高二上学期数学期中考试试卷真题

合集下载

2023-2024学年河北省部分高中高二(上)期中数学试卷【答案版】

2023-2024学年河北省部分高中高二(上)期中数学试卷【答案版】

2023-2024学年河北省部分高中高二(上)期中数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线l :2x +√3y −1=0的斜率为( ) A .−2√33B .−√32C .2√33D .√322.若方程x 2+y 2+4x +2y ﹣m =0表示一个圆,则m 的取值范围是( ) A .(﹣∞,﹣5)B .(﹣5,+∞)C .(﹣∞,5)D .(5,+∞)3.已知F 1,F 2分别是椭圆E :x 29+y 25=1的左、右焦点,P 是椭圆E 上一点,若|PF 1|=2,则|PF 2|=( )A .1B .2C .3D .44.如图,在三棱锥P ﹣ABC 中,P A ⊥平面ABC ,AB ⊥AC ,且PD →=3DC →,则BD →在AC →方向上的投影向量为( )A .34AC →B .−23AC →C .−34AC →D .23AC →5.若圆O 1:x 2+y 2=25与圆O 2:(x ﹣7)2+y 2=r 2(r >0)相交,则r 的取值范围为( ) A .[2,10]B .(2,10)C .[2,12]D .(2,12)6.若A (2,2,1),B (0,0,1),C (2,0,0),则点A 到直线BC 的距离为( ) A .2√305B .√305C .2√55D .√557.已知双曲线C :x 2a 2−y 2b2=1(a >0,b >0)的右焦点为F ,过F 作双曲线C 的其中一条渐近线l 的垂线,垂足为A (第一象限),并与双曲线C 交于点B ,若FB →=BA →,则l 的斜率为( ) A .2B .1C .12D .−748.已知实数x ,y 满足2x ﹣y +2=0,则√(x −9)2+y 2+√x 2+y 2−4x −4y +8的最小值为( ) A .3√13B .10+√13C .108D .117二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,E ,F 分别是AB ,BC 的中点,则( )A .BC →−A 1A →=AD 1→B .BC →−A 1A →=2AD 1→C .EF →=12A 1C 1→D .EF →=A 1C 1→10.在同一直角坐标系中,直线l :y =mx +1与曲线C :x 2+my 2=1的位置可能是( )A .B .C .D .11.已知F 1,F 2分别是椭圆E :x 2a2+y 2b 2=1(a >b >0)的左、右焦点,P 是椭圆E 上一点,且|PF 1|=43|PF 2|,cos ∠PF 2F 1=35,则下列结论正确的有( ) A .椭圆E 的离心率为57B .椭圆E 的离心率为45C .PF 1⊥PF 2D .若△PF 1F 2内切圆的半径为2,则椭圆E 的焦距为1012.苏州博物馆(图一)是地方历史艺术性博物馆,建筑物的顶端可抽象为如图二所示的上、下两层等高的几何体,其中上层EFGH ﹣NPQM 是正四棱柱,下层底面ABCD 是边长为4的正方形,E ,F ,G ,H 在底面ABCD 的投影分别为AD ,AB ,BC ,CD 的中点,若AF =√5,则下列结论正确的有( )A .该几何体的表面积为32+8√2+4√6B .将该几何体放置在一个球体内,则该球体体积的最小值为36πC .直线CP 与平面ABF 所成角的正弦值为√63D .点M 到平面BFG 的距离为√63三、填空题:本题共4小题,每小题5分,共20分.13.已知点N 是点M (3,3,4)在坐标平面Oxz 内的射影,则|ON →|= . 14.若双曲线C :x 2m+1+y 2m 2−m−2=1的实轴长与虚轴长相等,则m = .15.过点M(√3,0)作圆C :x 2+(y ﹣1)2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为 .16.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,AM =2MB ,N 为DD 1的中点,记平面CMN 与平面ADD 1A 1的交线为l ,则直线l 与直线AC 1所成角的余弦值为 .四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知直线l 1:x +ay ﹣a +2=0与l 2:2ax +(a +3)y +a ﹣5=0. (1)当a =1时,求直线l 1与l 2的交点坐标; (2)若l 1∥l 2,求a 的值.18.(12分)如图,在正四棱锥P ﹣ABCD 中,E ,F 分别为P A ,PC 的中点,DG →=2GP →. (1)证明:B ,E ,G ,F 四点共面.(2)记四棱锥P ﹣BEGF 的体积为V 1,四棱锥P ﹣ABCD 的体积为V 2,求V 1V 2的值.19.(12分)已知P 是圆C :x 2+y 2=12上一动点,过P 作x 轴的垂线,垂足为Q ,点M 满足PQ →=2PM →,记点M 的轨迹为E . (1)求E 的方程;(2)若A ,B 是E 上两点,且线段AB 的中点坐标为(−85,25),求|AB |的值.20.(12分)如图,这是某圆弧形山体隧道的示意图,其中底面AB 的长为16米,最大高度CD 的长为4米,以C 为坐标原点,AB 所在的直线为x 轴建立直角坐标系. (1)求该圆弧所在圆的方程;(2)若某种汽车的宽约为2.5米,高约为1.6米,车辆行驶时两车的间距要求不小于0.5米以保证安全,同时车顶不能与隧道有剐蹭,则该隧道最多可以并排通过多少辆该种汽车?(将汽车看作长方体)21.(12分)如图,在斜三棱柱ABC ﹣A 1B 1C 1中,△ABC 是边长为2的等边三角形,M ,Q 分别为AC ,A 1B 1的中点,且MQ ⊥AB . (1)证明:MC 1⊥AB .(2)若BB 1=4,MQ =√15,求平面MB 1C 1与平面MC 1Q 夹角的余弦值.22.(12分)如图,已知F 1(−√10,0),F 2(√10,0)分别是双曲线E :x 2a 2−y 2b 2=1(a >0,b >0)的左、右焦点,P(−2√103,√63)是E 上一点. (1)求E 的方程.(2)过直线l :x =1上任意一点T 作直线l 1,l 1与E 的左、右两支相交于A ,B 两点.直线l 1关于直线l 对称的直线为l 2(与l 1不重合),l 2与E 的左、右两支相交于C ,D 两点.