【精品专题】动量定理与电磁感应的综合应用

合集下载

用动量定理解决电磁感应问题

用动量定理解决电磁感应问题

应用动量定理解决电磁感应问题的思维起点电磁感应部分历来是高考的重点、热点,出题时可将力学、电磁学等知识溶于一体,能很好地考查学生的理解、推理、分析综合及应用数学处理物理问题的能力.通过对近年高考题的研究,此部分结合动量定理的力电综合模型经常在高考题中出现。

本文结合例题分析应用动量定理解决电磁感应问题的思维起点。

一、 以累积公式q=It 结合动量定理为思维起点直导线在磁场中要受到安培力的作用,速度发生变化,安培力随之变化。

通常直导线(或线框)的运动为非匀变速直线运动,不能用牛顿运动定律结合运动学公式解题,而动量定理适用于非匀变速直线运动。

在时间△t 内安培力的冲量BLq t BLI t F =∆=∆,式中q 是通过导体截面的电量。

利用该公式结合动量定理是解答此类问题思维起点。

例1.如图所示,在匀强磁场区域内与B 垂直的平面中有两根足够长的固定金属平行导轨,在它们上面横放两根平行导体棒构成矩形回路,长度为L ,质量为m ,电阻为R ,回路部分导轨电阻可忽略,棒与导轨无摩擦,开始时图中左侧导体棒静止,右侧导体棒具有向右的初速v 0,试求两棒之间距离增长量x 的上限。

析与解:当右棒运动时,产生感应电动势,两棒中有感应电流通过,右棒受到安培力作用而减速,左棒受到安培力作用而加速。

当它们的速度相等时,它们之间的距离最大。

设它们的共同速度为v ,则据动量守恒定律可得:mv 0=2mv ,即021v v = 对于左棒应用动量定理可得:BILt= mv 所以,通过导体棒的电量q=It =BL mv 20 而q =R BLx t I 2=∆ 由上述各式可得: x =220LB R mv 。

v点评:本题结合冲量公式BLq t BLI t F =∆=∆应用动量定理,使貌似复杂的问题得到迅速解决。

例2.(原创预测题)如图所示,两水平放置的平行光滑金属导轨相距为L ,导轨左端用导线连在一起,导轨电阻不计,整个装置垂直处于磁感强度为B 的匀强磁场中,另有一根长也为L 的金属棒垂直放在导轨上,现给金属棒一向右的水平初速度v 。

电磁感应综合问题(解析版)--2024年高考物理大题突破

电磁感应综合问题(解析版)--2024年高考物理大题突破

电磁感应综合问题1.掌握应用动量定理处理电磁感应问题的思路。

2.掌握应用动量守恒定律处理电磁感应问题的方法。

3.熟练应用楞次定律与法拉第电磁感应定律解决问题。

4.会分析电磁感应中的图像问题。

5.会分析电磁感应中的动力学与能量问题。

电磁感应中的动力学与能量问题1(2024·河北·模拟预测)如图甲所示,水平粗糙导轨左侧接有定值电阻R =3Ω,导轨处于垂直纸面向外的匀强磁场中,磁感应强度B =1T ,导轨间距L =1m 。

一质量m =1kg ,阻值r =1Ω的金属棒在水平向右拉力F 作用下由静止开始从CD 处运动,金属棒与导轨间动摩擦因数μ=0.25,金属棒的v -x 图像如图乙所示,取g =10m/s 2,求:(1)x =1m 时,安培力的大小;(2)从起点到发生x =1m 位移的过程中,金属棒产生的焦耳热;(3)从起点到发生x =1m 位移的过程中,拉力F 做的功。

【答案】(1)0.5N ;(2)116J ;(3)4.75J 【详解】(1)由图乙可知,x =1m 时,v =2m/s ,回路中电流为I =E R +r =BLv R +r=0.5A安培力的大小为F 安=IBL =0.5N (2)由图乙可得v =2x金属棒受到的安培力为F A =IBL =B 2L 2v R +r=x2(N )回路中产生的焦耳热等于克服安培力做的功,从起点到发生x =1m 位移的过程中,回路中产生的焦耳热为Q =W 安=F A x =0+0.52×1J =0.25J金属棒产生的焦耳热为Q 棒=r R +rQ =116J(3)从起点到发生x =1m 位移的过程中,根据动能定理有W F -W 安-μmgx =12mv 2解得拉力F 做的功为W F =4.75J1.电磁感应综合问题的解题思路2.求解焦耳热Q 的三种方法(1)焦耳定律:Q =I 2Rt ,适用于电流恒定的情况;(2)功能关系:Q =W 克安(W 克安为克服安培力做的功);(3)能量转化:Q =ΔE (其他能的减少量)。

