公式。
例如,某公司去年的销售额为 100 万元,今年为 120 万元,那么今年的销售额增长率为(120 100)÷ 100 × 100% = 20%。
2、间隔增长率= r1 + r2 + r1×r2当涉及到间隔年份的增长率计算时,就需要用到这个公式。
假设第一年的增长率为 r1,第二年的增长率为 r2,那么从第一年到第二年的间隔增长率就是 r1 + r2 + r1×r2。
3、年均增长率=\(\sqrtn{\frac{现期量}{基期量}} 1 \)(n 为年份差)如果要计算一段时间内的平均增长率,就用这个公式。
比如,某地区 2010 年的 GDP 为 100 亿元,2020 年为 200 亿元,年份差为 10 年,那么年均增长率=\(\sqrt10{\frac{200}{100}} 1 \)。
1、比重=部分量÷整体量× 100%比如,某班级共有 50 名学生,其中男生 25 人,那么男生在班级中的比重就是 25÷50× 100% = 50%。
2、整体量=部分量÷比重已知部分量和比重,求整体量时使用。
假设某企业某产品的销售额占总销售额的 30%,该产品销售额为 100 万元,那么企业总销售额=100÷30% 。
3、部分量=整体量×比重当已知整体量和比重,求部分量时运用。
比如一个城市总人口为100 万人,其中老年人占比 20%,那么老年人的数量= 100×20% = 20 万人。
资料分析计算公式整理

资料分析计算公式整理在资料分析的过程中,计算公式的整理是非常重要的一步。
通过对数据的系统整理、统计和运算,可以得到准确的结果,进而为决策提供支持。
在这篇文章中,我将介绍一些常用的资料分析计算公式,并给出示例,以便读者更好地理解和应用。
一、平均值计算平均值是资料分析中最基本的计算方式之一,它可以帮助我们了解数据的集中趋势。
在进行平均值计算时,需要先将所有观测值相加,再除以观测值的个数。
示例:假设我们有一组数据:10, 12, 15, 18, 20那么平均值的计算公式为:(10 + 12 + 15 + 18 + 20) / 5 = 75 / 5 = 15二、中位数计算中位数是将一组数据按照大小顺序排列后,处于中间位置的观测值。
它对数据的极值不敏感,可以较好地反映数据的集中趋势。
示例:假设我们有一组数据:10, 12, 15, 18, 20首先将数据从小到大排列:10, 12, 15, 18, 20中位数即为中间位置的观测值,即15。
三、标准差计算标准差是度量数据离散程度的一种指标,它可以帮助我们判断一组数据是否分散或集中。
标准差的计算公式包括多个步骤,首先需要计算出各观测值与平均数的差值,然后求其平方,并对所有平方结果求和,最后将和值除以观测值的个数再开方。
示例:假设我们有一组数据:10, 12, 15, 18, 20首先计算平均值:(10 + 12 + 15 + 18 + 20) / 5 = 75 / 5 = 15然后计算差值的平方并求和:(10-15)^2 + (12-15)^2 + (15-15)^2 + (18-15)^2 + (20-15)^2 = 25 + 9 + 0 + 9 + 25 = 68最后将和值除以观测值的个数再开方:√(68/5) ≈ 3.28四、相关系数计算相关系数可以衡量两组变量之间的线性关系强弱。
它的取值范围在-1到1之间,接近-1表示强负相关,接近1表示强正相关,接近0表示无相关。
资料分析常用公式

资料分析常用公式1. 平均数公式平均数(Mean)是表示一组数据集中趋势的量数,计算公式为:$$\text{平均数} = \frac{\sum_{i=1}^{n} x_i}{n}$$其中,$ x_i $ 表示第 $ i $ 个数据,$ n $ 表示数据总数。
平均数适用于描述一组数据的总体水平,常用于市场调研、人口统计等领域。
2. 中位数公式中位数(Median)是将一组数据按大小顺序排列后位于中间位置的数,计算公式为:$$\text{中位数} =\begin{cases}\frac{x_{\frac{n+1}{2}} + x_{\frac{n}{2}}}{2} & \text{当 } n \text{ 为偶数时} \\x_{\frac{n+1}{2}} & \text{当 } n \text{ 为奇数时}\end{cases}$$其中,$ x_i $ 表示第 $ i $ 个数据,$ n $ 表示数据总数。
