基于ANSYS 的涡轴发动机组合压气机转子

基于ANSYS 的涡轴发动机组合压气机转子
基于ANSYS 的涡轴发动机组合压气机转子

2006年用户年会论文

1

基于ANSYS 的涡轴发动机组合压气机转子

参数化仿真系统开发

纪福森,吴铁鹰,陈伟

[南京航空航天大学 能源与动力学院,210016]

[ 摘 要 ] 本文分析了航空涡轴发动机组合压气机转子的结构特点和设计特点,并将近年来广泛提及的参

数化设计思想引入到组合压气机的设计分析中,利用ANSYS 提供的APDL(ANSYS Parametric

Design Language)和UIDL(User Interface Design Language)开发工具,开发了涡轴发动

机组合压气机参数化有限元分析系统。实现了某涡轴发动机组合压气机转子各级叶片、各级轮

盘、各级叶盘以及整级组件的全参数驱动的有限元建模及分析。

[ 关键词 ] 涡轴发动机,组合压气机,整体叶盘,参数化设计分析

Development of Parametric Simulation System of

Turbine Shaft Engine Combined Compressor Rotor

JiFusen, WuTieying, ChenWei

[Nanjing University of Aeronautics and Astronautics

College of Energy and Power Engineering, 210016]

[ Abstract ] In this paper, structural characteristic and design characteristic of turbine shaft engine

combined compressor rotor were analyzed, and the parametric design method was used in

the design and analysis of combined compressor rotor. By the tools of APDL (ANSYS

Parametric Design Language) and UIDL (User Interface Design Language), parametric finite

element analysis system of turbine shaft engine combined compressor rotor was developed.

At last, the complete parametric finite element model and analysis of blades, disks, blisks

and combined compressor rotor was realized.

[ Keyword ] turbine shaft engine, combined compressor, blisk, parametric design and analysis.

2006年用户年会论文

2

1 前言

参数化设计是一种解决设计约束问题的数学方法,它是在结构形状比较定型时,用一组参数来约定尺寸的关系,然后通过尺寸驱动达到改变结构形状的目的。参数化设计广泛应用于机械产品的建模中3]-[1。近年来开始将参数化的思想融入到有限元分析中,提出了基

于结构参数化的有限元分析[4]

。但是,由于只能进行几何模型的参数化,参数化程度比较浅。于是,提出了全参数驱动的有限元分析方法,即对有限元分析的前、后处理进行参数化,包括几何模型、有限元网格划分、约束边界条件、载荷、材料性能、单元类型、分析类型和后处理类型的参数化,自动化程度高,具有发展前途。

ANSYS 是目前少数几种支持参数化设计的有限元分析软件之一。ANSYS 功能强大、通用性好,同时还具有良好的开放性,用户可以根据具体需要在其标准版本上开发出具有行业分析特点的专用系统。ANSYS 提供了三种二次开发工具:参数化程序设计语言(APDL),通过该语言编制参数化有限元分析程序,实现有限元分析过程的全参数化驱动;用户界面设计语言(UIDL),通过该语言编写或改造ANSYS 图形界面,使其更符合行业分析特点;用户程序特性(UPFs),通过该语言可以从开发程序源代码的级别上扩充ANSYS 的功能。本文涡轴发动机组合压气机转子参数化有限元分析系统,其核心内容是参数化模型的定义和可变参数的有限元分析程序的编制,然后利用UIDL 语言开发系统操作界面,将各零部件的参数化有限元程序集成于ANSYS 环境。

2 涡轴发动机压气机结构特点和设计特点

涡轴发动机,是一种输出轴功率的涡轮喷气发动机。法国是最先研制涡轴发动机的国家。50年代初,透博梅卡公司研制成世界上第一台航空涡轮轴发动机,定名为“阿都斯特—l”。涡轴发动机的压气机结构形式,从纯轴流式、单级离心、双级离心到轴流与离心混装一起的组合式压气机。当前,直升机的涡轴发动机大多采用的是若干级轴流加一级离心所构成的组合压气机。例如,国产涡轴6、涡轴8发动机;“黑鹰”直升机上的T700发动机。涡轴发动机的轴流压气机大量采用整体结构,结构简单,零组件数量少。如将转子叶片和轮盘做成一体,形成叶盘结构。法国阿赫耶发动机,美国T700发动机均采用了整体叶盘结构。

2006年用户年会论文

3压气机的设计过程是一个气动设计和结构设计反复修正、协调、计算与实验的过程。

从压气机气动、结构设计流程图[6]中可以看出在两个过程中都存在着大量的结构强度分析的内容。此外,从流程图中还可以看出设计流程存在大量的反复性。作为航空涡轴发动机压气机转子这样一个复杂的系统,如果每一次结构设计方案的调整和结构强度的分析都是一个新的过程,其中的重复劳动量将是非常巨大的。于是,我们将参数化的设计分析方法引入到涡轴发动机组合压气机设计过程中,使得设计分析工作主要是各类零件结构形式的选择和具体参数的调整,以及对每种设计方案的结构强度分析。这样可以减少工作人员的工作量,缩短压气机的设计周期。

3参数化有限元分析模型的定义

对于涡轴发动机组合压气机这种复杂的非标准件,我们首先对其进行结构分解,可分为轴流轮盘、轴流叶片、离心轮盘、离心大小叶片。我们知道叶盘结构非常复杂,在定义几何参数时具有一定的难度,这样我们引入了特征结构的概念,按特征结构对其定义参数。

对叶盘结构进行特征分析,各种形式的轮盘都具有轮缘、腹板和轮毂三大基本特征,称之为基盘,其余形状则为辅助特征包括突缘、鼓筒、轴径、安装边、均布孔或安装孔、环槽及篦齿等[7]。基于这种思想我们对某轴流叶盘结构进行研究(图1),在满足分析要求的条件下,对结构进行适当简化并提取结构的几何参数(表1)。