动量定理及动量守恒定律在电磁感应中的应用

动量定理及动量守恒定律在电磁感应中的应用

动量定理及动量守恒定律在电磁感应中的应用摘要:《普通高中物理课程标准》指出,高中物理课程旨在进一步提高学生的科学素养,落实“立德树人”的根本任务。

基于学科核心素养教学实施策略和方法,要落实到教育教学的全过程,本文重点介绍动量定理、动量守恒定律在电磁感应解题的运用。

关键词:动量动量守恒电磁感应应用一、动量定理:物体所受合外力的冲量等于物体的动量变化.表达式:I=Δp或Ft=mv2-mv1.二、动量守恒定律:一个系统不受外力或者所受合外力为零,这个系统的总动量保持不变.表达式:m1v1+m2v2=m1v1′+m2v2′或p=p′.三、在电磁感应中,动量定理应用于单杆切割磁感线运动,可求解变力的时间、速度、位移和电荷量.(1)求电荷量或速度:B LΔt=mv2-mv1, q= t.(2)求时间:Ft-I冲=mv2-mv1, I冲=BILΔt=BL .(3)求位移:-BILΔt=- =0-mv0,即 - s=m(0-v).四、在电磁感应中对于双杆切割磁感线运动,若双杆系统所受合外力为零,运用动量守恒定律结合能量守恒定律可求解与能量有关的问题。

例1.如图所示,在水平面上有两条导电导轨MN,PQ,导轨间距为d,匀强磁场垂直于导轨所在的平面向里,磁感应强度的大小为B,两根完全相同的金属杆1,2间隔一定的距离摆开放在导轨上,且与导轨垂直.它们的电阻均为R,两杆与导轨接触良好,导轨电阻不计,金属杆的摩擦不计.杆1以初速度v滑向杆2,为使两杆不相碰,则杆2固定与不固定两种情况下,最初摆放两杆时的最小距离之比为( C )A.1∶1B.1∶2C.2∶1D.1∶1解析:杆2固定:对回路 q1= = .对杆1:-B d·Δt=0-mv0,q1=·Δt 联立解得s1= .杆2不固定: 对回路 q2=对杆2:B d·Δt=mv2-0 全程动量守恒:mv=mv1+mv2末态两棒速度相同,v1=v2,q2=·Δt 联立解得s2= . s1∶s2=2∶1,则C选项正确.例2.如图所示,宽度为L的平行光滑的金属轨道,左端为半径为r1的四分之一圆弧轨道,右端为半径为r2的半圆轨道,中部为与它们相切的水平轨道.水平轨道所在的区域有磁感应强度为B的竖直向上的匀强磁场.一根质量为m的金属杆a 置于水平轨道上,另一根质量为M的金属杆b由静止开始自左端轨道最高点滑下,当b滑入水平轨道某位置时,a就滑上了右端半圆轨道最高点(b始终运动且a,b 未相撞),并且a在最高点对轨道的压力大小为mg,此过程中通过a的电荷量为q,a,b杆的电阻分别为R1,R2,其余部分电阻不计.在b由静止释放到a运动到右端半圆轨道最高点过程中,求:(1)在水平轨道上运动时b的最大加速度是多大;(2)自b释放到a到达右端半圆轨道最高点过程中,系统产生的焦耳热是多少;(3)a刚到达右端半圆轨道最低点时b的速度是多大.解析:(1)由机械能守恒定律得 M =Mgr1解得vb1=b刚滑到水平轨道时加速度最大,E=BLvb1, I= ,由牛顿第二定律有F安=BIL=Ma 解得a= .(2)由动量定理有-B Lt=Mvb2-Mvb1, 即-BLq=Mvb2-Mvb1解得vb2= -根据牛顿第三定律得:a在最高点受支持力N=N′=mg, mg+N=m解得va1=由能量守恒定律得Mgr1= M + m +mg2r2+Q 解得Q=BLq -3mgr2-.(3)由能量守恒定律有2mgr2= m - m解得va2=由动量守恒定律得Mvb1=Mvb3+mva2解得vb3= - .答案:(1)(2)BLq -3mgr2-(3) -例3.如图所示,将不计电阻的长导线弯折成P1P2P3,Q1Q2Q3形状,P1P2P3和Q1Q2Q3是相互平行且相距为d的光滑固定金属导轨.P1P2,Q1Q2的倾角均为θ,P2P3,Q2Q3在同一水平面上,P2Q2⊥P2P3,整个导轨在方向竖直向上、磁感应强度大小为B的匀强磁场中,质量为m电阻为R的金属杆CD从斜导轨上某处静止释放,然后沿水平导轨滑动一段距离后停下.杆CD始终垂直导轨并与导轨保持良好接触,导轨和空气阻力均不计,重力加速度大小为g,导轨倾斜段和水平段都足够长,求:(1)杆CD能达到的最大速度;( 2)杆CD在距P2Q2为L处释放,滑到P2Q2处恰达到最大速度,则沿倾斜导轨下滑的时间Δt1及在水平导轨上滑行的最大距离.解析:(1)杆CD达到最大速度时,杆受力平衡BdImcosθ=mgsinθ此时杆CD切割磁感线产生的感应电动势为E=Bdvmcosθ由欧姆定律可得Im = , 解得vm= .(2)在杆CD沿倾斜导轨下滑的过程中,动量定理有mgsinθ·Δt1-Bdcosθ·Δt1=mvm-0= = =解得Δt1= +在杆CD沿水平导轨运动的过程中,根据动量定理有 -B d·Δt2=0-mvm该过程中通过R的电荷量为 q2=Δt2,得q2=杆CD沿水平导轨运动的过程中,通过的平均电流为 = =得q2=Δt2=解得s= .答案:(1)(2) +3。