证明:∠ABD =∠ACD .2023-2024学年河北省部分高中高二(上)期中数学试卷参考答案与试题解析一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线l :2x +√3y −1=0的斜率为( ) A .−2√33B .−√32C .2√33D .√32解:将l 的方程转化为y =−2√33x +√33,则l 的斜率为−2√33. 故选:A .2.若方程x 2+y 2+4x +2y ﹣m =0表示一个圆,则m 的取值范围是( ) A .(﹣∞,﹣5)B .(﹣5,+∞)C .(﹣∞,5)D .(5,+∞)解:因为方程x 2+y 2+4x +2y ﹣m =0表示一个圆,所以42+22+4m >0,解得m >﹣5. 故选:B .3.已知F 1,F 2分别是椭圆E :x 29+y 25=1的左、右焦点,P 是椭圆E 上一点,若|PF 1|=2,则|PF 2|=( )A .1B .2C .3D .4解:椭圆E :x 29+y 25=1,可知a =3,因为P 是椭圆E 上一点,所以|PF 1|+|PF 2|=2a =6,所以|PF 2|=6﹣|PF 1|=4. 故选:D .4.如图,在三棱锥P ﹣ABC 中,P A ⊥平面ABC ,AB ⊥AC ,且PD →=3DC →,则BD →在AC →方向上的投影向量为( )A .34AC →B .−23AC →C .−34AC →D .23AC →解:因为P A ⊥平面ABC ,AB ⊥AC ,所以P A ⊥AB ,P A ⊥AC ,故以A 为坐标原点,AB ,AC ,P A 所在直线分别为x ,y ,z 轴建立空间直角坐标系,令AB =a ,AC =b ,P A =c ,则A (0,0,0),B (a ,0,0),C (0,b ,0),D(0,34b ,14c), 则AC →=(0,b ,0),BD →=(−a ,34b ,14c),所以BD →在AC →方向上的投影向量为AC →⋅BD →|AC →|⋅AC →|AC →|=34b 2|b|⋅AC →|b|=34AC →.故选:A .5.若圆O 1:x 2+y 2=25与圆O 2:(x ﹣7)2+y 2=r 2(r >0)相交,则r 的取值范围为( ) A .[2,10]B .(2,10)C .[2,12]D .(2,12)解:∵O 1与O 2相交, ∴|r ﹣5|<|O 1O 2|<|r +5|, 又|O 1O 2|=7,∴|r ﹣5|<7<|r +5|,解得2<r <12. 故选:D .6.若A (2,2,1),B (0,0,1),C (2,0,0),则点A 到直线BC 的距离为( ) A .2√305B .√305C .2√55D .√55解:由题意得,BA →=(2,2,0),BC →=(2,0,−1),则BA →在BC →上的投影向量的模为|BA →⋅BC →||BC →|=√5,则点A 到直线BC 的距离为√|BA →|2−(|BA →⋅BC →||BC →|)2=√(√8)2−(4√5)2=2√305. 故选:A .7.已知双曲线C :x 2a 2−y 2b2=1(a >0,b >0)的右焦点为F ,过F 作双曲线C 的其中一条渐近线l 的垂线,垂足为A (第一象限),并与双曲线C 交于点B ,若FB →=BA →,则l 的斜率为( )A .2B .1C .12D .−74解:由已知直线l 的方程为y =b ax ,即bx ﹣ay =0,点F (c ,0),则|FA|=|bc|√b +(−a)2=b ,因为FB →=BA →,所以B 为线段AF 的中点,则|BF|=b2, 设双曲线C 的左焦点为F 1,则|BF 1|=2a +b2, 在△BFF 1中,由余弦定理可得:cos ∠BFF 1=|BF|2+|FF 1|2−|BF 1|22|BF||FF 1|=b 24+4c 2−(2a+b 2)22×b2×2c=2b−ac, 又cos ∠BFF 1=bc ,所以a =b ,故l 的斜率为1, 故选:B .8.已知实数x ,y 满足2x ﹣y +2=0,则√(x −9)2+y 2+√x 2+y 2−4x −4y +8的最小值为( ) A .3√13B .10+√13C .108D .117解:√(x −9)2+y 2+√x 2+y 2−4x −4y +8=√(x −9)2+y 2+√(x −2)2+(y −2)2, 该式表示直线l :2x ﹣y +2=0上一点到P (9,0),Q (2,2)两点距离之和的最小值. 而P ,Q 两点在l 的同一侧,设点P 关于l 对称的点P ′(x 0,y 0),则{y 0−0x 0−9=−122×x 0+92−y 0+02+2=0,解得{x 0=−7y 0=8,∴P ′(﹣7,8),故√(x −9)2+y 2+√x 2+y 2−4x −4y +8≥|P′Q|=√(−7−2)+(8−2)2=3√13. 故选:A .二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,E ,F 分别是AB ,BC 的中点,则( )A .BC →−A 1A →=AD 1→B .BC →−A 1A →=2AD 1→C .EF →=12A 1C 1→D .EF →=A 1C 1→解:BC →−A 1A →=AD →+AA 1→=AD 1→,A 正确,B 不正确,又因为EF →=12A 1C 1→,故C 正确,D 不正确. 故选:AC .10.在同一直角坐标系中,直线l :y =mx +1与曲线C :x 2+my 2=1的位置可能是( )A .B .C .D .解:A .取m =1,则直线l :y =x +1与曲线C :x 2+y 2=1满足图中的位置关系,因此A 正确; B .联立{y =mx +1x 2+my 2=1,化为(1+m 3)x 2+2m 2x +m ﹣1=0,若直线l :y =mx +1与曲线C :x 2+my 2=1有交点,则Δ=4m 4﹣4(1+m 3)(m ﹣1)=m 3﹣m +1>0. 由曲线C :x 2+my 2=1结合图形,则0<1m <1,∴m >1,满足Δ>0,因此B 正确;C .由曲线C :x 2+my 2=1结合图形,则0<1m <1,∴m >1,直线l 与椭圆应该有交点,因此C 不正确;D .由图可知:直线l 经过点(1,0),则m =﹣1,联立{y =−x +1x 2−y 2=1,化为x =1,y =0,即直线l 与双曲线的交点为(1,0),因此D 正确. 故选:ABD .11.已知F 1,F 2分别是椭圆E :x 2a2+y 2b 2=1(a >b >0)的左、右焦点,P 是椭圆E 上一点,且|PF 1|=43|PF 2|,cos ∠PF 2F 1=35,则下列结论正确的有( ) A .椭圆E 的离心率为57B .椭圆E 的离心率为45C .PF 1⊥PF 2D .