图1 某轴流叶盘结构简图

2006年用户年会论文

4

表1 结构特征参数表 特征结构

特征参数 特征结构 特征参数 轮毂半径 腹板厚度 轮毂厚度

腹板 腹板高度

轮毂 轮毂倾角

轮缘大端加强环高 轮缘大端外半径 轮缘大端加强环长 轮缘大端厚度 轮缘小端加强环高 轮缘大端齿基体长 安装边 加强环 轮缘小端加强环长 轮缘长

轮毂过渡圆角 轮缘大端长度

腹板与轮毂过渡圆角 轮缘小端外半径

过渡圆角 腹板与轮缘过渡圆角 轮缘小端厚度

轮缘 轮缘小端齿基体长

叶片 叶片个数

表2有限元分析参数表 单元类型 轮盘网格控制参数 材料弹性模量 叶盘旋转速度 材料泊松比 有限元分析类型 材料密度

有限元后处理类型

有限元分

析参数 叶片网格控制参数 有限元分 析参数

4 APDL 参数化有限元分析方法

ANSYS 参数化有限元分析程序设计方法与步骤:

(1) 利用参数化设计思想, 根据模型的几何结构抽象出描述模型的特征参数, 并对实际模型在不影响精度的情况下适当简化。同时,设置单元类型、单元网格精度、材料参数等有限元分析参数。

(2) 用APDL 语言编制包含实体建模、分析过程、结果处理过程的有限元分析程序。

(3) 引入设计分析参数, 构成可变参数的有限元分析程序。

(4) 根据设计分析要求,将参数赋予具体的特征值,进行有限元分析。

2006年用户年会论文

5

这样,在进行结构设计分析时只需重复(4) 就可不断获得新的结果, 对于具体使用人员甚至无需了解有限元的具体分析过程与方法, 就可得到有限元分析结果。另外,根据设计要求我们可以增加各种分析功能和后处理功能,也可自己开发新的功能模块与ANSYS 集成,如开发新的优化算法程序等。

5 涡轴发动机组合压气机参数化仿真实例

在进行复杂零部件参数化设计分析时,首先,将复杂零部件按特征分解;然后引入模块拼合关系作为约束,建立零部件参数间函数关系,从而实现了复杂三维零部件实体模型的参数化设计分析。基于上述思想我们实现了涡轴发动机组合压气机转子的参数化仿真,其由三级轴流式,一级离心式叶盘组成。

图2 参数化有限元设计分析流程

2006年用户年会论文

6

图3 UIDL 开发的系统界面

图4轴流叶片有限元分析模型 图5轴流轮盘参数化有限元分析模型

图6轴流叶盘参数化有限元分析模型 图7 轴流叶盘参数化有限元分析等效应力

2006年用户年会论文

7图8组合压气机转子参数化有限元分析模型图9 参数化有限元分析等效应力

6结论

(1)将参数化设计思想引入到涡轴发动机组合压气机整体叶盘的设计分析中,设计人员每次只需调整具体结构参数及有限元分析参数,进行有限元计算。而无需进行重复建模,这样,节省了大量时间,可以缩短组合压气机的设计周期。

(2)参数化设计思想引入,使得设计人员,可以根据设计要求对各分结构进行有限元分析,如各级叶片、各级轮盘、各级叶盘等的有限元分析。

(3)在基于结构参数化的基础上,设计人员可以方便的进行结构的2D/3D优化设计。

(4)随着我们各种结构形式叶盘参数化模型库的丰富,设计人员只需根据设计要求选择某种结构,进行参数调整,即可组合成整个压气机进行分析,可以实现设计分析的半自动化。

[参考文献]

[1]王 坚,黄金国,向文等.参数化特征造型系统FMT[J].高技术通讯,1994.(7).

[2]平雪良,朱广平,周来水.一种新的参数化设计方法[J].东南大学学报,1997.27(5).

[3]陈德人.参数化设计模型与方法[J].浙江大学学报,1995.29(2).

[4]陈 伟,何 飞,温卫东.基于结构参数化的有限元分析方法[J].机械科学与技术,2003.6.

[5]黄菊花等.材料成形计算机模拟中的参数化有限元法[J].中国机械工程,2003.1.

[6]航空发动机设计手册(压气机分册).北京:航空工业出版社,2000.

[7]马 枚等.并行工程环境下基于约束的叶盘结构建模与分析[J].航空动力学报,1998.10.

轴流式压气机工作原理(伯努利方程)

进口、收缩器、导向叶片(导叶)、动叶片、转子、扩压器、出口 增压原理:伯努利方程,气体从进口流入压气机,经收缩器时流速得到初步提高,进口导向叶片使气流改为轴向,同时还起扩压管的作用,使压力有所提高。转子在外力作用下作高速转动,固装在转子上的动叶片推动气流,使气流获得很高的流速。高速气流进入导叶(静叶),气流动能降低而压力升高,相邻导叶叶片间的通道相当于一个扩压管。气体流经每一级连续进行类似的过程,使气体压力逐渐升高 伯努利方程:理想正压流体在有势体积力作用下作定常运动时,运动方程(即欧拉方程)沿流线积分而得到的表达运动流体机械能守恒的方程。因著名的瑞士科学家 D.伯努利于1738年提出而得名。对于重力场中的不可压缩均质流体,方程为: 式中p、ρ、v分别为流体的压强、密度和线性速度;h为铅垂高度;g为重力加速度;c为常量。 上式各项分别表示单位体积流体的压力能p、重力势能ρgh和动能(1/2)*ρv ^2,在沿流线运动过程中,总和保持不变,即总能量守恒。但各流线之间总能量(即上式中的常量值)可能不同。对于气体,可忽略重力,方程简化为p+(1/2)*ρv ^2=常量(p0),各项分别称为静压、动压和总压。显然,流动中速度增大,压强就减小;速度减小,压强就增大;速度降为零,压强就达到最大(理论上应等于总压)。飞机机翼产生举力,就在于下翼面速度低而压强大,上翼面速度高而压强小,因而合力向上。据此方程,测量流体的总压、静压即可求得速度,成为皮托管测速的原理。在无旋流动中,也可利用无旋条件积分欧拉方程而得到相同的结果但涵义不同,此时公式中的常量在全流场不变,表示各流线上流体有相同的总能量,方程适用于全流场任意两点之间。在粘性流动中,粘性摩擦力消耗机械能而产生热,机械能不守恒,推广使用伯努利方程时,应加进机械能损失项[1]。

