深圳大学物理化学实验报告--实验一 恒温水浴的组装及其性能测试--赖凯涛、张志诚示范文本

合集下载

恒温水浴的组装及其性能测试

恒温水浴的组装及其性能测试

恒温水浴的组装及其性能测试恒温水浴的组装及其性能测试实验者:陈小辉周进苏竹谢佳澎恒温水浴的组装及其性能测试实验目的2升大烧杯贝克曼温度计100℃温度计加热器水银接触温度计继电器磁力搅拌器调压变压器恒温水浴的组装及其性能测试实验者周进陈小辉实验时间2000.5.15室温℃22.6大气压Pa101.610.6100.620 0.615 0.582 0.532 0.490 0.440 0.385 0.332 0.280 0.218 20.575 0.765 0.620 0.680 0.650 0.550 0.735 0.605 0.741 0.658 0.520 0.705 30.620 0.545 0.610 0.5520.5900.5000.5850.4950.555答: 影响灵敏度的因素与所采用的工作介质、感温元件、搅拌速度、加热器功率大小、继电器的物理性能等均有关系。

答: 要提高恒温浴的灵敏度,就要针对影响因素的精密度。

实验讨论在本实验中,加热器加热时温度升高的很快,所以在读数时我们要做到快和准,否则数据误差会很大。

TOP恒温水浴的组装及其性能测试实验目的2升大烧杯贝克曼温度计100℃温度计加热器水银接触温度计继电器磁力搅拌器调压变压器恒温水浴的组装及其性能测试实验者周进陈小辉实验时间2000.5.15室温℃22.6大气压Pa101.610.6100.4100.6200.6150.5820.5320.4900.4400.3850.3320.2800.21820.5750.7650.6200.6800.6500.5500.7350.6050.7410.6580.5200.70530.6200.5450.6100.5520.5050.5900.5000.5850.4950.555答: 影响灵敏度的因素与所采用的工作介质、感温元件、搅拌速度、加热器功率大小、继电器的物理性能等均有关系。

答: 要提高恒温浴的灵敏度,就要针对影响因素的精密度。

一恒温水浴的装配和性能测试

一恒温水浴的装配和性能测试

实验一恒温水浴的装配和性能测试一、实验目的1.了解恒温槽的构造及恒温原理,初步掌握其装配和调试的基本技术。

2.绘制恒温槽灵敏度曲线(温度-时间曲线),学会分析恒温槽的性能。

3.掌握贝克曼温度计、接触温度计和继电器的基本测量原理和使用方法。

二、实验原理在科学研究及物理化学等实验中所测的数据,如折射率、粘度、蒸气压、表面张力、电导、化学反应速率常数等等都与温度有关,因此在生产和科学实验中,经常要求在恒温及温度稳定的情况下进行,这就需要用各种恒温设备。

通常用恒温槽来控制温度维持恒温,以保证温度保持相对稳定,即在一定范围内波动。

一般使用的恒温槽波动范围约在±0.1℃左右,若加以改进,可达到±0.001℃。

要使恒温设备维持在高于室温的某一温度,就必须不断补充一定的热量,使由于散热等原因所引起的热损失得到补偿。

恒温槽是物理化学实验室中常用设备之一。

恒温槽之所以能恒温,主要是依靠恒温控制器来控制恒温槽的热平衡。

当恒温槽因对外散热而使水温降低时,恒温控制器就驱使恒温槽内的加热器工作,待加热到所需温度时,它又使其停止加热,这样就使槽温保持恒定。

恒温槽装置是多种多样的,但它们大都包括敏感元件(或称感温元件)、控制元件、加热元件三部分。

由敏感元件将温度转化为电信号(或其它信号)而输送给控制元件,再由控制元件发出指令,让加热元件工作或停止。

系统浸入恒温槽中,通过对恒温槽温度的调节,可保持系统控制在某一恒定温度。

恒温槽中的液体介质可根据温度控制的范围而异,一般来说,可采用以下液体介质:-60℃~30℃用乙醇或乙醇水溶液;0℃~90℃用水;80℃~160℃用甘油或甘油水溶液;70℃~200℃用液体石蜡、汽缸润滑油、硅油。