若△PF 1F 2内切圆的半径为2,则椭圆E 的焦距为10解:A 、B 选项,由椭圆的定义得,|PF 1|+|PF 2|=2a ,已知|PF 1|=43|PF 2|,解得|PF 1|=87a ,|PF 2|=67a ,由cos ∠PF 2F 1=|PF 2|2+|F 1F 2|2−|PF 1|22|PF 2||F 1F 2|=4c 2−47a 2247ac=35, 整理得5a 2+18ac ﹣35c 2=0,即(a +5c )(5a ﹣7c )=0,则a =﹣5c (舍去)或a =75c ,即c a=57,故椭圆E 的离心率为57,故A 正确,B 不正确;C 选项,由a =75c ,得|F 1F 2|=2c =107a ,则|PF 1|2+|PF 2|2=|F 1F 2|2,故PF 1⊥PF 2,故C 正确; D 选项,由PF 1⊥PF 2,△PF 1F 2内切圆的半径为2,得2c =2a ﹣4,因为a =75c ,所以c =5,即椭圆E 的焦距为10,故D 正确. 故选:ACD .12.苏州博物馆(图一)是地方历史艺术性博物馆,建筑物的顶端可抽象为如图二所示的上、下两层等高的几何体,其中上层EFGH ﹣NPQM 是正四棱柱,下层底面ABCD 是边长为4的正方形,E ,F ,G ,H 在底面ABCD 的投影分别为AD ,AB ,BC ,CD 的中点,若AF =√5,则下列结论正确的有( )A .该几何体的表面积为32+8√2+4√6B .将该几何体放置在一个球体内,则该球体体积的最小值为36πC .直线CP 与平面ABF 所成角的正弦值为√63D .点M 到平面BFG 的距离为√63解:设F ,G 在平面ABCD 的投影分别为AB ,BC 的中点R ,S ,由于AF =√5,AB =4,所以F 到平面ABCD 的距离为FR =√AF 2−(12AB)2=1, 由于上、下两层等高,所以P 到平面ABCD 的距离为2,又FG =RS =12AC =2√2,由于GS =FR =1,BS =RB =12×4=2 所以BG =GC =√GS 2+BS 2=√5=BF =AF ,所以△AFB ≌△BGC ,同理可得△CDH ≌△ADE ≌△AFB ≌△BGC ,△BFG ≌△CHG ≌△DEH ≌△AEF , 则点B 到FG 的距离为√BF 2−(12FG)2=√(√5)2−(√2)2=√3,则△ABF 的面积为12AB ⋅FR =12×4×1=2,△BFG 的面积为12×2√2×√3=√6,故该几何体的表面积4×2+4×√6+4×4+2√2×2√2+2√2×4=32+8√2+4√6,故A 正确; 将该几何体放置在一个球体内,要使该球体体积最小,则球心在该几何体上下底面中心所连直线上, 且A 、B 、C 、D ,N 、P 、Q 、M 均在球面上,设球心到下底面ABCD 的距离为x , 由于四边形MNPQ 为边长为2√2的正方形,四边形ABCD 为边长为4的正方形, 则其对角线长度分别为4,4√2,则(2√2)2+x 2=22+(2−x)2,解得x =0,则该球体的半径为2√2,体积为4π3×(2√2)3=64√2π3,故B 错误;以A 为坐标原点建立如图所示的空间直角坐标系,则C (4,4,0),P (2,0,2),B (4,0,0),F (2,0,1),G (4,2,1),M (2,4,2),CP →=(−2,−4,2),BF →=(﹣2,0,1),BG →=(0,2,1),BM →=(﹣2,4,2), 平面ABF 的一个法向量为m →=(0,1,0),则cos <CP →,m →>=−42√6=−√63,设直线CP 与平面ABF 所成角为θ,则sinθ=|cos <CP →,m →>|=√63,故直线CP 与平面ABF 所成角的正弦值为√63,故C 正确; 设平面BFG 的法向量为n →=(x 1,y 1,z 1),则{n →⋅BF →=−2x 1+z 1=0n →⋅BG →=2y 1+z 1=0,令x 1=1,得n →=(1,﹣1,2), 则点M 到平面BFG 的距离为|n →⋅BM →||n →|=222=√63,故D 正确. 故选:ACD .三、填空题:本题共4小题,每小题5分,共20分.13.已知点N 是点M (3,3,4)在坐标平面Oxz 内的射影,则|ON →|= 5 . 解:由题可知,N (3,0,4),则ON →=(3,0,4),∴|ON →|=√32+42=5. 故答案为:5.14.若双曲线C :x 2m+1+y 2m 2−m−2=1的实轴长与虚轴长相等,则m = 1 .解:由题可知(m +1)+(m 2﹣m ﹣2)=0,解得m =1或m =﹣1(舍去),∴m =1. 故答案为:1.15.过点M(√3,0)作圆C :x 2+(y ﹣1)2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为 √3x −y =0 .解:圆C :x 2+(y ﹣1)2=1①,则圆心C (0,1), 以C (0,1),M (√3,0)为直径的圆的方程为:(x −√32)2+(y −12)2=1②,①﹣②可得,√3x −y =0,故直线AB 的方程为√3x −y =0. 故答案为:√3x −y =0.16.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,AM =2MB ,N 为DD 1的中点,记平面CMN 与平面ADD 1A 1的交线为l ,则直线l 与直线AC 1所成角的余弦值为7√111111.解:设I ∩AA 1=P ,连接NP ,MP ,直线NP 即为直线l .易证得MP ∥CN ,由AM =2MB ,N 为DD 1的中点,得AP =13AA 1,以D 为坐标原点,DA .DC ,DD 1所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系,设AB =6,则得:N (0,0,3),P (6,0,2),A (6,0,0),C 1(0,6,6), NP →=(6,0,﹣1),AC 1→=(﹣6,6,6), 所以得:|cos <NP →,AC 1→>|=|NP →⋅AC 1→||NP →|⋅|AC 1→|=37×63=7√111111,故直线与直线 AC 1 所成角的余弦值为7√111111.故答案为:7√111111. 四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知直线l 1:x +ay ﹣a +2=0与l 2:2ax +(a +3)y +a ﹣5=0. (1)当a =1时,求直线l 1与l 2的交点坐标; (2)若l 1∥l 2,求a 的值. 解:(1)因为a =1,所以l 1:x +y +1=0,l 2:2x +4y ﹣4=0,即x +2y ﹣2=0, 联立{x +y +1=0x +2y −2=0解得{x =−4y =3,故直线l 1与l 2的交点坐标为(﹣4,3).