基于ANSYS的机翼振动模态分析

机翼模型的振动模态分析 摘要:本文在ANSYS13.0平台上,采用有限元方法对机翼模态进行了建模和数值分析,为机翼翼型的设计和改进提供基础数据。 1.引言 高空长航时飞机近年来得到了世界的普遍重视。由于其对长航时性能的要求,这种飞机的机翼往往采用非常大的展弦比,且要求结构重量非常低。大展弦比和低重量的要求,往往使得这类结构受载时产生一系列气动弹性问题,这些问题构成飞行器设计和其它结构设计中的不利因素,解决气动弹性问题历来为飞机设计中的关键技术。颤振的发生与机翼结构的振动特性密切相关。通过对机翼模态的分析,可以获得机翼翼型在各阶频率下的模态,得出振动频率与应变之间的关系,从而可以改进设计,避免或减小机翼在使用过程中因为振动引起的变形。 同时,通过实践和实际应用,可以掌握有限元分析的方法和步骤,熟悉ANSYS有限元分析软件的建模和网格划分技巧和约束条件的确定,为以后进一步的学习和应用打下基础。 2.计算模型 一个简化的飞机机翼模型如图1所示,机翼的一端固定在机体上,另一端为悬空自由端,该机翼沿延翼方向为等厚度,有关的几何尺寸见图1。 图1.机翼模型简图 在分析过程采用直线段和样条曲线简化描述机翼的横截面形状,选取5个keypoint,A(0,0,0)为坐标原点,同时为翼型截面的尖点;B(0.05,0,0)为下表面轮廓截面直线上一点,同时是样条曲线BCDE的起点;D(0.0475,0.0125,0)为样曲线上一点。C(0.0575, 0.005,0)为样条曲线曲率最大点,样条曲线的顶点;点E(0.025,0.00625,0)与点A构成直线, 斜率为0.25。通过点A、B做直线和点B、C、D、E作样条曲线就构成了截面的形状,如图2。沿Z方向拉伸,就得到机翼的实体模型,如图1。

压气机转子叶片的故障分析与维护

提高发动机操纵系统可靠性的维修 【摘要】 在现代技术进步与之密切相关的最迫切的问题当中,压气机叶片质量和维护问题占据着主导的地位,起着十分重要的作用。 论文以维护发动机压气机叶片为目的,以发动机压气机转子叶片的组成,安装技术,压气机叶片的故障分析和各种故障的维修方式,以及常用典型发动机压气机叶片的维护作为主要内容,全面的根据发动机压气机叶片的故障特点对发动机压气机叶片的修理进行论述。 关键词:压气机转子叶片喷丸强化维修 Abstract: In the modern technological progress is closely related with the most pressing problem, compressor blade quality and maintenance problems to occupy a dominant position, plays a very important role. On the maintenance of the engine compressor blade for the purpose, with the engine compressor rotor blade is composed of compressor blade, installation technology, fault analysis and fault repair, as well as the typical engine compressor blade maintenance as the main content, comprehensive according to engine compressor blade fault characteristics of engine compressor blade repair are discussed. Key word:Aeroengine control system reliability maintenance

ansys模态分析及详细过程

压电变换器的自振频率分析及详细过程 1.模态分析的定义及其应用 模态分析用于确定设计结构或机器部件的振动特性(固有频率和振型),即结构的固有频率和振型,它们是承受动态载荷结构设计中的重要参数。同时,也可以作为其它动力学分析问题的起点,例如瞬态动力学分析、谐响应分析和谱分析,其中模态分析也是进行谱分析或模态叠加法谐响应分析或瞬态动力学分析所必需的前期分析过程。 ANSYS的模态分析可以对有预应力的结构进行模态分析和循环对称结构模态分析。前者有旋转的涡轮叶片等的模态分析,后者则允许在建立一部分循环对称结构的模型来完成对整个结构的模态分析。 ANSYS提供的模态提取方法有:子空间法(subspace)、分块法(block lancets),缩减法(reduced/householder)、动态提取法(power dynamics)、非对称法(unsymmetric),阻尼法(damped), QR阻尼法(QR damped)等,大多数分析都可使用子空间法、分块法、缩减法。 ANSYS的模态分析是线形分析,任何非线性特性,例如塑性、接触单元等,即使被定义了也将被忽略。 2.模态分析操作过程 一个典型的模态分析过程主要包括建模、模态求解、扩展模态以及观察结果四个步骤。 (1).建模 模态分析的建模过程与其他分析类型的建模过程是类似的,主要包括定义单元类型、单元实常数、材料性质、建立几何模型以及划分有限元网格等基本步骤。 (2).施加载荷和求解 包括指定分析类型、指定分析选项、施加约束、设置载荷选项,并进行固有频率的求解等。 指定分析类型,Main Menu- Solution-Analysis Type-New Analysis,选择Modal。 指定分析选项,Main Menu-Solution-Analysis Type-Analysis Options,选择MODOPT(模态提取方法〕,设置模态提取数量MXPAND. 定义主自由度,仅缩减法使用。 施加约束,Main Menu-Solution-Define Loads-Apply-Structural-Displacement。 求解,Main Menu-Solution-Solve-Current LS。 (3).扩展模态 如果要在POSTI中观察结果,必须先扩展模态,即将振型写入结果文件。过程包括重新进入求解器、激话扩展处理及其选项、指定载荷步选项、扩展处理等。 激活扩展处理及其选项,Main Menu-Solution-Load Step Opts-Expansionpass-Single Expand-Expand modes。 指定载荷步选项。 扩展处理,Main Menu-solution-Solve-Current LS。 注意:扩展模态可以如前述办法单独进行,也可以在施加载荷和求解阶段同时进行。本例即采用了后面的方法 (4).查看结果 模态分析的结果包括结构的频率、振型、相对应力和力等