比较常用的是恒温水浴,其装置见图1-1。

图1-1 恒温槽的装置示意图1.浴槽;2.加热器;3.搅拌器;4.温度计;5.感温元件(接触温度计);6.温度控制器;7.贝克曼温度计。

恒温槽是由浴槽、接触温度计、温度控制器、加热器、搅拌器和温度计组成,具体装置示意图见图1-1。

恒温水浴的组装及其性能测试

恒温水浴的组装及其性能测试

恒温水浴的组装及其性能测试一、实验目的1、了解恒温槽的构造及其工作原理,学会恒温水浴的装配技术。

2、测绘恒温水浴的灵敏度曲线。

3、掌握贝克曼温度计的调节技术和正确使用方法。

二、实验原理本实验采用测定恒温水浴灵敏度的方法。

即在设定温度下,观察温度随时间变动情况,采用精密度较高的贝克曼温度计记录温度作为纵坐标,同时记录时间为横坐标,再绘制灵敏度曲线,常以是测的波动最高温度值T与最低温度值T′之差的一半数值来表示其灵敏度。

即:S=±(T-T′)/2 。

普通恒温水浴的结构是由浴槽、温度计、搅拌器、加热器、贝克曼温度计和继电器等部分组成。

其工作原理简述如下:1、浴槽浴槽包括容器和液体介质。

容器通常有金属槽和玻璃槽两种,槽的容量及形状视需要而定。

一般情况下如果要求设定的温度与室温相差不太大,通常可用圆形玻璃缸作为容器。

如果设定的温度与室温相差较大,则应对整个槽体保温,以减小热量传递速度,提高恒温精度。

槽内盛有为热容较大的液体作为工作物质,一般所需恒定温度1—100℃之间时,多采用蒸馏水;所需恒定温度在100℃以上时,常采用石蜡油、甘油、硅油等。

2、温度计观察恒温浴的温度可选用分度值为0.1℃的水银温度计,温度计的安装位置应尽量靠近被测系统。

所用的水银温度计读数都应加以校正。

水银温度汁的校正请参阅技术第一章第三节。

3、搅拌器搅拌器以小型电动机带动,用变速器或变压器来调节搅拌速度。

搅拌器一般应安装在加热器附近,使热量迅速传递,以使槽内各部位温度均匀。

4、加热器在要求设定温度比室温高的情况下,必须不断供给热量以补偿水浴向环境散失的热量。

电加热器的选择原则是热容量小、导热性能好、功率适当。

若设定温度与室温相差较大时,则应选用较大功率或采用两组加热器。

5、接触温度计接触温度计又称导电表,水银球上部焊有金属丝,温度计上半部分有另一金属丝,两者通过引出线接到继电器的信号反馈端。

同时,从温度计调节指示螺母在标尺上的位置可以估读出大致的控温设定温度值。

深圳大学物理化学实验报告--实验一 恒温水浴的组装及其性能测试--赖凯涛.张志诚

深圳大学物理化学实验报告--实验一 恒温水浴的组装及其性能测试--赖凯涛.张志诚

深圳大学物理化学实验报告--实验一恒温水浴的组装及其性能测试--赖凯涛.张志诚深圳大学物理化学实验报告实验者: 赖凯涛、张志诚实验时间: 2000/4/3气温: 21.6 ℃ 大气压: 101.2 kpa实验一恒温水浴的组装及其性能测试3.1 实验器材,将水银开关、搅拌器等安装固定。

按电路图接线并检查。

3.2 大烧杯中注入蒸馏水。

调节水银开关至30℃左右,随即旋紧锁定螺丝。

调调压变压器至220v,开动搅拌器(中速),接通继电器电源和加热电源,此时继电器白灯亮,说明烧杯中的水温尚未达到预设的30℃。

一段时间后,白灯熄灭,说明水温已达30℃,继电器自动切断了加热电源。

4 实验数据及其处理表1 不同状态下恒温水浴的温度变化,℃图1 不同状态下恒温水浴的灵敏度曲线5.1影响灵敏度的因素与所采用的工作介质、感温元件、搅拌速度、加热器功率大小、继电器的物理性能等均有关系。

如果加热器功率过大或过低,就不易控制水浴的温度,使得其温度在所设定的温度上下波动较大,其灵敏度就低;如果搅拌速度时高时低或一直均过低,则恒温水浴的温度在所设定的温度上下波动幅度就大,所测灵敏度就低。

若贝克曼温度计精密度较低,在不同时间记下的温度变化值相差就大,即水浴温度在所设定温度下波动大,其灵敏度也就低;同样地,接触温度计的感温效果较差,在高于所设定的温度时,加热器还不停止加热,使得浴槽温度下降慢,这样在不同的时间内记录水浴温度在所设定的温度上下波动幅度大,所测灵敏度就低。