(2)因为l 1∥l 2,所以2a 2﹣a ﹣3=0,解得a =﹣1或a =32, 当a =﹣1时,l 1与l 2重合,不符合题意. 当a =32时,l 1与l 2不重合,符合题意. 故a =32.18.(12分)如图,在正四棱锥P ﹣ABCD 中,E ,F 分别为P A ,PC 的中点,DG →=2GP →. (1)证明:B ,E ,G ,F 四点共面.(2)记四棱锥P ﹣BEGF 的体积为V 1,四棱锥P ﹣ABCD 的体积为V 2,求V 1V 2的值.解:(1)证明:因为E ,F 分别为P A ,PC 的中点, 所以BE →=12BA →+12BP →,BF →=12BC →+12BP →, 所以BG →=BD →+DG →=BD →+23DP →=BD →+23(BP →−BD →)=13BD →+23BP →=13BA →+13BC →+23BP →=23(12BA →+12BP →)+23(12BC →+12BP →)=23BE →+23BF →, 故B ,E ,G ,F 四点共面;(2)由正四棱锥的对称性知,V 1=2V E ﹣PBG ,V 2=2V A ﹣PBD , 设点E 到平面PBG 的距离为d 1,点A 到平面PBD 的距离为d 2,由E 是P A 的中点得d 2=2d 1, 由DG →=2GP →得S △PBD =3S △PBG ,所以V 1V 2=V E−PBG V A−PBD=13S △PBG ⋅d 113S △PBD ⋅d 2=16.19.(12分)已知P 是圆C :x 2+y 2=12上一动点,过P 作x 轴的垂线,垂足为Q ,点M 满足PQ →=2PM →,记点M 的轨迹为E . (1)求E 的方程;(2)若A ,B 是E 上两点,且线段AB 的中点坐标为(−85,25),求|AB |的值. 解:(1)设M (x ,y ),则Q (x ,0), 因为PQ →=2PM →,则P (x ,2y ), 因为P 在圆C 上,所以x 2+(2y )2=12, 故E 的方程为x 212+y 23=1.(2)设A (x 1,y 1),B (x 2,y 2),若A ,B 是E 上两点,则{x 1212+y 123=1x 2212+y 223=1, 两式相减得x 12−x 2212+y 12−y 223=0,即y 1−y 2x 1−x 2=−x 1+x 24(y 1+y 2).因为线段AB 的中点坐标为(−85,25),所以y 1−y 2x 1−x 2=−x 1+x 24(y 1+y 2)=1,所以k AB =1,则直线AB 的方程为y =x +2.联立方程组{y =x +2x 212+y 23=1,整理得5x 2+16x +4=0,其中Δ>0, 则x 1+x 2=−165,x 1x 2=45, |AB|=√1+12√(x 1+x 2)2−4x 1x 2=4√225. 20.(12分)如图,这是某圆弧形山体隧道的示意图,其中底面AB 的长为16米,最大高度CD 的长为4米,以C 为坐标原点,AB 所在的直线为x 轴建立直角坐标系. (1)求该圆弧所在圆的方程;(2)若某种汽车的宽约为2.5米,高约为1.6米,车辆行驶时两车的间距要求不小于0.5米以保证安全,同时车顶不能与隧道有剐蹭,则该隧道最多可以并排通过多少辆该种汽车?(将汽车看作长方体)解:(1)由圆的对称性可知,该圆弧所在圆的圆心在y轴上,由图形可得A(﹣8,0),B(8,0),D(0,4),设该圆的半径为r米,则r2=82+(r﹣4)2,解得r=10,圆心为(0,﹣6),故该圆弧所在圆的方程为x2+(y+6)2=100.(2)设与该种汽车等高且能通过该隧道的最大宽度为d米,则(d2)2+(6+1.6)2=102,解得d=2√42.24.若并排通过4辆该种汽车,则安全通行的宽度为4×2.5+3×0.5=11.5<2√42.24.隧道能并排通过4辆该种汽车;若并排通过5辆该种汽车,则安全通行的宽度为5×2.5+4×0.5=14.5>2√42.24,故该隧道不能并排通过5辆该种汽车.综上所述,该隧道最多可以并排通过4辆该种汽车.21.(12分)如图,在斜三棱柱ABC﹣A1B1C1中,△ABC是边长为2的等边三角形,M,Q分别为AC,A1B1的中点,且MQ⊥AB.(1)证明:MC1⊥AB.(2)若BB1=4,MQ=√15,求平面MB1C1与平面MC1Q夹角的余弦值.(1)证明:因为△A1B1C1是等边三角形,Q为A1B1的中点,所以C1Q⊥A1B1,又AB∥A1B1,所以C1Q⊥AB,因为MQ⊥AB,C1Q∩MQ=Q,所以AB⊥平面MC1Q,又MC1⊂平面C1MQ,所以MC1⊥AB;(2)解:取AB靠近点A的四等分点N,连接MN,NQ,易证得MN∥C1Q,则MN⊥AB,且MN=√32,由BB 1=4,得QN =3√72,因为MQ =√15,所以MQ 2+MN 2=QN 2, 即MQ ⊥MN ,又MQ ⊥AB ,从而MQ ⊥平面ABC ,以M 为坐标原点,MN 所在直线为x 轴,MQ 所在直线为z 轴,建立如图所示的空间直角坐标系,则M (0,0,0),B 1(0,1,√15),C 1(−√3,0,√15), 则MB 1→=(0,1,√15),MC 1→=(−√3,0,√15), 设平面MB 1C 1的法向量为m →=(x ,y ,z ),则有{m →⋅MB 1→=y +√15z =0m →⋅MC 1→=−√3x +√15z =0,令z =1,得m →=(√5,−√15,1),由图可知,n →=(0,1,0)是平面MC 1Q 的一个法向量,设平面MB 1C 1与平面MC 1Q 的夹角为θ,则cosθ=|m →⋅n →||m →||n →|=√1521=√357.22.(12分)如图,已知F 1(−√10,0),F 2(√10,0)分别是双曲线E :x 2a 2−y 2b 2=1(a >0,b >0)的左、右焦点,P(−2√103,√63)是E 上一点. (1)求E 的方程.(2)过直线l :x =1上任意一点T 作直线l 1,l 1与E 的左、右两支相交于A ,B 两点.直线l 1关于直线l 对称的直线为l 2(与l 1不重合),l 2与E 的左、右两支相交于C ,D 两点.证明:∠ABD =∠ACD .解:(1)∵F 1(−√10,0),F 2(√10,0)分别是双曲线E :x 2a 2−y 2b 2=1(a >0,b >0)的左、右焦点,P(−2√103,√63)是E 上一点,∴{a 2+b 2=10409a2−69b2=1,解得a 2=4,b 2=6,∴E 的方程为x 24−y 26=1.