最新航空发动机构造复习题

一、填空题(请把正确答案写在试卷有下划线的空格处) 容易题目 1. 航空涡轮发动机的五大部件为进气装置;压气机;燃烧室;涡轮和排气装置;其中“三大核心”部件为:压气机;燃烧室和涡轮。 2. 推力是发动机所有部件上气体轴向力的代数和。 3. 轴流式压气机转子的组成盘;鼓(轴)和叶片。 4. 压气机转子叶片的组成:叶身和榫头。 5. 压气机叶片的榫头联结形式有销钉式榫头;燕尾式榫头;和枞树形榫头。 6. 压气机静子的固定形式T形(或者燕尾形)榫头;柱形榫头和焊接在中间环或者机匣上。 7. 燃气涡轮的组成:转子;静子和冷却系统。 8. 涡轮叶片的特点剖面厚;弯曲大;和内腔有冷却通道。 9. 涡轮不可拆卸式盘轴联接的方案有径向销钉联接方案;盘、轴焊接联接方案和盘轴整体方案 10. 燃烧室的基本类型有:分管式;环管式;环形式;回流式和折流式。 11. 火焰筒的组成:涡流器;筒体及传焰管(连焰管) 12. 加强的盘式转子是在盘式转子的基础上增加了定距环和将轴加粗。 13. 在压气机的某些截面放气的目的是防止压气机发生喘振 14. 燃气涡轮发动机压气机的作用是提高空气压力。 15. 燃气涡轮发动机燃烧室的作用是燃油与空气混合并进行燃烧,提高燃气的温度。 16. 燃气涡轮发动机加力燃烧的作用是加力时,燃油与空气混合并进行燃烧,提高喷管前燃气的温度 17. 燃气涡轮发动机喷管的作用是燃气在其中膨胀加速,高速喷出。 18. 外涵道是涡轮风扇发动机的附件。 19. 燃气涡轮发动机附件机匣的作用是安装和传动附件 20. 影响喷气发动机推力的因素有空气流量和流过发动机的气流的速度增量。 21. 燃气涡轮发动机中,组成燃气发生器的附件有压气机、涡轮和燃烧室。 22. 航空发动机压气机的功用是提高气体压力。 23. 航空发动机压气机可以分成轴流式、离心式和组合式等三种类型。 24. 轴流式压气机叶栅通道形状是扩散形。 25. 轴流式压气机级是由工作叶轮和整流环组成的。 26. 在轴流式压气机的工作叶轮内,气流相对速度减小,压力、密度增加。 27. 在轴流式压气机的整流环内,气流绝对速度减小,压力增加。 28. .多级轴流式压气机由前向后,叶片长度的变化规律是逐渐缩短。 29. 气流M数的定义是某点气流速度与该点音速的比值,称为该点的气流M数。 30. 在绝能条件下,要使亚音速气流加速,必须采用收敛形管道。 31. 在绝能条件下,要使超音速气流加速,必须采用扩散形管道。 32. 在绝能条件下,要使气流从亚音速加速到超速,必须采用先收敛后扩散的管道。 33. 在绝能条件下,要使亚音速气流减速,必须采用扩散形管道。 34. 压气机增压比的定义是压气机出口压力与进口压力的比值。 35. 压气机增压比的大小反映了气流在压气机内压力提高的程度。 36. 压气机由转子和静子等组成。 37. 压气机转子可分为鼓式、盘式和鼓盘式。 38. 压气机转子可分为鼓式、盘式和鼓盘式。 39. 压气机转子可分为鼓式、盘式和鼓盘式。 40.压气机的盘式转子可分为盘式和加强盘式。 41.压气机转子叶片上的凸台的作用是防止叶片振动。 42.压气机转子叶片通过燕尾形榫头与轮盘上的燕尾形榫槽连接在轮盘上。 43.多级轴流式压气机由前向后,转子叶片的长度的变化规律是逐渐缩短。 44.压气机进口可变弯度导流叶片(或可调整流叶片)的作用是防止压气机喘振。 45.压气机是安装放气带或者放气活门的作用是防止压气机喘振 46.采用双转子压气机的作用是防止压气机喘振。 47.压气机进口整流罩的功用是减小流动损失。 48.压气机进口整流罩做成双层的目的是通加温热空气 49.涡轮的功用是把高温、高压燃气的部分热能、压力能转变为旋转地机械功从而带动压气机和其他附件工作 50.涡轮叶片一般通过枞树形榫头与轮盘上的榫槽连接到轮盘上。 51.为了冷却涡轮叶片,一般把叶片做成空心的,通冷却空气。 52.涡轮叶片带冠的目的是减小振动。 53.在两级涡轮中,一般第二级涡轮叶片更需要带冠。 54.空气—空气热交换器的功用是利用外涵道的空气给冷却涡轮的空气降温 55.航空发动机的燃烧室可以分为分管形、环管形和环形。 56.航空发动机的燃烧室可以分为分管形、环管形和环形。 57.航空发动机的燃烧室可以分为分管形、环管形和环形。 12.鼓式转子的优点是抗弯刚性好,结构简单。 三选一 1.加力燃烧室前的气流参数不变,那么,发动机的推力是: A 。 A.增大; B.减小; C.不变 2.直通管气体力恒指 A 方向 A.收敛; B.扩散; C.直径 3.卸荷使发动机推力 B 。 A.增大; B. 不变; C. 减小 4.涡桨发动机承受的总扭矩为 B 。 A.零; B.不为零; C.与螺旋桨扭矩无关 5.发动机转子所受的陀螺力矩是作用在 A 。 A.静子上; B.转子上; C.飞机机体上 6.在恰当半径处 C 。 A.盘的变形大于鼓的变形; B.盘的变形小于鼓的变形; C. 盘的变形等于.鼓的变形 7.涡喷发动机防冰部位 A 。 A.进口导流叶片; B.压气机转子叶片; C.涡轮静子叶片 8.涡轮叶片榫头和榫槽之间的配合是 B 。 A.过渡配合; B.间隙配合; C.过盈配合 9.首当其冲地承受燃烧室排出的高温燃气的部件是A 。 A.涡轮一级导向器; B. 涡轮二级导向器; C. 涡轮三级导向器 10.加力燃烧室的功用是可以 C 。 A.节能; B.减小推力; C.增大推力 四选一 1.燃气涡轮发动机的核心机包括 C 。 A.压气机、燃烧室和加力燃室B.燃烧室、涡轮和加力燃室 C.压气机、燃烧室和涡轮D.燃烧室、加力燃室和喷管 答案:C。 2.下列发动机是涡轮喷气发动机的是 D 。 A.АЛ—31ФB.Д—30 C.WJ—6 D.WP—13 答案:D。 3.下列发动机属于涡轮风扇发动机的是_____A____。 A.АЛ—31ФB.WP—7 C.WJ—6 D.WP—13 答案:A。 8.发动机正常工作时,燃气涡轮发动机的涡轮是____ B.燃气推动____旋转的。 9.气流在轴流式压气机基元级工作叶轮内流动,其____C_ C.相对速度降低,压力增加____。 10.气流在轴流式压气机基元级整流环内流动,其__C_______。A.相对速度增加,压力下降B.绝对速度增加,压力增加C.相对速度降低,压力增加D.绝对速度下降,压力增加答案:C。 11.气流流过轴流式压气机,其_____C____。 A.压力下降,温度增加B.压力下降,温度下降 精品文档

