勾股定理及其逆定理的应用

合集下载

勾股定理及逆定理的应用

勾股定理及逆定理的应用

勾股定理的逆定理及应用知识点1:互逆命题与互逆定理 知识点2:勾股定理的逆定理如果三角形的三边长度分别是,,a b c ,并且满足222a b c +=,那么这个三角形是直角三角形。

注意:(1)勾股定理的逆定理是直角三角形的判定定理,即已知三角形的三条边长,且满足两条较小的边的平方和等于最长边的平方,才可判断此三角形是直角三角形,最长边所对的角为直角。

(2)在应用勾股定理的逆定理时,注意计算准确,要写计算过程。

知识点3:勾股数(1)满足222a b c +=的三个正整数,,a b c 就是一组勾股数(2)对于任意两个整数,(0)m n m n >>,2222,,2m n m n mn +-这三个数就是一组勾股数,可见勾股数有无数组。

(3)常见的勾股数有①3,4,5 ②6,8,10 ③8,15,17 ④7,24,25 ⑤5,12,13 ⑥9,12,15【知识点一】根据数量关系判断三角形是否直角三角形。

例题1:在下列线段中能组成直角三角形三边的是( )A 7,10,13B 2226,8,10111,,345例题2:已知a 、b 、c 是△ABC 的三边,且满足a 2+b 2+c 2+50 =6a+8b+10c ,试判断△ABC 的形状.【变式练习】1、判断:三边长分别为2222,21,221(0)n n n n n n ++++>的三角形是否是直角三角形2、在正方形ABCD 中,F 是DC 边中点,E 是BC 上的一点,且EC=14BC 。

求证∠EFA=90°。

【知识点二】利用勾股定理逆定理构造直角三角形求其边或角。

例题3、如图在△ABC 中,AB=5,AC=13,BC 上的中线AD=6,求BC 边的长。

【变式练习】1、如图所示,△ABC 是等腰直角三角形,AB=AC ,D 是斜边BC 的中点,E 、F 分别是AB 、AC 边上的点,且DE ⊥DF ,若BE=12,CF=5.求线段EF 的长2、如图,在△ABC 中,D 为BC 边上与B 、C 不重合的任意一点,且AB=AC 。

精品-勾股定理及其逆定理的应用

精品-勾股定理及其逆定理的应用

勾股定理及其逆定理的应用勾股定理及其逆定理在中考和数学竞赛中有十分广泛的应用,下面举例说明. 一、用于求线段的长例1 如图1,四边形ABCD 中,60A ∠=°,9023B D BC CD ∠=∠=︒==,,,则____AB =. 解:延长AD BC ,相交于点E . 6030A E ∠=︒∠=︒ ,∴.36CD CE == ,∴,8BE =∴. 设AB x =,则2AE x =,由勾股定理在ABE Rt △中,可得2228(2)x x +=,解得x =,即AB = 二、用于求角的度数例2 如图2,在四边形ABCD 中,:::2:2:3:1AB BC CD DA =,且90B ∠=︒,求:BAD ∠的度数.解:设AD a =,则23AB BC a CD a ===,,连接AC , ABC △为等腰三角形,45BAC ∠=︒∴.在ABC Rt △中,由勾股定理,得2222228AC AB BC AB a =+==,又22229AD a CD a == ,,∴222AC AD CD +=. 由勾股定理的逆定理知CAD △是直角三角形.904590135CAD BAD BAC CAD ∠=︒∠=∠+∠=︒+︒=︒∴,∴.三、用于求面积 例3 如图3,在四边形ABCD 中,2160AB CD A ==∠=︒,,,90B D ∠=∠=︒.求四边形ABCD的面积.解:延长AD BC ,相交于点E ,则30E ∠=︒,从而4AE =.由勾股定理可得BE ===又1CD =,2CE =∴,由勾股定理可得DE =.112122ABCD ABE CDES S S =-=⨯⨯⨯=四边形△△∴. 四、用于判定三角形的形状例4 若三角形的三条边a b c ,,满足关系式4222240a b c a c b +--=,则此三角形形状是 . 解:∵4222240a b c a c b +--=,∴2222222()()()0a b a b c a b +---=,即22222()()0a b a b c -+-=.∴220a b -=或2220a b c +-=.∴a b =或222a b c +=.图1 ABCDE图2ABCD 图3ABC DE1 230︒ 60︒∴此三角形的形状是等腰三角形或直角三角形. 五、用于证明两线段垂直例5 如图4,正方形ABCD 中,14AE BE AF AD ==,,求证:CE EF ⊥. 证明:连接CF ,设1AF =,则324DF AE BE BC CE =====,,,∵222125EF =+=,2222420CE =+=,2223425CF =+=,222CF EF CE =+∴. CEF ∴△为为直角三角形(勾股定理的逆定理). CE EF ⊥∴.六、用于证明几条线段间的等量关系例6 如图5,在ABC △中,90BAC AB AC ∠=︒=,,D 是BC 上的点. 求证:2222BD CD AD +=.分析:过A 点作ABC △的高AE ,则AE BE CE ==.利用勾股定理222AD AE ED =+再求证.证明:过A 点作ABC △的高AE , 90BAC AB AC ∠=︒= ,, 45B C ∠=∠=︒∴.45BAE EAC B C ∠=∠=∠=∠=︒∴, AE BE CE ==∴.而2222()()BD CD BE DE CE DE +=++-222222BE BE DE DE CE CE DE DE =+++-+ 2222222222BE CE DE AE DE AD =++=+=. 2222BD CD AD +=∴.七、用于求值例7 如图6,在ABC △中,2AB AC ==,BC 边上有100个不同的点12100P P P ,,…,, 记2(12100)i i i i m AP BP PC i =+= ,,…,,求12100m m m +++…的值. 分析:作ABC △的高AD ,利用勾股定理求出各个i m 的值是解决本题的关键. 解:作AD BC ⊥垂足为D , AB AC BD CD == ,∴. 设i BD CD y DP x ===,,则222()()i i i i i m AP BP PC AP y x y x =++=+-+2222224iAP x y AD y AC =-+=+==.图4BE图5i 图612100444400m m m +++=+++=个1004∴…….。