(2)证明:设T (1,m ),由题意得直线l 1的斜率存在且不等于0, 设直线l 的方程为y ﹣m =k (x ﹣1),则直线l 2的方程为y ﹣m =﹣k (x ﹣1), 设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),D (x 4,y 4), 联立方程组{y −m =k(x −1)x 24−y 26=1,整理得(3﹣2k 2)x 2+(4k 2﹣4km )x ﹣2k 2+4km ﹣2m 2﹣12=0,Δ=(4k 2﹣4km )2﹣(12﹣8k 2)(﹣2k 2+4km ﹣2m 2﹣12)=﹣72k 2﹣48km +24m 2+144>0, 则x 1+x 2=4k 2−4km 2k 2−3,x 1x 2=2k 2−4km+2m 2+122k 2−3,|AT |=√1+k 2|x 1−1|,|BT |=√1+k 2|x 2﹣1|,|CT |=√1+k 2|x 3﹣1|,|DT |=√1+k 2|x 4﹣1|, ∴|AT ||BT |=(1+k 2)|(x 1﹣1)(x 2﹣1)|=(1+k 2)|x 1x 2﹣(x 1+x 2)+1| =(1+k 2)|2k 2−4km+2m 2+122k 2−3−4k 2−4km 2k 2−3+1|=(1+k 2)|2m 2+92k 2−3|,同理,|CT ||DT |=(1+k 2)|2m 2+92k 2−3,∴|AT||DT|=|CT||BT|,∴△ACT ∽△DBT ,∴∠ABD =∠ACD .。

四川省成都市树德中学2024-2025学年高二上学期11月期中考试数学试题

四川省成都市树德中学2024-2025学年高二上学期11月期中考试数学试题

四川省成都市树德中学2024-2025学年高二上学期11月期中考试数学试题一、单选题1.在平行六面体1111ABCD A B C D -中,M 为AC 与BD 的交点,若11A B a = ,11A D b = ,1A A c =,则下列向量中与1B M相等的向量是().A .1122a b c-++B .1122++a b cC .1122-+ a b cD .1122--+ a b c2.若直线经过(1,0),A B 两点,则直线AB 的倾斜角是()A .135︒B .120︒C .60︒D .45︒3.在长方体1111ABCD A B C D -中,1AB BC ==,1AA =1AD 与1DB 所成角的余弦值为()A B C .5-D 4.某年1月25日至2月12日某旅游景区A 及其里面的特色景点a 累计参观人次的折线图如图所示,则下列判断正确的是()A .1月29日景区A 累计参观人次中特色景点a 占比超过了13.B .2月4日至2月10日特色景点a 累计参观人次增加了9800人次.C .2月4日至2月6日特色景点a 的累计参观人次的增长率和2月6日至2月8日特色景点a 累计参观人次的增长率相等.D .2月8日至2月10日景区A 累计参观人次的增长率小于2月6日至2月8日的增长率.5.如图,修水坝时,为了使水坝坚固耐用,必须使水坝面与水平面成适当的角度.甲站在水库底面上的点A 处,乙站在水坝斜面上的点B 处,从A ,B 到直线(水库底面与水坝的交线)的距离AC 和B 分别为3m 和4m ,B 的长为2m ,则水库底面与水坝所成二面角的大小为().A .30︒B .60︒C .120︒D .150︒6.《九章算术》中将底面为直角三角形且侧棱垂直于底面的三棱柱称为“堑堵”;底面为矩形,一条侧棱垂直于底面的四棱锥称之为“阳马”,四个面均为直角三角形的四面体称为“鳖臑”.如图在堑堵111ABC A B C -中AC BC ⊥.过A 点分别作1AE A B ⊥于点E ,1AF AC ⊥于点F .下列说法正确的是()A .四棱锥11C AB BA -为“阳马”B .四面体111A CC B 为“鳖臑”C .1EF AC ⊥D .1EF A B⊥7.阅读下面材料:在空间直角坐标系Oxyz 中,过点()000,,P x y z 且一个法向量为(),,m a b c =的平面α的方程为()()()0000a x x b y y c z z -+-+-=,过点()000,,P x y z 且方向向量为()()0n u v w uvw =≠ ,,的直线l 的方程为000.x x y y z z uvw---==根据上述材料,解决下面问题:直线l 是两个平面220x y -+=与210x z -+=的交线,则()是l 的一个方向向量.A .()2,1,4B .()1,3,5C .()1,2,0-D .()2,0,1-8.设直线系:cos sin 1m n M x y θθ+=(其中,,m n θ均为参数,{}02π,,1,2m n θ≤≤∈),则下列命题中是假命题...的是()A .当1m n ==时,存在一个点与直线系M 中所有直线的距离都相等.B .当2m n ==时,直线系M 中所有直线恒过定点,且不过第三象限.C .当m n =时,坐标原点到直线系M 中所有直线的距离最大值为1.D .当2,1m n ==时,若0a ≤,则点(),0A a 到直线系M 中所有直线的距离不小于1.二、多选题9.我国是世界上严重缺水的国家之一,城市缺水问题较为突出.某市为了节约生活用水,计划在本市试行居民生活用水定额管理(即确定一个居民月均用水量标准:用水量不超过a 的部分按照平价收费,超过a 的部分按照议价收费).为了较为合理地确定出这个标准,通过抽样获得了40位居民某年的月均用水量(单位:吨),按照分组[)[)[)0,0.50.5,13,3.5 ,,,,制作了频率分布直方图,下列命题正确的有().A .设该市有60万居民,则全市居民中月均用水量不低于3吨的人数恰好有3万人.B .如果希望86%的居民每月的用水量不超出标准,则月均用水量a (吨)的最低标准的估计值为2.7.C .该市居民月均用水量的平均数的估计值为1.875吨.D .在该样本中月均用水量少于1吨的居民中随机抽取两人,其中两人月均用水量都不低于0.5吨的概率为0.4.10.以下四个命题为真命题的是()A .过点(10,10)-且在x 轴上的截距是在y 轴上截距的4倍的直线的方程为11542y x =-+B .已知直线10kx y --=和以(3,1)M -,(3,2)N 为端点的线段相交,则实数k 的取值范围为213k -≤≤C .直线10x y +-=与直线2210x y ++=D .点P 在直线:10l x y --=上运动,(2,3),(2,0)A B ,则||||PA PB -11.在棱长为2的正方体1111ABCD A B C D -中,M 为棱CD 的中点,N 为线段BM 上的动点(含端点),则下列选项正确的有()A .若直线1A M 与直线AN 所成角为α,则cos α的最大值为23.B .若点N 到平面11ABCD 的距离为d ,则d CN +的最小值为5.C .若在该正方体内放入一个半径为12的小球,则小球在正方体内不能达到的空间体积是π22-.D .