基于ANSYS 的涡轴发动机组合压气机转子

2006年用户年会论文 1 基于ANSYS 的涡轴发动机组合压气机转子 参数化仿真系统开发 纪福森,吴铁鹰,陈伟 [南京航空航天大学 能源与动力学院,210016] [ 摘 要 ] 本文分析了航空涡轴发动机组合压气机转子的结构特点和设计特点,并将近年来广泛提及的参 数化设计思想引入到组合压气机的设计分析中,利用ANSYS 提供的APDL(ANSYS Parametric Design Language)和UIDL(User Interface Design Language)开发工具,开发了涡轴发动 机组合压气机参数化有限元分析系统。实现了某涡轴发动机组合压气机转子各级叶片、各级轮 盘、各级叶盘以及整级组件的全参数驱动的有限元建模及分析。 [ 关键词 ] 涡轴发动机,组合压气机,整体叶盘,参数化设计分析 Development of Parametric Simulation System of Turbine Shaft Engine Combined Compressor Rotor JiFusen, WuTieying, ChenWei [Nanjing University of Aeronautics and Astronautics College of Energy and Power Engineering, 210016] [ Abstract ] In this paper, structural characteristic and design characteristic of turbine shaft engine combined compressor rotor were analyzed, and the parametric design method was used in the design and analysis of combined compressor rotor. By the tools of APDL (ANSYS Parametric Design Language) and UIDL (User Interface Design Language), parametric finite element analysis system of turbine shaft engine combined compressor rotor was developed. At last, the complete parametric finite element model and analysis of blades, disks, blisks and combined compressor rotor was realized. [ Keyword ] turbine shaft engine, combined compressor, blisk, parametric design and analysis.

ansys模态分析步骤

模态分析步骤 第1步:载入模型 Plot>Volumes 第2步:指定分析标题并设置分析范畴 1 设置标题等Utility Menu>File>Change Title Utility Menu>File> Change Jobname Utility Menu>File>Change Directory 2 选取菜单途径 Main Menu>Preference ,单击 Structure,单击OK 第3步:定义单元类型 Main Menu>Preprocessor>Element Type>Add/Edit/Delete,出现Element Types对话框,单击Add出现Library of Element Types 对话框,选择Structural Solid,再右滚动栏选择Brick 20node 95,然后单击OK,单击Element Types对话框中的Close按钮就完成这项设置了。 第4步:指定材料性能 选取菜单途径Main Menu>Preprocessor>Material Props>Material Models。出现Define Material Model Behavior对话框,在右侧Structural>Linear>Elastic>Isotropic,指定材料的弹性模量和泊松系数,Structural>Density指定材料的密度,完成后退出即可。 第5步:划分网格 选取菜单途径Main Menu>Preprocessor>Meshing>MeshTool,出

现MeshTool对话框,一般采用只能划分网格,点击SmartSize,下面可选择网格的相对大小(太小的计算比较复杂,不一定能产生好的效果,一般做两三组进行比较),保留其他选项,单击Mesh出现Mesh Volumes对话框,其他保持不变单击Pick All,完成网格划分。 第6步:进入求解器并指定分析类型和选项 选取菜单途径Main Menu>Solution>Analysis Type>New Analysis,将出现New Analysis对话框,选择Modal单击 OK。 选取Main Menu>Solution> Analysis Type>Analysis Options,将出现Modal Analysis 对话框,选中Subspace模态提取法,在 Number of modes to extract处输入相应的值(一般为5或10,如果想要看更多的可以选择相应的数字),单击OK,出现Subspace Model Analysis对话框,选择频率的起始值,其他保持不变,单击OK。 第7步:施加边界条件. 选取Main Menu>Solution>Define loads>Apply>Structural>Displacement,出现ApplyU,ROT on KPS对话框,选择在点、线或面上施加位移约束,单击OK会打开约束种类对话框,选择(All DOF,UX,UY,UZ)相应的约束,单击apply或OK即可。第8步:指定要扩展的模态数。选取菜单途径Main Menu>Solution>Load Step Opts>ExpansionPass>Expand Modes,出现Expand Modes对话框,在number of modes to expand 处输入第6步相应的数字,单击 OK即可。(当选取Main Menu>Solution> Analysis Type>Analysis Options,将出现Modal Analysis 对话框,选中Subspace模态提取法,在 Number of modes to extract处输入相应