勾股定理及其逆定理应用

勾股定理及其逆定理应用

勾股定理及其逆定理应用1. 简介勾股定理是数学中的基本定理之一,描述了直角三角形中各边之间的关系。

勾股定理被广泛应用于几何学、物理学、工程学等领域,为解决实际问题提供了有力的工具。

除了勾股定理本身,其逆定理也有着广泛的应用价值。

本文将介绍勾股定理及其逆定理的基本原理和应用。

2. 勾股定理勾股定理是指在一个直角三角形中,直角边的平方等于两个直角边的平方之和。

数学表达式为:a^2 + b^2 = c^2其中,a和b分别表示直角三角形的两条直角边,c表示斜边长度。

该定理可以用来计算不知道的边长,或者验证一个三角形是否为直角三角形。

勾股定理的一个重要应用是解决实际问题中的测量和计算。

例如,在建筑工程中,可以利用勾股定理计算墙面的对角线长度,或者确定直角拐角的位置。

在导航系统中,可以利用勾股定理计算两个地点之间的直线距离。

此外,勾股定理还可以用于解决三角函数的关系,例如求解正弦、余弦和正切等。

3. 勾股定理的逆定理勾股定理的逆定理由三个整数构成,称为勾股数。

逆定理可以表示为:给定三个正整数a、b和c,若满足以下条件,则它们是勾股数:1.a、b和c两两互质;2.a、b和c中至少有一个为偶数。

勾股数具有很多有趣的性质和应用。

例如,利用勾股数可以构造出无穷多个满足勾股定理的直角三角形。

此外,逆定理还与数论中的素数有着密切的关系。

例如,勾股数中的c值是素数的情况下,其它两个整数a和b可以构成一个素勾股数。

4. 勾股定理的应用勾股定理被广泛应用于几何学和三角学中。

在几何学中,可以利用勾股定理求解三角形边长、角度和面积等问题。

在三角学中,勾股定理的衍生形式被用于计算三角函数的值。

在物理学中,勾股定理用于计算物体的速度、加速度和力的分解。

在工程学中,勾股定理被应用于设计和计算建筑物、桥梁和机械等。

例如,计算机图形学中的三维模型投影和旋转操作都离不开勾股定理。

此外,勾股定理还在实际生活中的测量和定位中发挥着重要作用。

例如,在测量地理位置时,可以利用勾股定理计算两个地点之间的直线距离。

勾股定理的逆定理的应用

勾股定理的逆定理的应用

勾股定理的逆定理的应用一、判断三角形是否是直角三角形例1:在△ABC 中,a=22n m -,b=2mn ,c=22n m +,其中m ,n 是正整数,且m >n ,试判断△ABC 是否是直角三角形.分析:本题中已给出三角形的三边长,判断该三角形是否是直角三角形,只需直接运用勾股定理的逆定理就可以了,但关键是确定最大边.解:∵m,n 是正整数,且m >n , ∴c >b,c >a .∴22422422222242)2()(n m n n m m mn n m b a ++-=+-=+ =42242n n m m ++.又∵=+=2222)(n m c 42242n n m m ++, ∴222c b a =+.∴△ABC 是直角三角形.说明:勾股定理的逆定理是直角三角形的判定方法之一,利用它判断一个三角形是否是直角三角形的步骤是:⑴确定最大边(不妨设为c );⑵计算2c 与22b a +的值;⑶比较2c 与22b a +是否相等,若相等,则此三角形是直角三角形.二、根据等式变形,确定三角形三边之间的关系,从而判断三角形的形状.例2:若△ABC 的三边长a,b,c 满足条件,201612200222c b a c b a ++=+++试判断的△ABC 形状.分析:由条件等式来判断三角形的形状,就是将已知的条件等式变形,再根据它的结构特点,得出a,b,c 的关系,从而判断三角形的形状.解:由已知得,0200201612222=+---++c b a c b a ∴,0)10020()6416()3612(222=+-++-++-c c b b a a ∴()()()01086222=-+-+-c b a .∵()()()010,08,06222≥-≥-≥-c b a∴a-6=0,b-8=0,c-10=0.∴a=6,b=8,c=10.∴22222210100643686c b a ===+=+=+. ∴△ABC 是直角三角形.说明:在此类题中,要判断的三角形一般都是特殊的三角形,如等边三角形、等腰三角形、直角三角形、等腰直角三角形,解这类题时,要善于把已知的条件等式变形(配方或因式分解等).三、与勾股定理的综合应用例3:如图1,已知:在正方形ABCD 中,E 是BC 中点,F 在AB 上,且BF=41AB . ⑴请你判断EF 与DE 的位置关系,与同学交流,并说明理由; ⑵若此正方形的面积为16,求DF 的长.分析:平面内两直线的位置关系有两种:平行和相交,EF 和DE 都过E 点,说明它们相交,如只考虑相交还不够,需考虑相交的特殊情况——垂直,从图中观察EF 与DE 是垂直的,故连接DF ,设正方形边长为a ,利用勾股定理,用2a 分别表示222,,DF EF DE ,再利用逆定理判断△DFE 为直角三角形,由此得到EF ⊥DE .解:(1)EF 与DE 垂直,即EF ⊥DE . 设正方形边长为a ,则AD=DC=a,AF=43a,BE=EC=21a . 在Rt △DAF 中,22222222162516943a a a a a AF AD DF =+=⎪⎭⎫⎝⎛+=+=.在Rt △CDE 中,22222222454121a a a a a CE CD DE =+=⎪⎭⎫⎝⎛+=+=.在Rt △EFB 中, 22222222165411612141a a a a a BE FB EF =+=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=+=.∵,162516545222222DF a a a EF DE ==+=+ ∴△DFE 为直角三角形, ∴EF ⊥DE .(2)∵正方形的面积为16,∴2a =16. ∵,25161625162522=⨯==a DF ∴DF=5.说明:此题是勾股定理与逆定理的综合运用,解此题关键是:连接DF构造了一个三角图1形,因此解题时应灵活运用所学知识.例4:在四边形ABCD 中,AB=3,BC=4,CD=12,AD=13,∠B=090,求四边形ABCD 的面积. 分析:由AB=3,BC=4, ∠B=090,想到连接AC,则Rt △ABC 的面积可求,且可求出AC 的长,因此在△ACD 中,三边长已知,欲求面积,想到它是不是直角三角形,因此用勾股定理的逆定理进行判断.解:连接AC, ∵AB=3,BC=4,∠B=090, ∴,25222=+=BC AB AC ∴AC=5. 在△ACD中,由勾股定理得169144251252222=+=+=+CD AC .而,1691322==AD ∴=+22CD AC 2AD .∴∠ACD=090,∴△ACD 是直角三角形. ∴.3012521,64321=⨯⨯==⨯⨯=∆∆ACD ABC S S ∴四边形ABCD 的面积为.36=+∆∆ACD ABC S S说明:本题综合运用了勾股定理及其逆定理,将不规则图形转化为规则图形是常用的数学方法,在这里,一方面要熟记常用的勾股数;另一方面要注意到:如果一个三角形的三边长已知或具有某些比例关系,那么就可以用勾股定理的逆定理去验证其是否是直角三角形.图2勾股定理的实际应用举例许多生活中的实际问题都可以转化为一个直角三角形问题,因此,勾股定理不仅在数学中,而且在其他自然科学中也被广泛的应用.下面我们举几例,供同学们复习时参考.例1 一艘轮船以每小时16海里的速度离开港口向南偏东450方向航行,另一艘轮船在同时以每小时12海里的速度向南偏西450方向航行,它们离开港口一个半小时后相距多远?分析:依据题意可画出如图1所示的示意图,可知∠AOB=900. 解:在Rt △AOB 中,因为OA=16×1.5=24,OB=12×1.5=18. 所以AB 2=OA 2+OB 2=242+182=900.所以AB=30.30海里.例2 如图2,美伊战争期间,美军运输车队计划沿由东向西延伸的公路L 向巴格达前线供应军用物资,一支先头小分队奉总部之命沿公路侦查敌情.当行至A 地时,测得一伊军炮兵阵地P 的方位是北偏西300,行至B 地时,测得P 地方位是北偏东300,继续前进到C 地,测得P 地方位是北偏东600,在C 地俘虏一名伊军士兵,得知C 、B 两地之间的距离不会超过10千米,并获得可靠情报:P 地伊方炮火的射程半径是9千米.根据以上数据,请问美侦察兵能否判断运输车队沿公路通行的安全性.分析:美军运输队沿公路行进的安全性决定于L 公路是否在P 地伊军炮火射程之内,即取决于P 地到L 公路的距离是多少,可以过P 作PD ⊥L ,垂足为D ,再将PD 放在直角三角形中球队,然后比较其与9千米的大小.解:(一)先按BC=10千米计算:连结PA 、PB 、PC ,作PD ⊥L ,垂足为D ,如图37,根据三次测得的方位角可知∠PAB=∠PBA=600,图1东北西南APB C60300 300图2L所以△PBA为等边三角形,∠PCB=300,所以△PBC为等腰三角形,从而AB=PB=BC=10(千米),进一步可得BD=210=5(千米).在Rt△PBD中,PD2=PB2-BD2=100-25=75,因为75<92=81,所以公路上点D在伊军炮火射程之内.(二)若BC<10(千米),则Rt△PBD中PB就小于10千米,BD就小于5千米,因而PD也相应缩小,致使D点更靠近伊军阵地.总之,美军运输车队沿L公路通行缺乏安全性.勾股定理与最短距离勾股定理的应用是非常广泛的,它可以帮助我们解决许多问题,在求几何体表面上两点之间的最短距离时,我们可以通过把立体图形展成平面图形,利用勾股定理求出几何体表面上两点之间的最短距离.下面举例说明勾股定理在解决这类问题时的应用.例1如图1,有一个“顽皮虫”想从点A沿棱长为1cm的正方体的表面爬到点B,求它所爬过的最短路程.析解:欲求正方体表面上点A与点B的最短路程,直接求解有困难,我们把以点A与点B为顶点的相邻的某两个正方形展开,得到一个长方形(如图2),由“两点之间线段最短”可知,“顽皮虫”在正方体表面上从点A爬到点B的最短路程是图2中线段AB的长.由勾股定理得,22215AB=+=cm).故“顽皮虫”5.例2如图3,有一圆柱,它的高等于12cm,底面半径等于6cm,在圆柱的下底面A图3ABCP600600300D点处有一只小蚂蚁,它想吃到上底面B 点(距D 点14圆处)处的食物,需要爬行的最短距离是多少?(π取3)析解:利用展开图将圆柱的侧面展开(如图4),易知蚂蚁在圆柱的表面上从A 点爬到B 点所经过的最短路程是图4中线段AB 的长.由条件知,底面圆的周长=2π×6=2×3×6=36(cm ),所以13694BD =⨯=(cm ).由勾股定理知,2212915AB =+=(cm ).故小蚂蚁需要爬行的最短距离是15cm .例3 如图5,圆柱形玻璃容器的高为18cm ,底面周长为60cm ,在外侧距下底1cm 的点S 处有一只蜘蛛,在与蜘蛛相对的圆柱形容器的上口外侧距上口1cm 的点F 处有一只苍蝇,试求急于捕获苍蝇充饥的蜘蛛需要爬行的最短距离.析解:将圆柱的侧面展开得到它的侧面展开图(如图6),CD ∥AB ,且AD =BC =12底面周长,BS =DF =1cm.则蜘蛛所走的最短路线的长度即为线段SF 的长度.过S 点作SM ⊥CD ,垂足为M 点,由条件知,SM =AD =12×60=30,MC =SB =DF =1cm ,所以MF =18-1-1=16cm ,在 Rt △MFS 中,由勾股定理得22163034SF =+=(cm ).故蜘蛛需要爬行的最短距离是34cm .评注:解决几何体表面上两点之间的最短距离问题的关键是要设法把立体图形转化为平面图形,然后再利用勾股定理求出最短距离.。