中位数适用于描述一组数据的中间水平,常用于描述收入、房价等分布不均的数据。
3. 标准差公式标准差(Standard Deviation)是衡量一组数据离散程度的量数,计算公式为:$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (x_i \mu)^2}{n}}$$其中,$ x_i $ 表示第 $ i $ 个数据,$ \mu $ 表示平均数,$ n $ 表示数据总数。
标准差适用于描述一组数据的波动程度,常用于质量控制、风险评估等领域。
4. 相关系数公式相关系数(Correlation Coefficient)用于衡量两个变量之间的线性关系程度,计算公式为:$$r = \frac{\sum_{i=1}^{n} (x_i \bar{x})(y_i\bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i \bar{x})^2}\sqrt{\sum_{i=1}^{n} (y_i \bar{y})^2}}$$其中,$ x_i $ 和 $ y_i $ 分别表示两个变量中的第 $ i $ 个数据,$ \bar{x} $ 和 $ \bar{y} $ 分别表示两个变量的平均数,$ n $ 表示数据总数。
行测资料分析计算公式汇总

行测资料分析计算公式汇总在行政执法和管理中,数据分析和计算是至关重要的技能。
无论是分析调查数据、评估趋势,还是进行预测和制定决策,都需要使用一些基本的公式和方法。
本文将汇总一些常用的行测资料分析计算公式,帮助你更好地理解和应用。
1. 平均值计算公式(Mean)平均值是一组数据的总和除以数据的个数,用于描述一组数据的集中趋势。
计算公式如下:平均值=总和/数据个数2. 中位数计算公式(Median)中位数是将一组数据按大小顺序排列后位于中间位置的数值,用于描述一组数据的中间值。
计算公式如下:中位数=(第(n+1)/2)个数据(当n为奇数)中位数=(第n/2)个数据与(第(n/2)+1)个数据的平均值(当n为偶数)3. 众数计算公式(Mode)众数是一组数据中出现次数最多的数值,用于描述一组数据中的典型值。
计算公式如下:众数=出现次数最多的数值4. 方差计算公式(Variance)方差用于描述一组数据的离散程度,反映数据分散性。
计算公式如下:方差=(∑(数据-平均值)^2)/n5. 标准差计算公式(Standard Deviation)标准差是方差的平方根,用于度量一组数据的波动程度。
计算公式如下:标准差=√方差6. 百分位数计算公式(Percentile)百分位数表示一组数据中有多少比例的数据小于或等于一些特定的值。
计算公式如下:第p百分位数=(p/100)*n7. 相关系数计算公式(Correlation Coefficient)相关系数用于衡量两个变量之间的相关性,取值范围为-1到1、计算公式如下:相关系数=Σ((x-平均值(x))*(y-平均值(y)))/(√(Σ(x-平均值(x))^2)*√(Σ(y-平均值(y))^2))8. 回归分析计算公式(Linear Regression)回归分析用于建立一个变量与另一个或多个变量之间的关系模型。
计算公式如下:Y=a+bX其中,Y是因变量,X是自变量,a是截距,b是斜率。
资料分析相关公式汇总

增长量相关1. 基期量已知现期量、增长率,基本公式:基期量=现期量/(1+增长率)。
已知现期量、增长量,基本公式:基期量=现期量-增长量。
2. 增长率已知基期量、增长量。
基本公式:增长率=增长量/基期量。
已知现期量、基期量。
基本公式: 增长率=(现期量-基期量)/基期量。
已知现期量、增长量。
基本公式:增长率=增长量/(现期量-基期量)。
3. 隔年增长率已知现期与间期的增长率,那么现期相对于基期的增长率为:隔年增长率=现期增长率+间期增长率+现期增长率*间期增长率。
比重相关1. 现期比重已知部分值、整体值,求比重。
基本公式:比重=部分值/整体值已知整体值、比重,求部分值。
基本公式:部分值=整体值*比重已知部分值、比重,求整体值。
基本公式:整体值=部分值/比重2. 基期比重部分值的现期量A,部分值的现期增长率q A,整体值的现期量B,整体值的现期增长率q B,则基期比重为:3. 比重变化分子部分所对应的增长速度>分母部分所对应的增长速度,则现期比重>基期比重,即比重值上升。