发动机压气机转子的工艺设计及夹具设计(有proe图CAD图)机械毕业设计

三级转子是汽车发动机压气机的关键零件,发动机压气机转子是用来对空气作功 产生反作用推力,并将空气压缩后送到燃烧室和涡轮;发动机转子由于在高转速 下工作,承受着相当大的而且复杂的负荷,例如,扭矩、轴向力、径向方、陀螺 力矩及振动等,因此对其加工要求十分严格。 而高精度加工在国内来讲也是制造业一个较困难的课题,叶型加工包含了多项高 尖技术,蕴藏了巨大的科研价值和经济价值,所以研究叶型加工工装具有重要意 义。发动机压气机Ⅲ级转子就是这样一个零件,现以这个零件为例来研究叶型加 工的工艺规程及夹具设计。 该转子的加工过程是比较复杂的,这是由零件本身的复杂程度所决定的。加工该 零件的最大难题之一就是要克服它的高精度要求。对表面的车削加工;对叶形铣 削加工;对成型面的车削加工;以及在直径87的圆周上钻头8个孔的钻削加工 都是本次加工的重点中的重点。且为了保证上述加工的精度,必须有针对性的对 其进行专用夹具的设计,以求达到最好的效果。 目录 摘要--------------------------------------------------------------------------------------------------------------------------------------- 2 ABSTRACT-------------------------------------------------------------------------------------------------------- 错误!未定义书签。第一章序论--------------------------------------------------------------------------------------------------------------------------- 4 1.1工艺的内容-------------------------------------------------------------------------------------------------------------------------- 4 1.1.1机械制造工艺的目标------------------------------------------------------------------------------------------------------- 5 1.2工艺的任务-------------------------------------------------------------------------------------------------------------------------- 5 1.3工艺规程的基本要求 ------------------------------------------------------------------------------------------------------------- 6 1.3.1工艺规程的作用 ------------------------------------------------------------------------------------------------------------- 6 1.3.2工艺规程的选择 ------------------------------------------------------------------------------------------------------------- 6 1.3.3工艺规程的编制 ------------------------------------------------------------------------------------------------------------- 6 1.3.4工艺规程的设计准则------------------------------------------------------------------------------------------------------- 7 1.3.5制定工艺规程的原始资料------------------------------------------------------------------------------------------------- 7 1.3.6生产类型的工艺特征------------------------------------------------------------------------------------------------------- 8第二章零件工艺方案制定 --------------------------------------------------------------------------------------------------------- 10

ansys模态分析步骤

模态分析步骤 第1步: 载入模型Plot>Volumes 第2步: 指定分析标题并设置分析范畴 1设置标题等Utility Menu>File>Change Title Utility Menu>File> Change Jobname Utility Menu>File>Change Directory 2选取菜单途径MainMenu>Preference ,单击Structure,单击OK第3步: 定义单元类型 MainMenu>Preprocessor>ElementType>Add/Edit/Delete,出现Element Types 对话框,单击Add出现Library of Element Types对话框,选择Structural Solid,再右滚动栏选择Brick 20node 95,然后单击OK,单击Element Types对话框中的Close 按钮就完成这项设置了。 第4步: 指定材料性能 选取菜单途径MainMenu>Preprocessor>MaterialProps>MaterialModels。出现DefineMaterialModelBehavior对话框,在右侧Structural>Linear>Elastic>Isotropic,指定材料的弹性模量和泊松系数,Structural>Density指定材料的密度,完成后退出即可。 第5步: 划分网格

选取菜单途径Main Menu>Preprocessor>Meshing>MeshTool,出现MeshTool 对话框,一般采用只能划分网格,点击SmartSize,下面可选择网格的相对大小(太小的计算比较复杂,不一定能产生好的效果,一般做两三组进行比较),保留其他选项,单击Mesh出现Mesh Volumes对话框,其他保持不变单击Pick All,完成网格划分。 第6步: 进入求解器并指定分析类型和选项 选取菜单途径Main Menu>Solution>Analysis Type>New Analysis,将出现New Analysis对话框,选择Modal单击OK。 选取Main Menu>Solution> Analysis Type>Analysis Options,将出现Modal Analysis对话框,选中Subspace模态提取法,在Number ofmodes to extract处输入相应的值(一般为5或10,如果想要看更多的可以选择相应的数字),单击OK,出现Subspace Model Analysis对话框,选择频率的起始值,其他保持不变,单击OK。 第7步: 施加边界条件.选取 MainMenu>Solution>Defineloads>Apply>Structural>Displacement,出现 ApplyU,ROTonKPS对话框,选择在点、线或面上施加位移约束,单击OK会打开约束种类对话框,选择(AllDOF,UX,UY,UZ)相应的约束,单击apply或OK即可。 第8步: 指定要扩展的模态数。选取菜单途径 MainMenu>Solution>LoadStepOpts>ExpansionPass>ExpandModes,出现Expand Modes对话框,在number of modes to expand处输入第6步相应的数字,单击OK 即可。(当选取MainMenu>Solution>AnalysisType>AnalysisOptions,将出现ModalAnalysis对话框,选中Subspace模态提取法,在Number of modes to extract处输入相应的值(一般为5或10,如果想要看更多的可以选择相应的数字),同时选择number of modes to expand输入相应值时,这步可以省略)