勾股定理应用

勾股定理应用

一、勾股定理的逆定理:1. 逆定理:如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状。

在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角。

二. 实际应用定理中的注意问题:1、定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边2、勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形三、勾股定理逆定理的几种典型应用:例题1如图,△ABC 中,AB=15,AC=8,AD 是中线,且AD=8.5,则BC的长为( )A .15 B .16 C .17 D .18例题2 勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=2,AC=3,则D ,E ,F ,G ,H ,I 都在长方形KLMJ 的边上,则长方形KLMJ 的面积为( )A .50B .52C .54D .56利用勾股定理计算角度实例:如图,点E 是正方形ABCD 内的一点,连接AE 、BE 、CE ,将△ABE 绕点B 顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3,则∠BE′C= 度.开放性试题发挥主观能动性,答案不唯一。

八年级数学下册教学课件《勾股定理的逆定理的应用》

八年级数学下册教学课件《勾股定理的逆定理的应用》

(2)a = 41 ,b = 4,c = 5;
∵b2 + c2 = 42 + 52 = 16 + 24 = 41,a2 = ( 41 )2 = 41, ∴b2 + c2 = a2.
由勾股定理的逆定理知这个三角形是直角三角形.
(3)a = 5 ,b = 1,c = 3 ;
4
4
∵b2 + c2 = 12 + ( 3 )2 = 1 + 9 = 25,a2 = ( 5 )2 = 25 ,
由勾股定理得:EF2 = EC2 + FC2 = 5x2,
B
E
C
AE2 = AB2 + BE2 = 20x2,AF2 = AD2 + DF2 = 25x2 = 25x2,
∴EF2 + AE2 = 25x2 = AF2.
由勾股定理的逆定理知,∠AEF = 90°.
拓广探索 【选自教材 P34】
7. 我们知道 3,4,5 是一组勾股数,那么 3k,4k,5k (k 是正整数)也是一组勾股数吗?一般地,如果 a,b, c 是一组勾股数,那么 ak,bk,ck(k 是正整数)也是 一组勾股数吗?
课堂小结
勾股理的 逆定理
判断一个三角形是不是直角三角形 判断航行方向 计算不规则四边形面积
综合运用 【选自教材 P34】
4. 在△ABC 中,AB =13,BC = 10,BC 边上的中线
AD =12. 求 AC.
解:在△ABD中,BD =
1 2
BC
=
5.
AD
=
12,AB
=
13.
∵BD2 + AD2 = 52 + 122 = 25 + 144 =169,