点T 从B 点出发匀速朝1D 移动,点S 从A 点出发匀速朝1A 移动.现,S T 同时出发,当S 到达1A 时,T 恰好在1BD 的中点处.则在此过程中,,S T .三、填空题12.一条光线经过点(2,3)A 射到直线10x y ++=上,被反射后经过点(1,1)B ,则入射光线所在直线的一般式方程为.13.已知三棱锥P ABC -,如图所示,G 为ABC V 重心,点M ,F 为PG ,PC 中点,点D ,E 分别在PA ,PB 上,PD mPA= ,()0PE nPB mn =≠ ,若M D E F ,,,四点共面,则11m n+=.14.甲、乙、丙、丁4名棋手进行象棋比赛,赛程如下,其中编号为i 的方框表示第i 场比赛,方框中是进行该场比赛的两名棋手,第i 场比赛的胜者称为“i 的胜者”,负者称为“i 的负者”,第6场为决赛,获胜的人是冠军,已知甲每场比赛获胜的概率均为34,而乙、丙、丁相互之间胜负的可能性相同.则乙进入决赛,且乙与其决赛对手是第二次相遇的概率为.四、解答题15.如图,已知平行六面体1111—ABCD A B C D 的底面ABCD 是菱形,1AB =,且11C CB C CD BCD ∠=∠=∠.(1)证明:1C C BD ⊥;(2)若1CA ⊥平面1C BD ,求1CC 的长.16.班级新年晚会设置抽奖环节.不透明纸箱中有大小、质地相同的红球3个,黄球2个.(1)如下两种方案,哪种方案获得奖品的可能性更大?并说明理由.方案一:依次无放回地抽取2个球,若颜色相同,则获得奖品;方案二:依次有放回地抽取2个球,若颜色相同,则获得奖品.(2)还剩最后一个奖品时,甲乙两位同学都想获得.于是他们约定:轮流从纸箱中有放回地抽取一球,谁先抽到黄球,谁获得奖品;如果3轮之后都两人都没有抽到黄球,则后抽的同学获得奖品.如果甲先抽,求甲获得奖品的概率.17.已知,如图四棱锥P ABCD -中,底面ABCD 是平行四边形,PG ⊥平面ABCD ,垂足为G ,G 在AD 上,且13AG GD =,BG GC ⊥,2GB GC ==,E 是BC 的中点,四面体P BCG -的体积为83.(1)求异面直线GE 与PC 所成角的余弦;(2)求点D 到平面PBG 的距离;(3)若F 点是棱PC 上一点,且DF GC ⊥,求PFFC的值.18.男子10米气步枪和女子10米气步枪在1984年被列为奥运会比赛项目.根据国际射联的要求,10米气步枪靶纸为总边长80毫米的正方形,直径最大的1环,直径为45.5mm ,而最高10.9环的靶心点,直径仅有0.5mm .为了了解某校射击选手甲的训练水平,甲按照比赛要求进行了15次射击训练,命中的环数如下:射击序号123456789101112131415命中环数9.49.510.29.19.28.910.19.39.49.69.39.310.19.5 5.0(1)如果命中10环及以上的环数,我们称之为“命中靶心”.①用以上数据估计甲每次射击“命中靶心”的概率;②现发现一架小型无人机悬停在训练区域的上空(训练区域禁止无人机飞行),甲准备将其击落.假设甲每次射击能击中该无人机的概率为①中所求其“命中靶心”的概率,每次射击互不影响.则甲至少需要进行几次射击,才能有90%以上的概率能击落该无人机(该无人机被击中一次即被击落)?(2)经计算得甲这次训练命中环数的平均数15119.2015i i x x ===∑,标准差1.18s =,其中i x 为第i 次射击命中的环数,1i =,2,L ,15.第15次射击时,由于甲受到了明显的干扰,导致结果偏差较大.为了数据分析更加客观准确,教练剔除了这次的成绩.求剔除数据后,甲命中环数的平均数和方差(精确到0.01).(参考数据lg20.3010=,lg30.4771=)19.如图①所示,矩形ABCD 中,1AD =,2AB =,点M 是边CD 的中点,将ADM △沿AM 翻折到PAM △,连接PB ,PC ,得到图②的四棱锥P ABCM -,N 为PB 中点.(1)求证://NC 平面PAM ;(2)若平面PAM ⊥平面ABCD ,求直线BC 与平面PMB 所成角的大小;(3)设P AM D --的大小为θ,若π(0,]2θ∈,求平面PAM 和平面PBC 夹角余弦值的最小值.。

贵州省六盘水市2024-2025学年高二上学期11月期中考试数学试题含答案

贵州省六盘水市2024-2025学年高二上学期11月期中考试数学试题含答案

六盘水市纽绅2024~2025学年度高二(上)期中考试数学试卷(答案在最后)考生注意:1.满分150分,考试时间120分钟.2.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.3.本卷命题范围:人教A 版必修第二册第十章,选择性必修第一册第一章~第二章2.3.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设m ∈R ,向量()1,,1b m =,()2,4,2c =-,且//b c,则m =()A.3-B.1- C.1D.2-【答案】D 【解析】【分析】根据空间向量平行的坐标表示分析求解.【详解】因为向量()1,,1b m = ,()2,4,2c =-,且//b c,则11242m ==-,解得2m =-.故选:D.2.已知直线l 的一个方向向量为(3,,则直线l 的倾斜角α=()A.30°B.60°C.120°D.150°【答案】D 【解析】【分析】由题意可以先得到直线的斜率,再根据斜率和倾斜角的关系即可得解.【详解】因为直线l 的一个方向向量为(3,,所以直线l 的斜率为3tan ,01803k αα==≤< ,从而直线l 的倾斜角150α= .故选:D.3.已知点P 在ABC V 所在平面内,O 为空间中任一点,若1123OP OA OB xOC =++,则x =()A.56B.56-C.16D.16-【答案】C 【解析】【分析】根据四点共面的结论运算求解即可.【详解】因为1123OP OA OB xOC =++,且,,,P A B C 四点共面,则11123x ++=,解得16x =.故选:C.4.在棱长为2的正方体1111ABCD A B C D -中,,,,E F G H 分别为1111111,,,A B B C A D BB 的中点,则2GF GH EG ++=()A.B. C.D.【答案】A 【解析】【分析】应用向量加法法则得到2GF GH EG =++ EF EH +,再应用向量数量积的运算律求模.【详解】由题设,易知EFH △的正三角形,所以2GF GH EG EG GF EG GH EF EH ++=+++=+==故选:A5.