5.2要提高恒温浴的灵敏度,应使用功率适中的加热器、精密度高的贝克曼温度计接触温度计,及水银温度计所使用搅拌器的搅拌速度要固定在一个较适中的值,同时要根据恒温范围选择适当的工作介质。

实验一恒温水浴组装及性能测试

实验一恒温水浴组装及性能测试

物理化学实验报告
实验名称:恒温水浴的组装及其性能测试
实验目的:
1、了解很温水浴的结构及其工作原理,学会恒温水浴的组装。

2、测绘恒温水浴的灵敏度曲线。

3、掌握贝克曼温度计的使用方法。

仪器与试剂:超级很温水浴1台,数字贝克曼温度计1只,水。

实验原理:
恒温槽中放有一支1/10温度计测量水温,调节温差为0.1时,温度降低0.1℃,电加热器自动打开加热到设定温度。

贝克曼温度计测恒温槽的灵敏度。

实验步骤:
1、接通电源,设置30℃恒温温度
2、调节贝克曼温度计并放之在恒温槽上。

3、温度达到设定温度时开始记录贝克曼温度计的温度,每30秒记录一次,连续记录80个数据。

4、设定温度改为35℃,重复实验。

实验原始记录:室温:28℃,大气压96632Pa
数据处理及讨论:温度——时间曲线
30℃体系的灵敏度t=±(t1-t2)/2=±0.0145 35℃体系的灵敏度t=±(t1-t2)/2=±0.0170 实验讨论:
教师评语及成绩:。

恒温水浴的组装及其性能实验报告1

恒温水浴的组装及其性能实验报告1

恒温水浴的组装及其性能实验报告姓名:学号:班级:2012级化工班指导老师:日期:2014-10-15 成绩:一、实验目的1. 了解恒温槽的构造及恒温原理,初步掌握其装配和调试的基本操作技术。

2. 绘制恒温槽的灵敏度曲线。

3. 掌握贝克曼温度计的使用方法。

二、实验原理在许多物理化学实验中,由于欲测的数据,如折射率、蒸汽压、电导、粘度、化学反应速率等都随温度而变化,因此,这些实验都必须在恒温条件下进行。

一般常用恒温槽达到热平衡条件。

当恒温槽的温度低于所需的恒定温度时,恒温控制器通过继电器的作用,使加热器工作,对恒温槽加热,待温度升高至所需的恒定温度时,加热器停止加热,从而使恒温槽的温度仅在一微小的区间内波动。

现将恒温槽各部分的设备分别介绍于下:1、浴槽通常有金属槽和玻璃槽两种,槽的容量及形状视需要而定。

槽内盛有为热容较大的液体作为工作物质,一般所需恒定温度1~100℃之间时,多采用蒸馏水;所需恒定温度在100℃以上时,常采用石蜡油,甘油等。

2、感温元件它是恒温槽的感觉中枢,其作用在于感知恒温物质的温度,并传输给温度控制仪。

它是影响恒温槽灵敏度的关键元件之一。

其种类很多,如半导体、热敏电阻等,原理为利用材料电阻对温度变化的敏感性达到控制温度的目的。

3、温度控制仪使用时需先将温度指示控制仪与加热器(必要时还需连接调压器),再将所连接的传感器探头(即感温元件)浸入恒温槽内的水中,接通电源后,调节旋钮设定加热温度。

刻度盘显示恒温槽中水的温度。

当水温低于设定的温度时,加热器加热,此时加热指示灯(绿灯)亮;而当水温达到所设定的温度时,加热器即停止加热,此时恒温指示灯(红灯)亮。

4、加热器常用的是电加热器,其功率大小可视浴槽的容量及所需恒定温度与环境温度的差值大小而定。

若采用功率可调的加热器则效果较好,在开始时,加热器的功率可大一些,以使槽内温度较快升高,当槽温接近所需温度时,再适当减小加热器的功率。

5、搅拌器一般采用功率为40W的电动搅拌器,并用变速器来调节搅拌速度,以使槽内各处温度尽可能保持相同。

实验一 恒温水浴的组装及其性能测试

实验一 恒温水浴的组装及其性能测试

实验一、恒温水浴的组装及其性能测试Ⅰ、目的要求1.了解恒温水浴的构造及其工作原理,学会恒温水浴的装配技术。

2.测绘恒温水浴的灵敏度曲线。

3.掌握贝克曼温度计的调节技术和正确使用方法。

Ⅱ、基本原理许多物理化学数据的测定,必须在恒定温度下进行。

欲控制被研究体系的某一温度,通常采取两种办法:一是利用物质的相变点温度来实现。

如液氮(-195.9℃)、冰—水(0℃)、干冰—丙酮(-78.5℃)、沸点水(100℃)、沸点萘(218.0℃)、沸点硫(444.6℃)、Na2SO4(32.38℃)等等。