第10讲 勾股定理逆定理及简单应用(3种题型)(原卷版)-【暑假自学课】2024年新八年级数学暑假精

第10讲 勾股定理逆定理及简单应用(3种题型)(原卷版)-【暑假自学课】2024年新八年级数学暑假精

第10讲勾股定理逆定理及简单应用(3种题型)1. 掌握勾股定理的逆定理及其应用.理解原命题与其逆命题,原定理与其逆定理的概念及它们之间的关系.2. 能利用勾股定理的逆定理,由三边之长判断一个三角形是否是直角三角形.3. 能够理解勾股定理及逆定理的区别与联系,掌握它们的应用范围.一.勾股定理的逆定理(1)勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.说明:①勾股定理的逆定理验证利用了三角形的全等.②勾股定理的逆定理将数转化为形,作用是判断一个三角形是不是直角三角形.必须满足较小两边平方的和等于最大边的平方才能做出判断.(2)运用勾股定理的逆定理解决问题的实质就是判断一个角是不是直角.然后进一步结合其他已知条件来解决问题.注意:要判断一个角是不是直角,先要构造出三角形,然后知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.二.勾股数勾股数:满足a2+b2=c2的三个正整数,称为勾股数.说明:①三个数必须是正整数,例如:2.5、6、6.5满足a2+b2=c2,但是它们不是正整数,所以它们不是够勾股数.②一组勾股数扩大相同的整数倍得到三个数仍是一组勾股数.③记住常用的勾股数再做题可以提高速度.如:3,4,5;6,8,10;5,12,13;…三.勾股定理的应用(1)在不规则的几何图形中,通常添加辅助线得到直角三角形.(2)在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.(3)常见的类型:①勾股定理在几何中的应用:利用勾股定理求几何图形的面积和有关线段的长度.②由勾股定理演变的结论:分别以一个直角三角形的三边为边长向外作正多边形,以斜边为边长的多边形的面积等于以直角边为边长的多边形的面积和.③勾股定理在实际问题中的应用:运用勾股定理的数学模型解决现实世界的实际问题.④勾股定理在数轴上表示无理数的应用:利用勾股定理把一个无理数表示成直角边是两个正整数的直角三角形的斜边.一.勾股定理的逆定理1.(2022秋•句容市期末)已知△ABC中,a、b、c分别是∠A、∠B、∠C的对边,下列条件不能判断△ABC是直角三角形的是()A.∠A﹣∠B=∠C B.∠A:∠B:∠C=3:4:5C.(b+c)(b﹣c)=a2D.a=7,b=24,c=252.(2022秋•阜宁县期末)下列条件中,不能判断△ABC为直角三角形的是()A.a2=1,b2=2,c2=3B.a:b:c=3:4:5C.∠A+∠B=∠C D.∠A:∠B:∠C=3:4:53.(2022秋•大丰区期末)如图,在Rt△ABC中,∠BCA=90°,AC=12,AB=13,点D是Rt△ABC外一点,连接DC,DB,且CD=4,BD=3.(1)求BC的长;(2)求证:△BCD是直角三角形.4.(2022秋•南通期末)下列各组数中能作为直角三角形三边长度的是()A.1,2,3B.2,3,4C.3,4,5D.4,5,85.(2022秋•玄武区期末)如图,在5×5的正方形网格中,已知线段a,b和点P,且线段的端点和点P 都在格点上,在网格中找一格点Q,使线段a,b,PQ恰好能构成直角三角形,则满足条件的格点Q有()A.2个B.3个C.4个D.5个6.(2022秋•兴化市期末)一个三角形三边长为15、20、25,则三角形的面积为.7.(2022秋•丹徒区期末)若三角形的边长分别为5cm、12cm、13cm,则它的最长边上的中线为cm.8.(2022秋•邗江区期末)如图所示,在△ABC中,AC=13,BC=20,CD=12,AD=5.求:(1)BD的长;(2)△ABC的面积.9.(2022秋•太仓市期末)如图,△ABC中,AD⊥BC,垂足为D,BD=1,AD=2,CD=4.(1)求证:∠BAC=90°;(2)点P为BC上一点,连接AP,若△ABP为等腰三角形,求BP的长.二.勾股数10.(2022秋•泰兴市期末)下列四组数中,是勾股数的是()A.0.3,0.4,0.5B.32,42,52C.3,4,5D.11.(2022秋•宿豫区期中)下列各组数中不是勾股数的是()A.3,4,5B.4,5,6C.6,8,10D.11,60,6112.(2022秋•盐都区期中)观察下列勾股数组:①3,4,5;②5,12,13;③7,24,25;④9,40,41;….若a,144,145是其中的一组勾股数,则根据你发现的规律,a=.(提示:5=,13=,…)13.(2022秋•铜山区期中)若m、n为整数,且m>n>1,a=m2﹣n2,b=2mn,c=m2+n2.请你证明a、b、c为勾股数.14.(2022秋•工业园区校级期中)如果直角三角形的三边的长都是正整数,这样的三个正整数叫做勾股数组.我国清代数学家罗士琳对勾股数组进行了深入研究,提出了各种有关公式400多个.他提出:当m,n 为正整数,且m>n时,m2﹣n2,2mn,m2+n2为一组勾股数组,直到现在,人们都普遍采用他的这一公式.(1)除勾股数3,4,5外,请再写出两组勾股数组,;(2)若令x=m2﹣n2,y=2mn,z=m2+n2,请你证明x,y,z为一组勾股数.15.(2022秋•盱眙县期末)我们学习了勾股定理后,都知道“勾三、股四、弦五”.观察:3、4、5;5、12、13;7、24、25;9、40、41;…,发现这些勾股数的勾都是奇数,且从3起就没有间断过.(1)请你根据上述的规律写出下一组勾股数:;(2)若第一个数用字母n(n为奇数,且n≥3)表示,那么后两个数用含n的代数式分别表示为和,请用所学知识说明它们是一组勾股数.16.(2022秋•高邮市期中)课堂上学习了勾股定理后,知道“勾三、股四、弦五”.王老师给出一组数让学生观察:3、4、5;5、12、13;7、24、25;9、40、41;…,学生发现这些勾股数的勾都是奇数,且从3起就没有间断过,于是王老师提出以下问题让学生解决.(1)请你根据上述的规律写出下一组勾股数:11、、;(2)若第一个数用字母a(a为奇数,且a≥3)表示,那么后两个数用含a的代数式分别怎么表示?聪明的小明发现每组第二个数有这样的规律:4=,12=,24=……,则用含a的代数式表示每组第二个数和第三个数分别为、;(3)用所学知识加以说明.17.(2022秋•灌南县期中)【知识背景】我国古代把直角三角形较短的直角边称为“勾”,较长的直角边称为“股”,斜边称为“弦”.据《周髀算经》记载,公元前1000多年就发现了“勾三股四弦五”的结论.