已知点()2,4A 、()3,2B -,则线段AB 的垂直平分线的方程为()A.10470x y +-= B.10420x y ++=C.104170x y +-=D.41070x y +-=【答案】A 【解析】【分析】利用斜率计算公式可得:AB k ,线段AB 的中点为(2,1)-,即可得出线段AB 的垂直平分线的方程.【详解】422235AB k -==+,线段AB 的中点为1(,3)2-,∴线段AB 的垂直平分线的方程是513()22y x -=-+,化为:10470x y +-=,故选:A .6.袋中装有红球3个、白球2个、黑球1个,从中任取2个,则互斥而不对立的两个事件是()A.至少有一个白球;都是白球B.至少有一个白球;至少有一个红球C.至少有一个白球;红、黑球各一个D.恰有一个白球;一个白球一个黑球【答案】C 【解析】【分析】根据给定条件,利用互斥事件、对立事件的定义逐项分析判断作答.【详解】对于A ,至少有一个白球和都是白球的两个事件能同时发生,不是互斥事件,A 不是;对于B ,至少有一个白球和至少有一个红球的两个事件能同时发生,不是互斥事件,B 不是;对于C ,至少有一个白球和红、黑球各一个的两个事件不能同时发生但能同时不发生,是互斥而不对立的两个事件,C 是;对于D ,恰有一个白球和一个白球一个黑球的两个事件能同时发生,不是互斥事件,D 不是.故选:C7.已知点P 到直线1l :40x y --=和直线2l :20x y --=的距离相等,则点P 到坐标原点距离的最小值为()A. B.2C.322D.4【答案】C 【解析】【分析】由两直线平行可判断点P 所在直线,垂直时距离最小,再由点到直线的距离公式求出即可.【详解】因为直线1l :40x y --=和直线2l :20x y --=平行,且点P 到他们的距离相等,所以点P 在直线:30l x y --=上,当OP l ⊥时,点P 到坐标原点距离的最小,2=故选:C8.某中学的“信息”“足球”“摄影”三个社团考核挑选新社员,已知高一某新生对这三个社团都很感兴趣,决定三个考核都参加,假设他通过“信息”“足球”“摄影”三个社团考核的概率依次为13,m ,n ,且他是否通过每个考核相互独立,若他三个社团考核都通过的概率为130,三个社团考核都没有通过的概率为415,则m n +=()A.45B.710C.23D.35【答案】B 【解析】【分析】根据题意结合独立事件以及对立事件概率求法,列式求解.【详解】因为他三个社团考核都通过的概率为130,则11330mn =,即110mn =,又因为三个社团考核都没有通过的概率为415,则()()14111315m n ⎛⎫---= ⎪⎝⎭,整理可得()215m n mn -++=,所以271510m n mn +=+-=.故选:B.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列说法不正确的是()A.某种福利彩票的中奖概率为11000,那么买1000张这种彩票一定能中奖B.随着试验次数的增加,频率一般会越来越接近概率C.某医院治疗一种疾病的治愈率为10%,前9个病人没有治愈,则第10个病人一定治愈D.某市气象台预报“明天本市降水概率为70%”,指的是该市气象台专家中,有70%认为明天会降水,30%认为不降水【答案】ACD 【解析】【分析】根据频率和概率之间的关系、概率的定义可得正确的选项.【详解】对于A ,中奖概率为11000是指买一次彩票,可能中奖的概率为11000,不是指1000张这种彩票一定能中奖,故A 错误;对于B ,试验次数越多,频率就会稳定在概率的附近,故B 正确;对于C ,某医院治疗一种疾病的治愈率为10%,是指一位病人被治愈的概率为10%,不是说每10名患者就一定有一人被治愈,故C 错误.对于D ,“明天本市降水概率为70%”指下雨的可能性为0.7,故D 错.故选:ACD .10.已知直线1l :0ax y b --=,2l :0bx y a -+=,当a ,b 满足一定的条件时,它们的图形可能是()A. B.C. D.【答案】ACD 【解析】【分析】首先将直线的一般式方程化为斜截式,根据斜率和截距之间的关系,结合图形逐一判断.【详解】直线1:0l ax y b --=可化为y ax b =-的斜率为a ,在y 轴上的截距为b -.直线2:0l bx y a -+=可化为y bx a =+的斜率为b ,在y 轴上的截距为a .当0a b =<时,直线1l 与2l 平行且图象满足A 所示,故A 正确.选项B 中,由直线2l 在y 轴上的截距可得0a >,0b <,而由直线1l 的斜率为a ,可得0a <,故B 不正确.选项C 中,由直线2l 的斜率为0b <,而直线1l 在y 轴上的截距0b ->.直线2l 在y 轴上的截距为0a >,直线1l 的斜率为0a >,故C 正确.选项D 中,由直线2l 的斜率为0b >,而直线1l 在y 轴上的截距0b -<.直线2l 在y 轴上的截距为0a <,直线1l 的斜率为0a <,故D 正确.故选:ACD .11.已知正方体1111ABCD A B C D -的边长为2,E 、F 、G 、H 分别为1CC 、BC 、CD 、1BB 的中点,则下列结论正确的是()A .1//B G EFB.1//A H 平面AEFC.点1B 到平面AEF 的距离为2D.二面角E AF C --的大小为4π【答案】BC 【解析】【分析】建立空间直角坐标系,运用空间向量的方法对线线垂直,线面平行,点面距离,二面角进行计算,对选项进行分析,由此确定正确答案【详解】解:以D 为坐标原点,1,,DA DC DD 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,如图所示,11(2,2,2),(0,1,0),(0,2,1),(1,2,0),(2,0,0),(2,0,2),(2,2,1),B G E F A A H 所以1(2,1,2),(1,0,1)B G EF =---=- ,所以1220B G EF ⋅=-+=,所以1B G EF ⊥,故A 选项错误;1(0,2,1),(1,2,0),A H AF =-=-设平面AEF 的法向量为(),,=n x y z ,则020n EF x z n AF x y ⎧⋅=-=⎪⎨⋅=-+=⎪⎩,令2,x =则1,2y z ==,所以()212n = ,,,所以1220A H n ⋅=-=,由于1A H ⊄平面AEF ,所以1//A H 平面AEF ,故B 选项正确;1(0,2,2)B A =-- ,所以1B 到平面AEF 的距离为162,||3n B A d n ⋅=== 故C 选项正确;由正方体可得1DD ⊥平面AFC ,所以平面AFC 的一个法向量为()10,0,2DD =,设二面角E AF C --的平面角为θ,由图可知,θ为锐角,1142cos ,323||n DD n DD θ⋅===⨯⋅ 所以θ≠4π,故D 选项错误,故选:BC三、填空题:本题共3小题,每小题5分,共15分.12.