电磁感应规律的综合应用(解析版)-2023年高考物理压轴题专项训练(新高考专用)

电磁感应规律的综合应用(解析版)-2023年高考物理压轴题专项训练(新高考专用)

压轴题07电磁感应规律的综合应用目录一,考向分析 (1)二.题型及要领归纳 (2)热点题型一以动生电动势为基综合考查导体棒运动的问题 (2)热点题型二以感生电动势为基综合考查导体棒运动的问题 (9)热点题型三以等间距双导体棒模型考动量能量问题 (16)热点题型四以不等间距双导体棒模型考动量定理与电磁规律的综合问题 (21)热点题型五以棒+电容器模型考查力电综合问题 (27)三.压轴题速练 (33)一,考向分析1.本专题是运动学、动力学、恒定电流、电磁感应和能量等知识的综合应用,高考既以选择题的形式命题,也以计算题的形式命题。

2.学好本专题,可以极大地培养同学们数形结合的推理能力和电路分析能力,针对性的专题强化,可以提升同学们解决数形结合、利用动力学和功能关系解决电磁感应问题的信心。

3.用到的知识有:左手定则、安培定则、右手定则、楞次定律、法拉第电磁感应定律、闭合电路欧姆定律、平衡条件、牛顿运动定律、函数图像、动能定理和能量守恒定律等。

电磁感应综合试题往往与导轨滑杆等模型结合,考查内容主要集中在电磁感应与力学中力的平衡、力与运动、动量与能量的关系上,有时也能与电磁感应的相关图像问题相结合。

通常还与电路等知识综合成难度较大的试题,与现代科技结合密切,对理论联系实际的能力要求较高。

4.电磁感应现象中的电源与电路(1)产生感应电动势的那部分导体相当于电源。

(2)在电源内部电流由负极流向正极。

(3)电源两端的电压为路端电压。

5.电荷量的求解电荷量q=IΔt,其中I必须是电流的平均值。

由E=n ΔΦΔt、I=ER总、q=IΔt联立可得q=n ΔΦR总,与时间无关。

6.求解焦耳热Q的三种方法(1)焦耳定律:Q=I2Rt,适用于电流、电阻不变。

(2)功能关系:Q=W克服安培力,电流变不变都适用。

(3)能量转化:Q=ΔE(其他能的减少量),电流变不变都适用。

7.用到的物理规律匀变速直线运动的规律、牛顿运动定律、动能定理、能量守恒定律等。

例析动量定理在电磁感应问题中的应用

例析动量定理在电磁感应问题中的应用
i 一 : 一Ls B
△ △f
导轨 MN、 Q, P 存在 有竖 直向上的匀 强磁 场 , 磁感 .
应强度为 B, 导轨上 放着 两根 质量均 为 、 电阻均 图3
为| R的金属棒 n b 、。开 始时 , 棒 静止 , b a棒 以初 速度向 右运动 。设两棒始终不相碰 , 在运动过程 中通过 a棒 求 上 的总电荷量 。 解析 : 设棒稳 定运动后 的共 同速度为 , 对系统从 a 棒开始运动到两棒达 到共 同速度 的过程 , 应用动量守 恒 定律有 : o my mv :2 设 回路中的平均 电流 为 J 。再对 a棒 , 应用 动量定
理:

根据欧姆定律 , 可得平均 电流为 了 E一 : 由动量定理得 : 一B儿 ・ 一 △ 一0 联立上式 :一 点评 : 本题 实质上是利 用动量定理 求感应电荷 量。
【 2 如 图 2 例 】
B L△t I 一
— m
所示 , 足够 长 的相 距 为z 的平行金 属导轨
由法拉第 电磁感应定律得 : 一 :
【 1 如图 1 示 , 例 】 所
质量为 m 的导体棒可沿光
滑 水 平 面 的 平 行 导 轨 滑
由闭合 电路欧姆定律 :一 一 - E 』
对 a 应 用 动量 定 理 得 : l £=1 解得 : x 棒 B = 17 =1 2 A 一
又 Q=7 t = a 解得 : = Q一 点评 : 本题是利用动量定理计算电荷量的典型例子。
MN 、 Q放 置在 水平 P 面内 , 强 磁 场 竖 直 匀
通过 以上三个例题 的分析 , 会当导体切 割磁感 线 体
而产生感应 电流 , 果感应 电流不恒定 , 体所受 到的 如 导 安 培力也 不恒 定 而做变 速运 动 时 , 些 问题 如 涉及 位 有 ( 责任 编辑 易志毅)

电磁感应动量定理的应用(最新整理)

电磁感应动量定理的应用(最新整理)

电磁感应与动量的综合1.安培力的冲量与电量之间的关系:设想在某一回路中,一部分导体仅在安培力作用下运动时,安培力为变力,但其冲量可用它对时间的平均值进行计算,即tF I ∆=冲冲而=B L (为电流对时间的平均值)F I I 故有:安培力的冲量t L I B I ∆⋅=冲而电量q =Δt ,故有I BLq I =冲因只在安培力作用下运动 BLq =mv 2-mv 1 BLPq ∆=2.感应电量与磁通量的化量的关系:R n t R t n t R E t I q ∆Φ=∆⋅∆∆Φ=∆⋅=∆⋅=若磁感应强度是匀强磁场,R BLx R S B R q =∆=∆Φ=以电量作为桥梁,把安培力的冲量、动量变化量与回路磁通量的变化量、导体棒的位移联系起来。

例1.如图所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽度为L 的区域内,现有一个边长为a (a <L )的正方形闭合线圈以初速度v 0垂直磁场边界滑过磁场后,速度为v (v <v 0),那么线圈A .完全进入磁场中时的速度大于(v 0+v )/2B .完全进入磁场中时的速度等于(v 0+v )/2C .完全进入磁场中时的速度小于(v 0+v )/2D .以上情况均有可能例2.在水平光滑等距的金属导轨上有一定值电阻R ,导轨宽d ,电阻不计,导体棒AB 垂直于导轨放置,质量为m ,整个装置处于垂直导轨平面向上的匀强磁场中,磁感应强度为B 。

现给导体棒一水平初速度v 0,求AB 在导轨上滑行的距离。

例3.如图所示,两根足够长的平行金属导轨固定于同一水平面内,导轨间的距离为L ,导轨上平行放置两根导体棒ab 和cd ,构成矩形回路。

已知两根导体棒的质量均为m 、电阻均为R ,其它电阻忽略不计,整个导轨处于竖直向上的匀强磁场中,磁感应强度为B ,导体棒均可沿导轨无摩擦的滑行。

开始时,导体棒cd 静止、ab 有水平向右的初速度v 0,两导体棒在运动中始终不接触。

用动量定理解决电磁感应问题

用动量定理解决电磁感应问题

应用动量定理解决电磁感应问题的思维起点电磁感应部分历来是高考的重点、热点,出题时可将力学、电磁学等知识溶于一体,能很好地考查学生的理解、推理、分析综合及应用数学处理物理问题的能力.通过对近年高考题的研究,此部分结合动量定理的力电综合模型经常在高考题中出现。