像3、4、5这样为三边长能构成直角三角形的3个正整数,称为勾股数.请你观察下列三组勾股数:(3,4,5);(5,12,13);(7,24,25)…分析其中的规律,可以发现这些勾股数的勾都是奇数,且从3起就没有间断过.当勾为3时,股4=×(9﹣1),弦5=×(9+1);当勾为5时,股12=×(25﹣1),弦13=×(25+1);当勾为7时,股24=×(49﹣1),弦25=×(49+1).(1)如果勾用n(n≥3,且n为奇数)表示时,请用含有n的式子表示股和弦,则股=,弦=,则据此规律第四组勾股数是.(2)若a=m2﹣1,b=2m,c=m2+1,其中m>1且m是整数.求证:以a,b,c为边的△ABC是直角三角形.18.(2022秋•江都区期中)同学们都知道,凡是可以构成一个直角三角形三边的一组正整数,称之为“勾股数”.比如3,4,5或11,60,61等.(1)请你写出另外两组勾股数:6,,;7,,;(2)清朝的扬州籍数学家罗士琳提出了四个构造勾股数的法则,其中有两个法则如下:(I)如果k是大于1的奇数,那么k,,是一组勾股数(Ⅱ)如果k是大于2的偶数,那么k,,是一组勾股数①如果在一组勾股数中,其中有一个数为12,根据法则(I)求出另外两个数;②请你任选其中一个法则证明它的正确性.三.勾股定理的应用19.(2022秋•句容市期末)在《九章算术》中有一个问题(如图):今有竹高一丈(一丈=10尺),末折抵地,去本三尺(竹梢触地面处离竹根3尺),问:折者高尺.20.(2022秋•无锡期末)如图,长为2.5m的梯子靠在墙上,梯子的底端离墙脚线的距离为1.5m,则梯子顶端的高度h是()A.1.8m B.2m C.2.2m D.2.4m21.(2022秋•广陵区校级期末)一种盛饮料的圆柱形杯,测得内部底面半径为2.5cm,高为12cm,吸管放进杯里(如图所示),杯口外面至少要露出3.6cm,为节省材料,管长a的取值范围是cm.22.(2022秋•江都区期末)看着冉冉升起的五星红旗,你们是否想过旗杆到底有多高呢?某数学兴趣小组为了测量旗杆高度,进行以下操作:如图1,先将升旗的绳子拉到旗杆底端,发现绳子末端刚好接触到地面;如图2,再将绳子末端拉到距离旗杆8m处,发现绳子末端距离地面2m.请根据以上测量情况,计算旗杆的高度.23.(2022秋•泰兴市期末)如图,某渡船从点B处沿着与河岸垂直的路线AB横渡,由于受水流的影响,实际沿着BC航行,上岸地点C与欲到达地点A相距70米,结果发现BC比河宽AB多10米,求该河的宽度AB.(两岸可近似看作平行)24.(2022秋•徐州期末)《九章算术》卷九中记载:今有立木,系索其末,委地三尺,引索却行,去本八尺而索尽,问索长几何?译文:今有一竖立着的木柱,在木柱的上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺,牵着绳索(绳索头与地面接触)退行,在距木柱根部8尺处时绳索用尽,问绳索长是多少?25.(2022秋•常州期末)数学兴趣小组要测量旗杆的高度,同学们发现系在旗杆顶端A的绳子沿旗杆垂到地面时,测得多出部分BC的长为2m(如图1),再将绳子拉直(如图2),测得绳子末端的位置D到旗杆底部B的距离为6m,求旗杆AB的长.26.(2022秋•建邺区期末)如图,点A处的居民楼与马路相距14m,当居民楼与马路上行驶的汽车距离小于50m时就会受到噪声污染,若汽车以15m/s的速度行驶经过,那么会给这栋居民楼带来多长时间的噪声污染?27.(2022秋•广陵区校级期末)如图,有一架秋千,当它静止在AD的位置时,踏板离地的垂直高度为0.6m,将秋千AD往前推送3m,到达AB的位置,此时,秋千的踏板离地的垂直高度为1.6m,秋千的绳索始终保持拉直的状态.(1)根据题意,BF=m,BC=m,CD=m;(2)根据(1)中求得的数据,求秋千的长度.(3)如果想要踏板离地的垂直高度为2.6m时,需要将秋千AD往前推送m.28.(2022秋•兴化市期末)如图是一个长方形的大门,小强拿着一根竹竿要通过大门.他把竹竿竖放,发现竹竿比大门高1尺;然后他把竹竿斜放,竹竿恰好等于大门的对角线的长.已知大门宽4尺,请求出竹竿的长.29.(2022秋•亭湖区期末)一个零件的形状如图所示,工人师傅按规定做得∠B=90°,AB=3,BC=4,CD=12,AD=13,假如这是一块钢板,你能帮工人师傅计算一下这块钢板的面积吗?一.选择题1.(2023•广陵区一模)如图,有四个三角形,各有一边长为6,一边长为8,若第三边分别为6,8,10,12,则面积最大的三角形是()A.B.C.D.2.(2022秋•如皋市校级期末)以下列长度的三条线段为边,能组成直角三角形的是()A.2,4,5B.4,5,6C.6,12,13D.9,12,153.(2022秋•相城区校级月考)如图,△ABC中,AC=6,BC=8,AB=10.AD为△ABC的角平分线,CD的长度为()A.2B.C.3D.4.(2022秋•邗江区期中)下列各组数中,是勾股数的一组是()A.0.3,0.4,0.5B.8,15,17C.D.3,4,45.(2022秋•句容市期中)在△ABC中,∠A、∠B、∠C的对边分别为a、b、c,下列条件能判断△ABC 不是直角三角形的是()A.∠B=∠C+∠A B.a2=(b+c)(b﹣c)C.a=1.5,b=2,c=2.5D.a=9,b=23,c=256.(2021秋•泗阳县期中)下列各组数中,哪一组是勾股数()A.1,1,2B.6,8,10C.32,42,52D.7,12,15二.填空题7.(2022秋•天宁区校级期中)【教材例题】判断由线段a.b,c组成的三角形是不是直角三角形:a=13,b=14,c=15.解:因为132+142=169+196=365,152=225.所以132+142≠152,根据,这个三角形不是直角三角形.8.(2022秋•沭阳县期中)已知a、b、c是一个三角形的三边长,如果满足(a﹣3)2+|b﹣4|+(c﹣5)2=0,则这个三角形的面积为.9.(2022秋•秦淮区校级月考)若三角形三边满足a:b:c=3:4:5,且三角形周长为24cm,则这个三角形最长边上的高为.10.(2022秋•江阴市期中)《算法统宗》是中国古代数学名著,作者是我国明代数学家程大位.在《算法统宗》中有一道“荡秋千”的问题:“平地秋千未起,踏板一尺离地.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几?”译文:“有一架秋千,当它静止时,踏板离地1尺,将它往前推送10尺(水平距离)时,秋千的踏板就和人一样高,这个人的身高为5尺,秋千的绳索始终拉得很直(如图所示),试问绳索有多长?”.根据题意求出绳索的长为尺.11.