轴流压气机设计流程

轴流压气机设计 压气机是航空发动机的核心部件,压气机内部流场存在很大的逆压梯度,有着高度的三维性、粘性及非线性和非定常性,而多级压气机还存在复杂的级间匹配,这些都使得压气机的设计难度很大,一直是发动机研制中的瓶颈技术。 一、压气机设计方法的发展 一个世纪以来,伴随着气动热力学和计算流体力学的发展!轴流压气机的设计系统在不断进步,带动着压气机设计水平的提高。 20世纪初采用螺桨理论设计叶片;20-30年代采用孤立叶型理论设计压气机;30年代中期开始,由于叶栅空气动力学的发展和大量平面叶栅试验的支持,研制了一系列性能较高的轴流压气机;50年代开始采用二维设计技术,用简单径向平衡方程计算子午流面参数,叶片由标准叶型进行设计;70年代建立了准三维设计体系,流线曲率通流计算和叶片流动分析是这一体系的基础,可控扩散叶型等先进叶型技术开始得到应用;90年代初以来,以三维粘性流场分析为基础的设计体系促进了压气机设计技术的快速发展。 风扇/轴流压气机的设计体系以流动的物理模型发展为线索,以计算能力的高速发展为推动力,大致经历了一维经验设计体系、二维半经验设计体系、准三维设计体系、三维设计体系四个阶段。并正在朝着压气机时均(准四维)和压气机非定常(四维)气动设计体系发展。 目前的压气机的设计体系大致可以分为四个阶段:初始设计、通流设计、二维叶型设计、三维叶型设计。 二、压气机设计体系 1.初始设计 这是一个建立压气机的基本轮廓的阶段,根据给定的流量、压比、效率、稳定裕度等参数,来确定压气机级数、级压比、效率、子午面流道、各排叶片数等,并可以进一步可估算重量。而且整体设计的决策还要统筹风险、技术水平、时间和花费等。 初始设计主要依据一维平均流线计算程序进行计算,在给定设计点流量、压比、转速及转子进口叶尖几何尺寸的条件下,可确定压气机级数、轴向长度、并且优化载荷轴向分布,得到设计点在平均半径处的速度三角形和各级平均气动参数。初始设计阶段包括压气机主要参数的确定以及同其它部件的协调,并且为S2流面计算提供初始流道几何尺寸。而这个程序主要依赖于经验以及以往积累的数据库。 初始设计它是方案设计中的基础阶段,不管计算流体动力学如何发展,该设计过程仍是压气机设计中不可缺少的一部分。正是这个部分是整个设计过程中最重要的部分,因为如果在这里发生了基本的错误,之后就无法通过优化或者其他改变来纠正这一情况,压气机基本结构设计出现错误会带来严重的后果。 2.通流设计 通流设计根据叶片扭向设计规律,采用S2流面流场计算方法,分析并确定各排叶片进出口速度三角形及各排叶片匹配关系。 S2流面气动计算一般采用流线曲率法,求解S2平均流面上的完全径向平衡方程。最初的压气机通流设计计算采用忽略流线坡度和流线曲率的“简化径向平衡方程”获取叶片设计需要的速度三角形,这种方法在低压比的压气机设计中起着基本的作用。后来发展了考虑流线坡度和流线曲率影响的“完全径向平衡方程”和S2流面理论,使压气机的设计计算结果更加准确,特别是针对跨音速流也促进了压气机性能的提高。不过,直到上世纪80年代,由于理论和数值计算方法的原因,通流设计求解方法都是在忽略了气流粘性的影响的简化方程下完成。随着压气机设计的实践的深入和计算方法的发展,上世纪80年代开始在压气机

ANSYS模态分析步骤

ANSYS模态分析步骤 第1步:载入模型Plot>V olumes,输入/units,SI(即统一单位M/Kg/S)。若为组件,则进行布尔运算:Main Menu>Preprocessor>Modeling>Operate>Booleans>Glue(或Add)>V olumes 第2步:指定分析标题/工作名/工作路径,并设置分析范畴 1 设置标题等Utility Menu>File>Change Title/ Change Jobname/ Change Directory 2 设置分析范畴Main Menu>Preference,单击Structure,OK 第3步:定义单元类型 Main Menu>Preprocessor>Element Type>Add/Edit/Delete,→Element Types对话框,单击Add→Library of Element Types对话框,选择Structural Solid,再右滚动栏选择Brick 20node 95,然后单击OK,单击Element Types对话框中的Close按钮就完成这项设置了。 第4步:指定材料性能 Main Menu>Preprocessor>Material Props>Material Models→Define Material Model Behavior,右侧Structural>Linear>Elastic>Isotropic,指定弹性模量EX、泊松系数PRXY;Structural>Density指定密度。第5步:划分网格 Main Menu>Preprocessor>Meshing>MeshTool,出现MeshTool对话框,一般采用只能划分网格,点击SmartSize,下面可选择网格的相对大小,保留其他选项,单击Mesh出现Mesh V olumes对话框,其他保持不变单击Pick All,完成网格划分。当内存不足时,取消SmartSize 第6步:进入求解器并指定分析类型和选项 Main Menu>Solution>Analysis Type>New Analysis,出现New Analysis对话框,选择Modal,OK。Main Menu>Solution> Analysis Type>Analysis Options,将出现Modal Analysis对话框,选中Subspace 模态提取法,在No. of modes to extract处输入相应的值(一般为5或10),单击OK,出现Subspace Model Analysis对话框,输入Start Freq值,即频率的起始值,其他保持不变(也可输入End Frequency,即输入频率范围;此时扩展模态仅在此范围内取值),单击OK。 第7步:施加边界条件 Main Menu>Solution>Define loads>Apply>Structural>Displacement,出现ApplyU,ROT on KPS对话框,选择在点、线或面上施加位移约束,单击OK会打开约束种类对话框,选择(All DOF,UX,UY,UZ)相应的约束,单击apply(多次选择)或OK即可。 第8步:指定要扩展的模态数 Main Menu>Solution>Load Step Opts>ExpansionPass>Single Expand>Expand Modes,出现Expand Modes对话框,在No. of modes to expand 处输入第6步相应的数字,单击OK即可。 注意:在第6步NMODE No. of modes to expand输入扩展模态数后,第8步可省略。 第9步:进行求解计算 Main Menu>Solution>Solve>Current LS。浏览在/STAT命令对话框中出现的信息,然后使用File>Close 关闭该对话框,单击OK。在出现警告(不一定有)“A check of your model data produced 1 Warning。Should the SOLV command be executed?”时单击Yes,求解过程结束后单击close。 第10步:列出固有频率 Main Menu>General Postproc>Results Summary。 第11步:动画显示模态形状 查看某阶模态的变形,先读入求解结果。执行Main Menu>General Postproc>Read results>first Set,然后执行1.Main Menu>General Postproc>Plot Results>Deformed Shape,在弹出对话框中选择“Def+undefe edge”或执行 2.PlotCtrls>Animate>mode shape,出现对话框,左边滚动栏不变,在右边滚动栏选择“Def+undefe edge”,单击OK,可查看动画效果。如果需要看其他阶模态,执行Main Menu>General Postproc>Read results>Next Set,重复执行上述步骤即可。 第12步:结束分析SA VE_DB; Main Menu>Finish 1