本文结合例题分析应用动量定理解决电磁感应问题的思维起点。

一、 以累积公式q=It 结合动量定理为思维起点直导线在磁场中要受到安培力的作用,速度发生变化,安培力随之变化。

通常直导线(或线框)的运动为非匀变速直线运动,不能用牛顿运动定律结合运动学公式解题,而动量定理适用于非匀变速直线运动。

在时间△t 内安培力的冲量BLq t BLI t F =∆=∆,式中q 是通过导体截面的电量。

利用该公式结合动量定理是解答此类问题思维起点。

例1.如图所示,在匀强磁场区域内与B 垂直的平面中有两根足够长的固定金属平行导轨,在它们上面横放两根平行导体棒构成矩形回路,长度为L ,质量为m ,电阻为R ,回路部分导轨电阻可忽略,棒与导轨无摩擦,开始时图中左侧导体棒静止,右侧导体棒具有向右的初速v 0,试求两棒之间距离增长量x 的上限。

析与解:当右棒运动时,产生感应电动势,两棒中有感应电流通过,右棒受到安培力作用而减速,左棒受到安培力作用而加速。

当它们的速度相等时,它们之间的距离最大。

设它们的共同速度为v ,则据动量守恒定律可得:mv 0=2mv ,即021v v = 对于左棒应用动量定理可得:BILt= mv所以,通过导体棒的电量q=It =BL mv 20 而q =R BLx t I 2=∆ 由上述各式可得: x =220LB R mv 。

v点评:本题结合冲量公式BLq t BLI t F =∆=∆应用动量定理,使貌似复杂的问题得到迅速解决。

例2.(原创预测题)如图所示,两水平放置的平行光滑金属导轨相距为L ,导轨左端用导线连在一起,导轨电阻不计,整个装置垂直处于磁感强度为B 的匀强磁场中,另有一根长也为L 的金属棒垂直放在导轨上,现给金属棒一向右的水平初速度v 。

(完整版)电磁感应动量定理的应用

(完整版)电磁感应动量定理的应用

电磁感应与动量的综合1.安培力的冲量与电量之间的关系:设想在某一回路中,一部分导体仅在安培力作用下运动时,安培力为变力,但其冲量可用它对时间的平均值进行计算,即 I 冲 F 安 t而 F =B I L( I 为电流对时间的平均值)故有:安培力的冲量 I 冲 BI L t而电量 q= I t,故有I冲BLq因只在安培力作用下运动PBLq=mv2- mv1qBLEn2.感应电量与磁通量的化量的关系:q I t t t ntRR R若磁感应强度是匀强磁场,qB S BLxR R R以电量作为桥梁,把安培力的冲量、动量变化量与回路磁通量的变化量、导体棒的位移联系起来。

例 1.如图所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽度为 L 的区域内,现有一个边长为 a( a<L )的正方形闭合线圈以初速度 v0垂直磁场边界滑过磁场后,速度为v(v<v0),那么线圈A .完全进入磁场中时的速度大于( v0+v) /2B .完全进入磁场中时的速度等于(v0+v) /2C.完全进入磁场中时的速度小于(v0+v) /2D.以上情况均有可能例 2.在水平光滑等距的金属导轨上有一定值电阻R,导轨宽 d ,电阻不计,导体棒 AB 垂直于导轨放置,质量为m,整个装置处于垂直导轨平面向上的匀强磁场中,磁感应强度为 B。