(2022秋•梁溪区校级期中)《九章算术》中记载着这样一个问题:已知甲乙两人同时从同一地点出发,甲的速度为每单位时间走7步,乙的速度为每单位时间走3步,乙一直向东走,甲先向南走10步,后又斜向北偏东方向走了一段后与乙相遇,那么相遇时,甲、乙各走了多远?解:如图,设甲乙两人从出发到相遇用了x个单位时间.根据勾股定理可列得方程为.12.(2022秋•句容市期末)已知△ABC的三边长分别为3、4、5,则最长边上的中线长为.13.(2022秋•金湖县期中)在如图所示的正方形网格中,△ABC的顶点A、B、C都是网格线的交点,则△ABC的外角∠ACD等于°.14.(2022秋•连云港期中)如图,一根竹子原高10尺,中部有一处折断,竹梢触地面处离竹根3尺,试问折断处离地面多高?设折断处离地面的高为x尺,则可列方程为.(不用化简)15.(2021秋•邳州市期中)观察下列各组勾股数:(1)3,4,5;(2)5,12,13;(3)7,24,25;(4)9,40,41;…照此规律,将第n组勾股数按从小到大的顺序排列,排在中间的数,用含n的代数式可表示为.16.(2022秋•新吴区期中)《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(门槛的意思)一尺,不合二寸,问门广几何?题目的大致意思是:如图1、2(图2为图1的平面示意图),推开双门,双门间隙CD的距离为2寸,点C和点D距离门槛AB都是1尺(1尺=10寸),则AB的长是几寸?若设图中单扇门的宽AD=x寸,则可列方程为:.三.解答题17.(2022秋•赣榆区校级月考)如图2,是小朋友荡秋千的侧面示意图,静止时秋千位于铅垂线BD上,转轴B到地面的距离BD=2.5m.乐乐在荡秋千过程中,当秋千摆动到最高点A时,过点A作AC⊥BD于C,点A到地面的距离AE=1.5m(AE=CD),当他从A处摆动到A'处时,A'B=AB,若A'B⊥AB,作A'F⊥BD,垂足为F.求A′到BD的距离A'F.18.(2022秋•泗洪县期中)《西江月》中描述:平地秋千未起,踏板一尺离地,送行二步恰竿齐,五尺板高离地…;翻译成现代文为:如图,秋千OA静止的时候,踏板离地高一尺(AC=1尺)将它往前推进两步(EB=10尺),此时踏板升高离地五尺(BD=5尺),求秋千绳索OB的长度.18.(2022秋•涟水县期中)八年级的小明和小亮同学学习了“勾股定理”之后,为了测得如图所示风筝的高度CE,他们进行了如下操作:①测得BD=9米;(注:BD⊥CE)②根据手中剩余线的长度计算出风筝线BC=15米;③牵线放风筝的小明身高1.6米.求风筝的高度CE.20.(2022秋•鼓楼区期中)如图,货车卸货时支架侧面是Rt△ABC,已知AB=2.5m,AC=2m.求BC的长.21.(2022秋•江都区期中)如图,小明爸爸在鱼池边开了一块四边形土地种了一些蔬菜,爸爸让小明计算这块土地的面积,以便估算产量.小明测得AB=3m,AD=4m,CD=12m,BC=13m,又已知∠A=90°.求这块土地的面积.22.(2022秋•涟水县期中)如图,已知CD⊥AB,垂足为D,BD=1,CD=2,AD=4.求证:∠ACB=90°.23.(2021秋•句容市期中)观察下列各组勾股数有哪些规律:3,4,5;9,40,41;5,12,13;……;7,24,25;a,b,c.请解答:(1)当a=11时,求b,c的值;(2)判断21,220,221是否为一组勾股数?若是,请说明理由.24.(2020秋•盱眙县期中)【知识背景】我国古代把直角三角形较短的直角边称为“勾”,较长的直角边称为“股”,斜边称为“弦”.据《周髀算经》记载,公元前1000多年就发现了“勾三股四弦五”的结论.像3、4、5这样为三边长能构成直角三角形的3个正整数,称为勾股数.【应用举例】观察3,4,5;5,12,13;7,24,25;…可以发现这些勾股数的勾都是奇数,且从3起就没有间断过,当勾为3时,股4=,弦5=;当勾为5时,股12=,弦13=;当勾为7时,股24=,弦25=.请仿照上面三组样例,用发现的规律填空:(1)如果勾用n(n≥3,且n为奇数)表示时,请用含有n的式子表示股和弦,则股=,弦=.【问题解决】(2)古希腊的哲学家柏拉图也提出了构造勾股数组的公式.具体表述如下:如果a=2m,b=m2﹣1,c=m2+1(m为大于1的整数),则a、b、c为勾股数.请你证明柏拉图公式的正确性;(3)毕达哥拉斯在他找到的勾股数的表达式中发现弦与股的差为1,若用2a2+2a+1(a为任意正整数)表示勾股数中最大的一个数,请你找出另外两个数的表达式分别是多少?25.(2022秋•鼓楼区期中)已知:整式A=(n2﹣1)2+(2n)2,整式B>0.尝试化简整式A.发现A=B2,求整式B.联想由上可知,B2=(n2﹣1)2+(2n)2,当n>1时,n2﹣1,2n,B为直角三角形的三边长,如图.填写下表中B的值:直角三角形三边n2﹣12n B勾股数组Ⅰ/8勾股数组Ⅱ35/26.(2022秋•苏州期中)“三农”问题是关系国计民生的根本问题,实施乡村振兴战略是建设美丽中国的关键举措.如图,公路上A、B两点相距50km,C、D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=30km,CB=20km,现在要在公路AB上建一个土特产品市场E,使得C、D两村庄到市场E的距离相等,则市场E应建在距A多少千米处?并判断此时△DEC的形状,请说明理由.27.(2022秋•梁溪区期中)长清的园博园广场视野开阔,阻挡物少,成为不少市民放风筝的最佳场所,某校七年级(1)班的小明和小亮学习了“勾股定理”之后,为了测得风筝的垂直高度CE,他们进行了如下操作:①测得水平距离BD的长为15米;②根据手中剩余线的长度计算出风筝线BC的长为25米;③牵线放风筝的小明的身高为1.6米.(1)求风筝的垂直高度CE;(2)如果小明想风筝沿CD方向下降12米,则他应该往回收线多少米?28.(2021秋•江都区校级月考)满足a2+b2=c2的三个正整数,称为勾股数.(1)请把下列三组勾股数补充完整:①,8,10 ②5,,13 ③8,15,.(2)小敏发现,很多已经约去公因数的勾股数组中,都有一个数是偶数,如果将它写成2mn,那么另外两个数可以写成m2+n2,m2﹣n2,如4=2×2×1,5=22+12,3=22﹣12.请你帮小敏证明这三个数2mn,m2+n2,m2﹣n2是勾股数组.(3)如果21,72,75是满足上述小敏发现的规律的勾股数组,求m+n的值.29.(2021秋•东台市月考)一架方梯AB长25米,如图所示,斜靠在一面上:(1)若梯子底端离墙7米,这个梯子的顶端距地面有多高?(2)在(1)的条件下,如果梯子的顶端下滑了4米,那么梯子的底端在水平方向滑动了几米?30.