这些物质处于相平衡时,温度恒定而构成一个恒温介质浴,将需要恒温的测定对象臵于该介质浴中,就可以获得一个高度稳定的恒温条件。

另一种是利用电子调节系统,对加热器或致冷器的工作状态进行自动调节,使被控对象处于设定的温度下。

本实验讨论的恒温水浴就是一种常用的控温装臵。

它通过电子继电器对加热器自动调节,来实现恒温目的。

当恒温浴因热量向外扩散等原因使体系温度低于设定值时,继电器迫使加热器工作。

到体系再次达到设定温度时,又自动停止加热。

这样周而复始,就可以使体系温度在一定范围内保持恒定。

普通恒温水浴的结构是由浴槽、温度计、搅拌器、加热器、接触温度计(或称导电表)和继电器等部分组成。

为测定其灵敏度,还包括贝克曼温度计一支。

其工作原理:Ⅲ、仪器与试剂玻璃缸一个,水银接触温度计一支,水银温度计(0—100℃)一支,搅拌器(连可调变压器)一套,加热器一支,贝克曼温度计一支,继电器一套,停表一个。

Ⅳ、实验步骤1.将蒸馏水(普通水)灌入浴槽到容积的五分之四处。

然后按图接线。

先安装加热器,再安装搅拌器、接触温度计、继电器、温度计。

2.将贝克曼温度计的水银柱调至刻度为2.5℃左右。

3.调节恒温水浴到设定温度。

假定室温为20℃,欲设定实验温度为25℃,其调节方法如下:先旋开水银接触温度计上端螺旋调节帽的锁定螺丝,再旋动磁性螺旋调节帽,使温度指示螺母位于大约24℃处。

恒温水浴的组装及其性能测试

恒温水浴的组装及其性能测试

实验名称:物化实验 气压:102.49Kpa 温度:15.3℃实验一 恒温水浴的组装及其性能测试目的要求1.了解恒温水浴的构造及恒温原理,学会恒温水浴的装配以及数字温差仪使用方法。

2. 掌握贝克曼温度计的调节技术和使用方法。

3. 测绘恒温水浴的灵敏度曲线,学会判断恒温水浴的性能。

4.学会正确选择和使用恒温水浴。

基本原理在生产和科学实验中,经常要求在恒温及温度稳定的情况下进行,这就需要用各种恒温设备。

通常用恒温槽来控制温度维持恒温,以保证温度保持相对稳定,即在一定范围内波动。

一般使用的恒温槽波动范围约在±0.1℃左右,若加以改进,可达到±0.001℃。

恒温槽是物理化学实验室中常用设备之一。

恒温槽之所以能恒温,主要是依靠恒温控制器来控制恒温槽的热平衡。

当恒温槽因对外散热而使水温降低时,恒温控制器就驱使恒温槽内的加热器工作,待加热到所需温度时,它又使其停止加热,这样就使槽温保持恒定。

恒温槽装置是多种多样的,但它们大都包括敏感元件(或称感温元件)、控制元件、加热元件三部分。

由敏感元件将温度转化为电信号(或其它信号)而输送给控制元件,再由控制元件发出指令,让加热元件工作或停止。

系统浸入恒温槽中,通过对恒温槽温度的调节,可保持系统控制在某一恒定温度。

恒温水浴的性能可以用灵敏度来衡量,通常以实测的最高温度值与最低温度值之差的一半来表示,即:)(21低高灵T T T -±= 灵敏度数值愈小表示该恒温水浴性能愈好。

绘制灵敏度曲线时,通常选取一条基线,基线的求取方法为: )(灭亮基T -=21测定恒温水与灵敏度的方法实在设定的温度下,观察温度随时间的变化情况。

采用测温温度仪表记录温差,并以此为纵坐标轴,以相应的时间为横坐标轴,绘制灵敏度曲线。

三、仪器与试剂超级恒温器,温度计(0~100),测温指示仪表。

四、实验步骤1、将蒸馏水注入超级恒温器内至容积的2/3处。

2、将温度计插入超级恒温器中,并将测温指示仪与超级恒温器接好。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