反之,平均数与倍数1. 平均数已知总体值、份数,求平均数。
基本公式:平均数=总数/份数2. 年均增长量已知末期值、初期値与年份差,求年均增长量。
基本公式:年均增长量=(末期量-初期量)/年份差3. 年均增长率已知末期值、初期值与年份差,求年均增长率。
基本公式:末期值=初期值×(1+年均增长率)N资料分析公式非常多,往往求解一个量就会有三四个公式,这时候就要求考生先看材料给了哪些数据,根据所给出的数据来决定用哪个公式,比如求解增长率的时候,给出增长量、基期值所用的公式和给出增长量、现期值所用的公式是不一样的,求解基期比重的时候,给出现期值、增长量和给出现期值、增长率所用的公式也是不一样的。
这里就要求各位考生熟悉掌握每一个公式和提前阅读材料。
大家如果记住了上面的公式,加上一些思维技巧,速度会很快提上来,就会做到事半功倍。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(18)混合增长率:整体为A,增长率为rA,分为两个部分B和C,增长率为rB和rC
则rA介于rB和rC之间
混合增长率大小居中
增长率比较
(19)已知今年量与增长量
比较 代替增长率进行大小比较
相当于分数大小比较,同上述做法
发展速度
(1)特殊分数法,当x%可以被视为 时,公式可被化简为: ;
(2)估算法(倍数估算)或分数的近似计算(看大则大,看小则小)
(11)如果去年量为A,经N期变为B,平均增长量为x
直除法
增长量比较
(12)已知今年量与增长率x%
(1)特殊分数法,当x%可以被视为 时,公式可被化简为:
(2)公式可变换为: ,其中 为增函数,所以今年量大,增长率大的情况下,增长量一定大(大大则大)。
增长率计算
(13)已知去年量与增长量
(1)截位直除法
(2)插值法
(14)已知今年量与去年量
截位直除法
(15)如果去年量为A,经N期变为B,平均增长率为x%
代入法或公式法
(16)两期混合增长率:如果第二期与第三期增长率分别为 ,那么第三期相对第一期增长率
简单记忆口诀:连续增长,最终增长大于增长率之和;连续下降,最终下降小于增长率之和
一般先计算 ,然后根据a和b的大小判断大小
(25)某部分今年量为A增长率a%,整体今年量B,增长率b%
一般先计算 ,然后根据a和b的大小判断大小
(26)去年比重-今年比重:某部分今年量为A增长率a%,整体今年量B,增长率b%
两期比重差值计算:
(1)先根据a与b的大小判断差值计算结果是正数还是负数;
(2)答案小于丨a-b丨
(3)估算法,整体今年量为B
相当于分数大小比较,同上述做法
(28)去年比重与今年比重比较:某部分今年量为A,增长率a%,整体今年量为B,增长率b%
当部分增长率大于整体增长率,则今年比重大于去年比重。(方法为“看”增长率)
平均数计算
(29)已知N个量的值,求平均数
(20)已知今年量与去年量
(1)截位直除法
(2)插值法
增长贡献率
(21)已知部分增长量与整体增长量
(1)截位直除法
(2)插值法
拉动增长
(22)如果B是A的一部分,B拉动A增长x%
(1)截位直除法
(2)插值法
比重计算
(23)某部分今年量为A,整体今年量为B
(1)截位直除法
(2)插值法
(24)某部分去年量为A,增长率a%,整体去年量为B,增长率b%
分数大小比较:
(1)直除法(首位判断或差量比较)
(2)化同法,差分法或其它
今年量计算
(5)已知去年量,增长率x%
特殊分数法,估算法
(6)已知去年量,相对去年量增加M倍
估算法
(7)已知去年量,增长量N
尾数法,估算法
增长量计算
(8)已知去年量与今年量
尾数法
(9)已知去年量与增长率x%
特殊分数法
(10)已知今年量与增长率x%
资料分析计算公式整理
去年量计算
(1)已知今年量,增长率x%
截位直除法,特殊分数法
(2)已知今年量,相对去年量增加M倍
截位直除法
(3)已知今年量,相对去年量的增长量N
尾数法,估算法
去年量比较
(4)已知今年量,增长率x%
比较:
(1)截位直除法(2)如果今年量差距较大,增长率相差不大,可直接比较今年量。
(3)化同法
凑整法
直接读数类
(30)方法:读题做标记,辅助工具(直尺)
综合分析题
(31)四项基本原则:题干短原则,不计算原则(时间与材料时间一致),信息易得原则,简单计算原则