(2022秋•姑苏区校级期中)“村村通”公路是我国的一项重要的民生工程,如图,A,B,C三个村都分别修建了一条互通公路,其中AB=BC,现要在公路BC边修建一个景点M(B,C,M在同一条直线上),为方便A村村民到达景点M,又修建了一条公路AM,测得AC=13千米,CM=5千米,AM=12千米.(1)判断△ACM的形状,并说明理由;(2)求公路AB的长.31.(2022秋•镇江期中)国庆节前,学校开展艺术节活动,小明站在距离教学楼(CD)35米的A处,操控一架无人机进行摄像,已知无人机在D点处显示的高度为距离地面30米,随后无人机沿直线匀速飞行到点E处悬停拍摄,此时显示距离地面10米,随后又沿着直线飞行到点B处悬停拍摄,此时正好位于小明的头项正上方(AB∥CD),且显示距离地面25米,已知无人机从点D匀速飞行到点E所用时间与它从点E匀速飞行到点B所用时间相同,你能求出无人机从点D到点E再到点B一共飞行了多少米吗?请写出相应计算过程.32.(2022秋•高新区校级月考)如图,在笔直的公路AB旁有一座山,从山另一边的C处到公路上的停靠站A的距离为15km,与公路上另一停靠站B的距离为20kn,停靠站A、B之间的距离为25km,为方便运输货物现要从公路AB上的D处开凿隧道修通一条公路到C处,且CD⊥AB.(1)求修建的公路CD的长;(2)若公路CD修通后,一辆货车从C处经过D点到B处的路程是多少?33.(2022秋•连云港期中)如图,一架2.5米长的梯子AB斜靠在竖直的AC上,这时点B到墙底端C的距离BC为0.7米.(1)求AC的值;(2)如果梯子的顶端沿墙面下滑0.4米,那么点B是否也向外移动0.4米?请通过计算说明.34.(2022秋•玄武区期中)如图,某人从A地到B地共有三条路可选,第一条路是从A到B,AB为10米,第二条路是从A经过C到达B地,AC为8米,BC为6米,第三条路是从A经过D地到B地共行走26米,若C、B、D刚好在一条直线上.(1)求证:∠C=90°;(2)求AD和BD的长.35.(2022秋•东海县期中)在创建“全国文明城市”期间,某小区在临街的拐角清理出了一块可以绿化的空地.如图,经技术人员的测量,已知AB=9m,BC=12m,CD=17m,AD=8m,∠ABC=90°.若平均每平方米空地的绿化费用为100元,试计算绿化这片空地共需花费多少元?一.选择题1.下列各组数不是勾股数的是()A.3,4,5 B.5,12,13 C.7,24,25 D.0.6,0.8,12.如图,已知钓鱼竿AC的长为10m,露在水面上的鱼线BC长为6m,某钓鱼者想看看鱼钩上的情况,把鱼竿AC转动到AC'的位置,此时露在水面上的鱼线B'C'为8m,则BB'的长为()A.1m B.2m C.3m D.4m3.一座建筑物发生了火灾,消防车到达现场后,发现最多只能靠近建筑物底端7米,消防车的云梯最大升长为25米,则云梯可以达该建筑物的最大高度是()A.16米B.20米C.24米D.25米4.在《九章算术》中有一个问题(如图):今有竹高一丈,末折抵地,去本三尺,问折者高几何?它的意思是:一根竹子原高一丈(10尺),中部一处折断,竹梢触地面处离竹根3尺,试问折断处离地面()尺.A.4 B.3.6 C.4.5 D.4.555.如图,有一个水池,水面是一个边长为14尺的正方形,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面.则水的深度是()A.15尺B.24尺C.25尺D.28尺二.填空题6.如图,△ABC中,∠C=90°,AD平分∠BAC,AB=6,CD=2,则△ABD的面积是.7.若三角形的边长分别为6、8、10,则它的最长边上的中线为.8.如图,《九章算术》中记载:今有立木,系索其末,委地三尺,引索却行,去本八尺而索尽.问索长几何.译文:今有一竖直着的木柱,在木柱的上端系有绳索,绳索从木柱的上端顺木柱下垂后堆在地面的部分有三尺(绳索比木柱长3尺),牵着绳索退行,在距木柱底部8尺(BC=8)处时而绳索用尽.则木柱长为尺.9.一根竹子高一丈,折断后竹子顶端落在离竹子底端3尺处,则折断处离地面的高度是尺.(这是我国古代数学著作《九章算术》中的一个问题其中的丈、尺是长度单位,1丈=10尺.)10.在一棵树的5米高B处有两个猴子为抢吃池塘边水果,一只猴子爬下树跑到A处(离树10米)的池塘边.另一只爬到树顶D后直接跃到A处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高米.11.已知△ABC中,AB=5,BC=8,BC边上的中线AD=3,则AC=.12.(2021秋•朝阳区校级期末)如图所示的网格是正方形网格,则∠P AB+∠PBA=°(点A,B,P 是网格线交点).13.如图,某自动感应门的正上方A处装着一个感应器,离地面的高度AB为2.5米,一名学生站在C处时,感应门自动打开了,此时这名学生离感应门的距离BC为1.2米,头顶离感应器的距离AD为1.5米,则这名学生身高CD为米.三.解答题14.如图,一个直径为20cm的杯子,在它的正中间竖直放一根小木棍,木棍露出杯子外2cm,当木棍倒向杯壁时(木棍底端不动),木棍顶端正好触到杯口,求木棍长度.15.如图,有一张四边形纸片ABCD,AB⊥BC.经测得AB=9cm,BC=12cm,CD=8cm,AD=17cm.(1)求A、C两点之间的距离.(2)求这张纸片的面积.16.如图,某人从点A划船横渡一条河,由于水流的影响,实际上岸地点C离欲到达点B有45m,已知他在水中实际划了75m,求该河流的宽度AB.17.如图,已知等腰△ABC的底边BC=10cm,D是腰AC上一点,且CD=6cm,BD=8cm.(1)判断△BCD的形状,并说明理由;(2)求△ABC的周长.18.如图,AD是△ABC的中线,DE⊥AC于点E,DF是△ABD的中线,且CE=2,DE=4,AE=8.(1)求证:∠ADC=90°;(2)求DF的长.19.如图,已知点C是线段BD上一点,∠B=∠D=90°,若AB=4,BC=3,CD=8,DE=6,AE2=125.(1)求AC、CE的长;(2)求证:∠ACE=90°.20.小东和小明要测量校园里的一块四边形场地ABCD(如图所示)的周长,其中边CD上有水池及建筑遮挡,没有办法直接测量其长度.小东经测量得知AB=AD=30米,∠A=60°,BC=40米,∠ABC=150°.小明说根据小东所得的数据可以求出四边形ABCD的周长.你同意小明的说法吗?若同意,请求出四边形ABCD的周长;若不同意,请说明理由.21.阜宁市民广场要对如图所示的一块空地进行草坪绿化,已知AD=4m,CD=3m,AD⊥DC,AB=13m,BC=12m,绿化草坪价格150元/米2.求这块地草坪绿化的价钱.。