现给导体棒一水平初速度v0,求 AB 在导轨上滑行的距离。

例 3.如图所示,两根足够长的平行金属导轨固定于同一水平面内,导轨间的距离为L,导轨上平行放置两根导体棒 ab 和 cd,构成矩形回路。

已知两根导体棒的质量均为m、电阻均为 R,其它电阻忽略不计,整个导轨处于竖直向上的匀强磁场中,磁感应强度为B,导体棒均可沿导轨无摩擦的滑行。

开始时,导体棒cd 静止、 ab 有水平向右的初速度 v0,两导体棒在运动中始终不接触。

求:⑴开始时,导体棒ab 中电流的大小和方向;⑵从开始到导体棒cd 达到最大速度的过程中,矩形回路产生的焦耳热;⑶当ab 棒速度变为3v0/4 时, cd 棒加速度的大小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动量定理与电磁感应的综合应用姓名:____________ 【例题精讲】例1:如图所示,水平面上有两根相距0.5m足够长的平行金属导轨MN和PQ,它们的电阻可忽略不计,在M和P之间接有阻值为R=3Ω的定值电阻;有一质量m=0.1kg,长L=0.5m,电阻r=1Ω的导体棒ab,与导轨接触良好,整个装置处于方向竖直向上的匀强磁场中,磁感应强度B=1T,在t=0s开始,使ab以v0=10m/s的初速度向右运动,直至ab停止,求:(1)t=0时刻,棒ab两端电压;(2)整个过程中R上产生的总热量是多少;(3)整个过程中ab棒的位移是多少针对训练1-1:如图所示,两条相距L的光滑平行金属导轨位于同一竖直面(纸面)内,其上端接一阻值为R的电阻;在两导轨间OO′下方区域内有垂直导轨平面向里的匀强磁场,磁感应强度为B。

现使电阻为r、质量为m的金属棒ab由静止开始自OO′位置释放,向下运动距离d后速度不再变化。

(棒ab与导轨始终保持良好的电接触且下落过程中始终保持水平,导轨电阻不计).(1)求棒ab在向下运动距离d过程中回路产生的总焦耳热;(2)棒ab从静止释放经过时间 t0下降了0.5d,求此时刻的速度大小。

针对训练1-2:(浙江2015年4月选考)如图所示,质量m=3.0×10-3kg的“”型金属细框竖直放置在两水银槽中,“”型框的水平细杆CD长l=0.20 m,处于磁感应强度大小B1=1.0 T、方向水平向右的匀强磁场中,有一匝数n=300匝、面积S=0.01 m2的线圈通过开关K与两水银槽相连。

线圈处于与线圈平面垂直的、沿竖直方向的匀强磁场中,其磁感应强度B2的大小随时间t变化的关系如图所示。

(1)求0~0.10 s线圈中的感应电动势大小;(2)t=0.22 s时闭合开关K,若细杆CD所受安培力方向竖直向上,判断CD中的电流方向及磁感应强度B2的方向;(3)t=0.22 s时闭合开关K,若安培力远大于重力,细框跳起的最大高度h=0.20 m,求通过细杆CD的电荷量。

针对训练1-3:(浙江2017年11月选考)所图所示,匝数N=100、截面积s=1.0×10-2m2、电阻r=0.15Ω的线圈内有方向垂直于线圈平面向上的随时间均匀增加的匀强磁场B1,其变化率k=0.80T/s。

线圈通过开关S连接两根相互平行、间距d=0.20m的竖直导轨,下端连接阻值R=0.50Ω的电阻。

一根阻值也为0.50Ω、质量m=1.0×10-2kg的导体棒ab搁置在等高的挡条上。

在竖直导轨间的区域仅有垂直纸面的不随时间变化的匀强磁场B2。

接通开关S后,棒对挡条的压力恰好为零。

假设棒始终与导轨垂直,且与导轨接触良好,不计摩擦阻力和导轨电阻。

(1)求磁感应强度B2的大小,并指出磁场方向;(2)断开开关S后撤去挡条,棒开始下滑,经t=0.25s后下降了h=0.29m,求此过程棒上产生的热量。

针对训练1-4:.如图所示,平行金属导轨OP 、KM 和PQ 、MN 相互垂直,且OP 、KM 与水平面间夹角为θ=37º,导轨间距均为L=1m ,电阻不计,导轨足够长。

两根金属棒ab 和cd 与导轨垂直放置且接触良好,ab 的质量为M=2kg ,电阻为R1=2Ω,cd 的质量为m=0.2kg,电阻为R2=1Ω,金属棒和导轨之间的动摩擦因数均为µ=0.5,两个导轨平面均处在垂直于轨道平面OPKM 向上的匀强磁场中.现让cd 固定不动,将金属棒ab 由静止释放,当ab 沿导轨下滑x=6m 时,速度已达到稳定,此时,整个回路消耗的电功率为P=12W 。

(sin37º=0.6,g=10m/s2)求: (1)磁感应强度B 的大小;(2)ab 沿导轨下滑x=6m 的过程中ab 棒上产生的焦耳热Q;(3)若将ab 与cd 同时由静止释放,当cd 达到最大速度时ab 的加速度a.(4)若将ab 与cd 同时由静止释放,当运动时间t=0.5s 时,ab 的速度vab 与cd 棒的速度vcd 的关系式。