涡喷发动机压气机转子叶片的故障分析及研究

涡喷发动机压气机转子叶片的故障分析及研究 作者:何凤平, 张鹏峰, 邵锦文, He Fengping, Zhang Pengfeng, Shao Jinwen 作者单位:何凤平,张鹏峰,He Fengping,Zhang Pengfeng(海军驻中国航天科工集团第三研究院军事代表室,北京,100074), 邵锦文,Shao Jinwen(中国航天科工集团第三研究院31所,北京 ,100074) 刊名: 战术导弹技术 英文刊名:TACTICAL MISSILE TECHNOLOGY 年,卷(期):2007(4) 被引用次数:1次 参考文献(6条) 1.宋兆泓航空燃气涡轮发动机强度设计 1988 2.陈佐一流体激振 1998 3.施法中CAGD & NURBS 1994 4.刘雄伟数控加工理论与编程技术 1996 5.邵锦文;张振家弹用发动机CAD/CAM的研究 1997 6.周盛叶轮机气动弹性力学引论 1989 本文读者也读过(10条) 1.王红建.贺尔铭.余仕侠.Wang Hongjian.He Erming.Yu Shixia自适应摄动法在失谐叶盘受迫振动分析中的应用[期刊论文]-应用力学学报2007,24(1) 2.孙有田.田义宏.邵锦文.Sun Youtian.Tian Yihong.Shao Jinwen低雷诺数弯曲叶片流场数值模拟研究[期刊论文]-战术导弹技术2007(4) 3.邵锦文.张振家.冯国泰.刘振德发动机转子叶片断裂故障的解决方法[期刊论文]-航天制造技术2002(6) 4.徐志刚.张栋航空发动机第三级压气机叶片断裂分析[期刊论文]-电子显微学报2004,23(4) 5.黄爱萍.彭建.张溯某型发动机压气机叶片振动特性及错频技术研究[会议论文]-2005 6.徐鉴非对称非线性耦合系统振动局部化和模态分岔[会议论文]-2000 7.陈金波拉杆组合式多级叶盘的固有特性及振动局部化问题研究[学位论文]2011 8.李凤明.胡超.黄文虎失谐周期结构中弹性波与振动的局部化[期刊论文]-力学与实践2003,25(3) 9.王红建.贺尔铭.余仕侠.Wang Hongjian.He Erming.Yu Shixia一种可预测全耦合失谐叶盘受迫响应的误差修正方法[期刊论文]-西北工业大学学报2005,23(6) 10.王艾伦.黄飞.WANG Ai-lun.HUANG Fei裂纹叶片分布对失谐叶盘结构振动特性的影响[期刊论文]-振动与冲击2011,30(4) 引证文献(1条) 1.陈予恕.张华彪航空发动机整机动力学研究进展与展望[期刊论文]-航空学报 2011(8) 本文链接:https://www.360docs.net/doc/4e11680660.html,/Periodical_zsddjs200704005.aspx

西北工业大学航空发动机结构分析课后答案第3章压气机

第三章压气机 1.航空燃气涡轮发动机中,两种基本类型压气机的优缺点有哪些? 压气机类型优点缺点 轴流式压气机增压比高、效率高、单位面积空气质量 流量大、迎风面积小等。结构复杂,零件数多,重量大。成本高,维修不方便。 单级增压比低。 离心式压气机结构简单、零件数量少,成本低。 尺寸小、转子强度好,重量轻。 良好的工作可靠性。 稳定工作范围宽,维修方便。 单级增压比高迎风面积大。效率低。 3.在盘鼓式转子中恰当半径是什么?在什么情况下是盘加强鼓? 恰当半径:在盘鼓式转子中,随着圆周速度的增大,鼓筒和轮盘都会发生形变,这里有三种情况:一是在小半径处,轮盘的自由变形大于鼓筒的自由变形;二是在大半径处,轮盘的自由变形小于鼓筒的自由变形;三是在中间某个半径处,两者的自由变形相等。对于第三种情况,联成一体后,相互没有约束,即没有力的作用,这个半径称为恰当半径。 在第二种情况下,实际变形处于两者自由变形之间,对于鼓筒,自由变形变小,轮盘则相反。这种情况是盘加强鼓。 5.转子级间联接方法有哪些? 转子级间联接方法有用拉杆联接、短螺栓连接和长轴螺栓连接等几种。 7.如何区分盘鼓式转子和加强的盘式转子? 区分方法在于辨别转子的传扭方式。鼓盘式转子靠鼓筒传扭,而加强的盘式转子主要靠轴来传扭。 9.风扇叶片叶身凸台的作用是什么? 风扇叶片叶身凸台的作用:在叶片较长的情况下,为了避免发生危险的共振或颤震,叶身中部常常带一个减振凸台。 11.压气机机匣的功能是什么? 压气机机匣是发动机的主要承力壳体之一,又是气流通道的外壁。工作时,机匣承受静子的重力、惯性力,内外空气压差,整流器上的扭矩,轴向力,相邻组合件传来的弯矩、扭

相关文档
最新文档