勾股定理及其逆定理的运用课件

勾股定理及其逆定理的运用课件
力。
通过学习勾股定理及其逆定理,学生可 以培养出严密的逻辑思维和推理能力, 为后续的数学、物理、工程等学科的学
习打下坚实的基础。
学生可以从中领悟到数学与实际生活的 紧密联系,激发对数学的兴趣和热爱,
提高自主学习和探索的能力。
对实际应用的展望和期待
随着科技的发展和实际问题的复杂化,勾股定理及其逆定理的应用前景 将更加广阔。
度。
物理学
在物理学中,勾股定理可以用来解 决与直角三角形相关的力和运动问 题,例如单摆的运动和受力分析。
航海学
在航海学中,勾股定理可以用来计 算船只的航行距离和方向,以确保 航行安全。
02
逆定理的的逆定理是指,如果一 个三角形的三边满足勾股定理的 条件,那么这个三角形一定是直 角三角形。
条件限制不同
勾股定理适用于所有直角 三角形,而逆定理只适用 于已知一边和与之相对的 角为直角的三角形。
证明方法不同
勾股定理可以通过相似三 角形或面积法证明,而逆 定理通常通过反证法证明 。
定理与逆定理的互补之处
勾股定理是逆定理的前提
01
只有当满足勾股定理的条件时,一个三角形才可能是直角三角
形。
逆定理是勾股定理的延伸
02
勾股定理的逆定理是勾股定理的 一个重要应用,它可以帮助我们 判断一个三角形是否为直角三角 形。
逆定理的证明方法
勾股定理的逆定理可以通过反证法进 行证明。
然后通过构造一个直角三角形与三角 形ABC全等,并利用勾股定理证明假 设不成立,从而得出三角形ABC是直 角三角形的结论。
首先假设一个三角形ABC的三边满足 a²+b²=c²,但角C不是直角。
勾股定理及其逆定理的运用ppt课件
目录
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解:(1)AB= 5,AC= 13,AD=2 2,AE=2 5. (2)存在,线段AB,AC,AD可以构成直角三角形. 理由: ∵AB= 5,AD=2 2,AC= 13, ∴AD2+AB2=AC2, 由勾股定理的逆定理可知, 线段AB,AC,AD 可以构成直角三角形.
类型 6 勾股定理与它的逆定理的综合应用
21、怠惰是贫穷的制造厂。 22、先知三日,富贵十年。 23、自信是向成功迈出的第一步。——爱因斯 坦 24、一个人除非自己有信心,否则不能 带给别 人信心 ;已经 信服的 人,方 能使人 信服。 ——麦 修·阿诺 德 25、凡是挣扎过来的人都是真金不怕火 炼的; 任何幻 灭都不 能动摇 他们的 信仰: 因为他 们一开 始就知 道信仰 之路和 幸福之 路全然 不同, 而他们 是不能 选选择 的,只 有往这 条路走 ,别的 都是死 路。这 样的自 信不是 一朝一 夕所能 养成的 。你绝 不能以 此期待 那些十 五岁左 右的孩 子。在 得到这 个信念 之之前 ,先得 受尽悲 痛,流 尽眼泪 。可是 这样是 好的, 应该要 这样… …——罗 曼·罗 兰 26、一个人在科学探索的道路上,走过 弯路, 犯过错 误,并 不是坏 事,更 不是什 么耻辱 ,要在 实践中 勇于承 认和改 正错误 。——爱因斯 坦88我 们的理 想应该 是高尚 的。我 们不能 登上顶 峰,但 可以爬 上半山 腰,这 总比待 在平地 上要好 得多。 如果我 们的内 心为爱 的光辉 所照亮 ,我们 面前前 又有理 想,那 么就不 会有战 胜不了 的困难 。——普列姆 昌德 27、旁观者的姓3 勾股定理在最短路径中的应用
3.(中考·资阳)如图,透明的圆柱形容器(容器厚度忽略 不计)的高为12 cm,底面周长为10 cm,在容器内壁 离容器底部3 cm的点B处有一饭粒,此时一只蚂蚁 正好在容器外壁,且离容器上沿 3 cm的点A处,则蚂蚁吃到饭粒 需爬行的最短路径的长是( A ) A.13 cm B.2 61 cm C. 61 cm D.2 34 cm
10、涓滴之水终可磨损大石,不是由于 它力量 大,而 是由于 昼夜不 舍的滴 坠。只 有勤奋 不懈的 努力才 能够获 得那些 技巧, 因此, 我们可 以确切 地说: 说:不 积跬步 ,无以 致千里 。——贝多芬 11、一定要做最适合自己的事情,不要 迎合别 人的口 味而去 做一件 不属于 自我的 “难事 ”。一 旦“发 现自我 ”,就 要尽力 而为, 但要全 面了解 自己和 周围的 环境, 知道适 可而止 。 12、要有自信,然后全力以赴--假如具有 这种观 念,任 何事情 十之八 九都能 成功。 ——威 尔逊 13、莫找借口失败,只找理由成功。 14、一个有坚强心志的人,财产可以被 人掠夺 ,勇气 却不会 被人剥 夺的。 ——雨 果 15、积极的人在每一次忧患中都看到一 个机会 ,而消 极的人 则在每 个机会 都看到 某种忧 患。 16、不是境况造就人,而是人造就境况 。
第18章 勾股定理
18.2 勾股定理的逆定理
第2课时 勾股定理及其逆定理 的应用
名师点金
勾股定理及其逆定理的应用: 单一应用:先由勾股定理的逆定理得出直角三角形,再 求这个直角三角形的角和面积; 综合应用:先由勾股定理求出三角形的边长,再由勾股 定理的逆定理确定三角形的形状,进而解决其他问题; 逆向应用:如果一个三角形两条较小边长的平方和不等 于最大边长的平方,那么这个三角形不是直角三角形.
4.四周一片( ),听不到一点声响。 5.越是在紧张时刻,越要保持头脑的( )。
八、句子工厂。
1.世界上有多少人能亲睹她的风采呢? (陈述 句)
_________________________________ ______ ______ ______ ______ ______ ______ ______ 2.达·芬奇的“蒙娜丽莎”是全人类文 化宝库 中一颗 璀璨的 明珠。 (缩写 句子) ___________________________________ ______ ______ ______ ______ ______ ______ ____ 3.我在她面前只停留了短短的几分钟。 她已经 成了我 灵魂的 一部分 。(用 关联词 连成一 句话) __________________________________ ______ ______ ______ ______ ______ ______ _____
5、一个人在科学探索的道路上,走过弯 路,犯 过错误 ,并不 是坏事 ,更不 是什么 耻辱, 要在实 践中勇 于承认 和改正 错误。 ——爱 因斯坦 6、瓜是长大在营养肥料里的最甜,天才 是长在 恶性土 壤中的 最好。 ——培 根 7、发光并非太阳的专利,你也可以发光 。
8、人们常用“心有余而力不足”来为自 己不愿 努力而 开脱, 其实, 世上无 难事, 只怕有 心人, 积极的 思想几 乎能够 战胜世 间的一 切障碍 。 9、如果你希望成功,当以恒心为良友, 以经验 为参谋 ,以当 心为兄 弟,以 希望为 哨兵。 ——爱 迪生
D E, 解:在△ODP和△OEG中, OD OE,
∴△ODP≌△OEG.
DOP EOG,
∴OP=OG,PD=GE.
∴DG=EP.
设AP=EP=x,则GE=PD=6-x,DG=x,
∴CG=8-x,BG=8-(6-x)=2+x.
根据勾股定理得BC2+CG2=BG2.
即62+(8-x)2=(x+2)2,解得x=4.8,∴AP=4.8.
3、别想一下造出大海,必须先由小河川 开始。 4、自信是所有成功人士必备的素质之一 ,要想 成功, 首先必 须建立 起自信 心,而 你若想 在自己 内心建 立信心 ,即应 像洒扫 街道一 般,首 先将相 当于街 道上最 阴湿黑 暗之角 落的自 卑感清 除干净 ,然后 再种植 信心, 并加以 巩固。 信心建 立之后 ,新的 机会才 会随之 而来。
解:小明在河边B处取水后是沿南偏东60°方向行走的. 理由如下: ∵AB=60 m,BC=80 m,AC=100 m, ∴AB2+BC2=AC2. ∴∠ABC=90°. 又∵AD∥NM, ∴∠NBA=∠BAD=30°. ∴∠MBC=180°-90°-30°=60°. ∴小明在河边B处取水后是沿南偏东60°方向行走的.
类型 4 勾股定理的逆定理在判断方向中的应用
4.如图,小明的家位于一条南北走向的河流MN的东 侧A处,某一天小明从家出发沿南偏西30°方向走 60 m到达河边B处取水,然后 沿另一方向走80 m到达菜地C 处浇水,最后沿第三方向走 100 m回到家A处.问小明在 河边B处取水后是沿哪个方向 行走的?并说明理由.
解:∵AB2+BC2=62+82=100=102=AC2,
∴△ABC为直角三角形,
且∠ABC=90°.
∴S△ABC=
1 2
AB·BC,
∴ 1 AB·BC= 1 AC·BD,即
2
2
∴ 1 ×10·BD= 1 ×6×8,
2
2
解得BD=4.8.
1、世上没有绝望的处境,只有对处境 绝望的 人。 2、挑水如同武术,武术如同做人。循序 渐进, 逐步实 现目标 ,才能 避免许 多无谓 的挫折 。
类型 2 勾股定理在折叠中的应用
2.(中考·泰州)如图,长方形ABCD中,AB=8,BC = 6 , P 为 AD 上 一 点 , 将 △ ABP 沿 BP 翻 折 至 △EBP,PE,BE分别与CD相交于点O,G,且 OE=OD,求AP的长.
解: ∵四边形ABCD是长方形, ∴∠D=∠A=∠C=90°, AD=BC=6,CD=AB=8. 根据题意得△ABP≌△EBP, ∴EP=AP,∠E=∠A=90°,BE=AB=8.
类型 5 勾股定理的逆定理在判断构成直角三角形条件中的应用
5.如图,在4×3的正方形网格中有从点A出发的四 条线段AB,AC,AD,AE,它们的另一个端点B, C,D,E均在格点(正方形网格的交点)上.
(1)若每个正方形的边长都是1,分别求出AB,AC, AD,AE的长度(结果保留根号).
(2)在AB,AC,AD,AE四条线段中,是否存在三条 线段,使它们能构成直角三角形?如果存在,请 指出是哪三条线段,并说明理由.
类型 7 勾股定理及其逆定理在网格中的应用
7.如图是由边长为1的小正方形组成的网格,点A,B, C,D均在格点上.
(1)求四边形ABCD的面积. (2)你能判断AD与CD的位置关
系吗?请说出你的理由.
解:(1)如图,将四边形ABCD分成4个小直角三角形,发现
每个小直角三角形的面积恰好是其所在长方形(或正
17、在人生的竞赛场上,没有确立明确 目标的 人,是 不容易 得到成 功的。 许多人 并不乏 信心、 能力、 智力, 只是没 有确立 目标或 没有选 准目标 ,所以 没有走 上成功 的途径 。这道 理很简 单,正 如一位 百发百 中的神 射击手 ,如果 他漫无 目标地 乱射, 也不能 在比赛 中获胜 。 18、生活就像海洋,只有意志坚强的人 ,才能 到达彼 岸。——马克 思
8.如图,南北方向PQ以东为我国领海,以西为公海. 晚上10:28,我边防反偷渡巡逻101号艇在A处发现 其正西方向的C处有一艘可疑船只正向我国领海靠 近,便立即通知正在PQ上B处巡逻的103号艇注意 其动向.经检测,AC=10 n mile,AB=6 n mile, BC=8 n mile.若该可疑船只的速度为12.8 n mile/h, 则该可疑船只最早何时进入我国领海?
6.如图,点E是正方形ABCD内一点,连接AE,BE, CE,将△ABE绕点B顺时针旋转90°到△CBE′的 位置.若AE=1,BE=2,CE=3,求∠BE′C的度 数.
解:如图,连接EE′.
由题意可知△ABE≌△CBE′, ∴E′C=AE=1,BE′=BE=2, ∠ABE=∠CBE′. 又∵∠ABE+∠EBC=90°, ∴∠CBE′+∠EBC=90°, 即∠EBE′=90°,则由勾股定理,得EE′=2 2 . 在△EE′C中,EE′=2 2 ,E′C=1,EC=3. 由勾股定理的逆定理可知∠EE′C=90°. ∵BE=BE′,∠EBE′=90°, ∴∠BE′E= 180 2 90 =45°, ∴∠BE′C=∠BE′E+∠EE′C=45°+90°=135°.
相关文档
最新文档