例2:如图所示,在光滑的水平面上有竖直向下(垂直纸面向里)的匀强磁场分布在宽度为s 的区域内.一个边长为L (L<s )的正方形闭合线圈以初速度v 0垂直与磁场的边界穿过磁场后速度变为v.设线圈完全进入磁场时的速度为v',则( )A.0'2v v v +>B.0'2v vv += C.0'2v v v +< D.无法判断针对训练2-1:如图所示,虚线框内为某种电磁缓冲车的结构示意图,其主要部件为缓冲滑块K和质量为m的缓冲车厢。

在缓冲车的底板上,沿车的轴线固定着两个光滑水平绝缘导轨PQ、MN。

缓冲车的底部,还安装有电磁铁(图中未画出),能产生垂直于导轨平面的匀强磁场,磁场的磁感应强度为B;导轨内的缓冲滑块K由高强度绝缘材料制成,滑块K上绕有闭合矩形线圈abcd,线圈的总电阻为R,匝数为n,ab边长为L。

假设缓冲车以速度v0与障碍物C碰撞后,滑块K立即停下,此后线圈与轨道的磁场作用力使缓冲车厢减速运动,从而实现缓冲,一切摩擦阻力不计。

求:(1)滑块K的线圈中最大感应电动势的大小以及流过线圈ab段的电流方向;(2)若缓冲车厢向前移动一段距离后速度为零(导轨未碰到障碍物),则此过程线圈abcd 中通过的电量和产生的焦耳热各是多少;(3)缓冲车厢减速运动的速度v随位移x变化的关系式。

针对训练2-2:月球探测器在月面实现软着陆是非常困难的,探测器接触地面瞬间速度为竖起向下的1v ,大于要求的软着陆速度0v ,为此科学家们设计了一种叫电磁阻尼缓冲装置,其原理如图所示,主要部件为缓冲滑块K 和绝缘光滑的缓冲轨道MN 和PQ ;探测器主体中还有超导线圈(图中未画出),能在两轨道间产生垂直于导轨平面的匀强磁场。

导轨内的缓冲滑块由高强度绝缘材料制成,滑块K 上绕有闭单匝矩形线圈abcd ,线圈的总电阻为R ,ab 边长为L 。

当探测器接触地面时,滑块K 立即停止运动,此后线圈与轨道间的磁场发生作用,使探测器主体做减速运动,从而实现缓冲.已知装置中除缓冲滑块(含线圈)外的质量为m ,月球表面的重力加速度为6g,不考虑运动磁场产生的电场。

(1)当缓冲滑块刚停止运动时,判断线圈中感应电流的方向和线圈ab 边受到的安培力的方向; (2)为使探测器主体做减速运动,磁感应强度B 至少应多大;(3)当磁感应强度为0B 时,探测器主体可以实现软着陆,若从1v 减速到0v 的过程中,通过线圈截面的电量为q ,求该过程所需要的时间,以及线圈中产生的焦耳热Q 。

针对训练2-3:如图所示,在空间有两个磁感强度均为 B 的匀强磁场区域,上一个区域边界AA′与DD′的间距为H,方向垂直纸面向里,CC′与DD′的间距为h,CC′下方是另一个磁场区域,方向垂直纸面向外。

现有一质量为m、边长为L (h < L < H ) 、电阻为R 的正方形线框由AA′上方某处竖直自由落下,恰能匀速进入上面一个磁场区域,当线框的cd 边刚要进入边界CC′前瞬间线框的加速度大小a1 = 0.2 g,空气阻力不计,求:(1)线框的cd 边从AA′运动到CC′过程产生的热量Q .(2)当线框的cd 边刚刚进入边界CC′时,线框的加速度大小(3)线框的cd 边从边界AA′运动到边界CC′的时间.例3:某同学利用电磁感应知识设计了一个测速仪。

其简化模型如图所示,间距为L的两根水平固定放置的平行光滑的金属导轨MN、PQ,导轨的右端连接一个定值电阻,阻值为R,导体棒a垂直导轨放置在导轨上,在a棒左侧和导轨间存在竖直向下的匀强磁场,磁感应强度为B,在a棒右侧有一绝缘棒b,b棒与固定在墙上的轻弹簧相连但不粘连,弹簧处于压缩状态且被锁定。

现解除锁定,b棒在弹簧的作用下向左移动,脱离弹簧后以速度v0与a棒发生碰撞粘在一起。

已知a、b棒的质量分别为m、M,碰撞前后,棒始终垂直导轨,a棒在导轨间的电阻为r,导轨电阻和空气阻力均忽略不计。

求:(1)弹簧的弹性势能和a棒中电流的方向;(2)从a棒开始运动到停止过程中,a棒产生的焦耳热Q;(3)若a棒向左滑行的距离为x,a棒向左滑行距离x与b棒的速度v0的函数关系式。