深圳大学物理化学实验报告--实验一恒温水浴的组装及其性能测试--赖凯
After completing the work or task, record the overall process and results, including the overall situation, progress and achievements, and summarize the existing problems and future
corresponding strategies.
某某管理中心
XX年XX月
深圳大学物理化学实验报告--实验一恒温水浴的组装及其性能测试--赖凯
涛、张志诚示范文本
使用指引:此报告资料应用在完成工作或任务后,对整体过程以及结果进行记录,内容包含整体情况,进度和所取得的的成果,并总结存在的问题,未来的对应策略与解决方案。

,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。

深圳大学物理化学实验报告
实验者: 赖凯涛、张志诚实验时间: 2000/4/3
气温: 21.6 ℃大气压: 101.2 kpa
实验一恒温水浴的组装及其性能测试
目的要求了解恒温水浴的构造及其构造原理,学会恒
温水浴的装配技术;测绘恒温水浴的灵敏度曲线;掌握
贝克曼温度计的调节技术和正确使用方法。

仪器与试剂5
升大烧杯贝克曼温度计精密温度计加热器
水银接触温度计继电器搅拌器调压变压器
实验步骤3.1 实验器材,将水银开关、搅拌器等安装
固定。

按电路图接线并检查。

3.2 大烧杯中注入蒸馏水。

调节水银开关至30℃左右,随即旋紧锁定螺丝。

调调压变压器至220v,开动搅拌器(中速),接通继电器电源和加热电源,此时继电器白灯亮,说明烧杯中的水温尚未达到预设的30℃。

一段时间后,白灯熄灭,说明水温已达30℃,继电器自动切断了加热电源。

调节贝克曼温度计,使其在30℃水浴中的读数约为2℃。

安装好贝克曼温度计。

关闭搅拌器。

每1分钟记录一次贝克曼温度计的读数,一共记录12个。

开动搅拌器,稳定2分钟后再每1分钟记录一次贝克曼温度计的读数,一共记录12个。

将调压变压器调至150v(降低发热器的发热功率),稳定5分钟,后再每2分钟记录一次贝克曼温度计的读数,一共记录10个。

实验完毕,将贝克曼温度计放回保护盒中,调调压变压器至0v。

关闭各仪器电源并
拔去电源插头。

拆除各接线。

4 实验数据及其处理表1 不同状态下恒温水浴的温度变化,℃
220v,不搅拌
4.170
4.130
4.080
4.030
4.010
4.070
4.160
4.155
4.150
4.130
4.115
4.095
4.070 4.055 4.030 4.010 220v,搅拌4.540 4.620 4.610 4.570 4.510 4.465 4.420 4.370 4.320 4.270
4.220 4.180 4.130 4.090 4.740 4.940 150v,搅拌4.810 4.680 4.610 4.510 4.410 4.315 4.225 4.130
4.440
4.680
4.580
4.490
4.390
4.320
4.230
4.140
图1 不同状态下恒温水浴的灵敏度曲线
讨论5.1影响灵敏度的因素与所采用的工作介质、感温元件、搅拌速度、加热器功率大小、继电器的物理性能等均有关系。

如果加热器功率过大或过低,就不易控制水浴的温度,使得其温度在所设定的温度上下波动较大,其灵敏度就低;如果搅拌速度时高时低或一直均过低,则恒温水浴的温度在所设定的温度上下波动幅度就大,所测灵
敏度就低。

若贝克曼温度计精密度较低,在不同时间记下的温度变化值相差就大,即水浴温度在所设定温度下波动大,其灵敏度也就低;同样地,接触温度计的感温效果较差,在高于所设定的温度时,加热器还不停止加热,使得浴槽温度下降慢,这样在不同的时间内记录水浴温度在所设定的温度上下波动幅度大,所测灵敏度就低。

5.2要提高恒温浴的灵敏度,应使用功率适中的加热器、精密度高的贝克曼温度计接触温度计,及水银温度计所使用搅拌器的搅拌速度要固定在一个较适中的值,同时要根据恒温范围选择适当的工作介质。

请在此位置输入品牌名/标语/slogan
Please Enter The Brand Name / Slogan / Slogan In This Position, Such As Foonsion。

相关文档
最新文档