针对训练3-1:如图所示,平行光滑且足够长的金属导轨ab、cd固定在同一水平面上,处于竖直向上的匀强磁场中,磁感应强度 B=2T,导轨间距L=0.5m。

有两根金属棒MN、PQ质量均为lkg,电阻均为0.5Ω,其中PQ静止于导轨上,MN用两条轻质绝缘细线悬挂在挂钩上,细线长 h=0.9m,当细线竖直时棒刚好与导轨接触但对导轨无压力。

现将MN向右拉起使细线与竖直方向夹角为60°,然后由静止释放MN,忽略空气阻力。

发现MN到达最低点与导轨短暂接触后继续向左上方摆起,PQ在MN短暂接触导轨的瞬间获得速度,且在之后1s时间内向左运动的距离 s=1m。

两根棒与导轨接触时始终垂直于导轨,不计其余部分电阻。

求:(1)当悬挂MN的细线到达竖直位罝时,MNPQ回路中的电流强度大小及MN两端的电势差大小;(2)MN与导轨接触的瞬间流过PQ的电荷量;(3)MN与导轨短暂接触时回路中产生的焦耳热。

针对训练3-2:(浙江2016年4月选考)某同学设计了一个电磁推动加喷气推动的火箭发射装置,如图所示.竖直固定在绝缘底座上的两根长直光滑导轨,间距为L.导轨间加有垂直导轨平面向里的匀强磁场B.绝缘火箭支撑在导轨间,总质量为m,其中燃料质量为m′,燃料室中的金属棒EF电阻为R,并通过电刷与电阻可忽略的导轨良好接触.引燃火箭下方的推进剂,迅速推动刚性金属棒CD(电阻可忽略且和导轨接触良好)向上运动,当回路CEFDC面积减少量达到最大值ΔS,用时Δt,此过程激励出强电流,产生电磁推力加速火箭.在Δt时间内,电阻R产生的焦耳热使燃料燃烧形成高温高压气体.当燃烧室下方的可控喷气孔打开后,喷出燃气进一步加速火箭.(1)求回路在Δt时间内感应电动势的平均值及通过金属棒EF的电荷量,并判断金属棒EF中的感应电流方向;(2)经Δt时间火箭恰好脱离导轨,求火箭脱离时的速度v0; (不计空气阻力)(3)火箭脱离导轨时,喷气孔打开,在极短的时间内喷射出质量为m′的燃气,喷出的燃气相对喷气前火箭的速度为u,求喷气后火箭增加的速度Δv.(提示:可选喷气前的火箭为参考系)针对训练3-3:(浙江2017年4月选考)间距为l的两平行金属导轨由水平部分和倾斜部分平滑连接而成,如图所示.倾角为θ的导轨处于大小为B1、方向垂直导轨平面向上的匀强磁场区间Ⅰ中.水平导轨上的无磁场区间静止放置一质量为3m的“联动双杆”(由两根长为l的金属杆cd和ef,用长度为L的刚性绝缘杆连接构成),在“联动双杆”右侧存在大小为B2、方向垂直导轨平面向上的匀强磁场区间Ⅱ,其长度大于L.质量为m、长为l的金属杆ab从倾斜导轨上端释放,达到匀速后进入水平导轨(无能量损失),杆ab与“联动双杆”发生碰撞,碰后杆ab和cd合在一起形成“联动三杆”.“联动三杆”继续沿水平导轨进入磁场区间Ⅱ并从中滑出.运动过程中,杆ab、cd和ef与导轨始终接触良好,且保持与导轨垂直.已知杆ab、cd和ef电阻均为R=0.02 Ω,m=0.1 kg,l=0.5 m,L=0.3 m,θ=30°,B1=0.1 T,B2=0.2 T.不计摩擦阻力和导轨电阻,忽略磁场边界效应.求:(1)杆ab在倾斜导轨上匀速运动时的速度大小v0;(2)“联动三杆”进入磁场区间Ⅱ前的速度大小v;(3)“联动三杆”滑过磁场区间Ⅱ产生的焦耳热Q.针对训练3-4:某同学设计了一个电磁击发装置,其结构如图所示。

相关文档
最新文档