在一次羽毛球男子单打比赛中,运动员甲、乙进入了决赛.比赛规则是三局两胜制.根据以往战绩,每局比赛甲获胜概率为0.4,乙获胜概率为0.6,利用计算机模拟实验,产生[]1,5内的整数随机数,当出现随机数1或2时,表示一局比赛甲获胜,现计算机产生15组随机数为:421,231,344,114,522,123,354,535,425,232,233,351,122,153,533,据此估计甲获得冠军的概率为__________.【答案】715【解析】【分析】根据题意,由随机数组来确定胜负情况,根据15组数据中满足条件的数组个数,除以总数即可得解.【详解】由计算机产生的15组数据中,甲获得冠军的数据有421,231,114,522,123,232,122,共7组,据此估计甲获得冠军的概率为715.故答案为:715.13.直线:(2)(31)4l a y a x -=--不过第二象限,则a 的取值范围为_________.【答案】[)2,+∞【解析】【分析】分类讨论,将直线的方程化为斜截式求解即可.【详解】当20a -=时,即2a =,方程为45x =,此直线不过第二象限,符合题意;当20a -≠时,将直线:(2)(31)4l a y a x -=--化为斜截式为:(31)4(2)(2)a y x a a -=---.由于不过第二象限,所以(31)0(2)40(2)a a a -⎧>⎪-⎪⎨⎪-<⎪-⎩,解得2a >;综上:2a ≥,故a 的取值范围为:[)2,+∞.故答案为:[)2,+∞.14.阅读材料:数轴上,方程0Ax B +=(0A ≠)可以表示数轴上的点;平面直角坐标系xOy 中,方程0Ax By C ++=(A 、B 不同时为0)可以表示坐标平面内的直线;空间直角坐标系O xyz -中,方程0Ax By Cz D +++=(A 、B 、C 不同时为0)可以表示坐标空间内的平面.过点()000,,P x y z 且一个法向量为(),,n a b c =的平面α的方程可表示为()()()0000a x x b y y c z z -+-+-=.阅读上面材料,解决下面问题:已知平面α的方程为3570x y z -+-=,直线l 是两平面370x y --=与4210y z ++=的交线,则直线l 与平面α所成角的正弦值为______.【答案】35【解析】【分析】根据题意得到不同平面的法向量,两个平面的交线与两个平面的法向量均垂直,我们可以求得两个平面交线的方向向量,然后利用向量夹角与线面角的关系求解即可.【详解】平面α的方程为3570x y z -+-=,所以平面α的法向量可取()3,5,1m =-,平面370x y --=的法向量为()1,3,0a =-,平面4210y z ++=的法向量为()0,4,2b = ,设两平面的交线l 的方向向量为(),,c p q r = ,由30420c a p q c b q r ⋅=-=⎧⎪⎨⋅=+=⎪⎩,令3p =,则1q =,2r =-,所以()3,1,2c =-.设直线l 与平面α所成角的大小为θ,则sin cos ,35c m θ==.故答案为:35.四、解答题:本题共5小题,共77分.“解答应写出必要的文字说明、证明过程及演算步骤.15.(1)设平面直角坐标系内三点(),3A m m --、()2,1B m -、()1,4C -,若直线AC 的斜率是直线BC 的斜率的3倍,求实数m 的值;(2)已知直线l 经过原点,且经过两条直线2380,10x y x y ++=--=的交点,求直线l 的方程.【答案】(1)1或2;(2)20x y -=.【解析】【分析】(1)利用斜率公式列方程求解即可;(2)先求出两直线的交点,然后由两点式可得.【详解】解:(1)由3AC BC k k =,即()()43413112m m m-----=⋅----,解得1m =或2m =,经检验均符合题意,故m 的值是1或2.(2)因为方程组238010x y x y ++=⎧⎨--=⎩的解为12x y =-⎧⎨=-⎩,所以两条直线2380x y ++=和10x y --=的交点坐标为()1,2--,由题意知直线l 经过点()1,2--.又直线l 经过原点,所以直线l 的方程为002010y x --=----,即20x y -=.16.“盲盒”是指商家将动漫、影视作品的周边或设计师单独设计出玩偶放入盒子里,当消费者购买这个盒子,因盒子上没有标注,只有打开才会知道抽到什么,不确定的刺激会加强重复决策,从而刺激消费.某商家将编号为1,2,3的三个玩偶随机放入编号为1,2,3的三个盒子里,每个盒子放一个玩偶,每个玩偶的放置是相互独立的.(1)共有多少种不同的放法?请列举出来;(2)求盒中放置的玩偶的编号与所在盒的编号均不相同的概率.【答案】(1)6种,()1,2,3;()1,3,2;()2,3,1;()2,1,3;()3,1,2;()3,2,1(2)13【解析】【分析】(1)根据题意列出全部基本事件即可.(2)根据题意得到玩偶的编号与所在盒的编号均不相同有()2,3,1,()3,1,2两个基本事件,再利用古典概型公式计算即可.【小问1详解】共有6种不同的放法,按盒子号1,2,3的顺序放入玩偶的情况为()1,2,3;()1,3,2;()2,3,1;()2,1,3;()3,1,2;()3,2,1.【小问2详解】设所求事件为A ,则A 包含有()2,3,1,()3,1,2两个基本事件,并且每个基本事件等可能,故()2163P A ==.17.在直三棱柱111ABC A B C -中,AB AC ⊥,2AB AC ==,14AA =,E 、F 分别为1BB 、1CC 的中点.(1)求直线AE 与1A F 所成角的大小;(2)判断直线1A F 与平面ABF 的关系.【答案】(1)π3(2)垂直【解析】【分析】(1)以A 为坐标原点,AB 为x 轴,AC 为y 轴,1AA 为z 轴,建立空间直角坐标系,利用向量法能求出直线AE 与1A F 所成角的大小;(2)利用向量法求出1AF A F ⊥,1A F AB ⊥,从而直线1A F 与平面ABF 垂直.【小问1详解】在直三棱柱111ABC A B C -中,AB AC ⊥,2AB AC ==,14AA =,E 、F 分别为1BB 、1CC 的中点.以A 为坐标原点,AB 为x 轴,AC 为y 轴,1AA 为z轴,建立空间直角坐标系,则(0A ,0,0),(2B ,0,0),(0C ,2,0),1(0A ,0,4),(2E ,0,2),(0F ,2,2),∴(2AE = ,0,2),1(0A F = ,2,2)-,设直线AE 与1A F 所成角为θ,则1141cos 82AE A F AE A F θ⋅===⋅ ,π3θ∴=,∴直线AE 与1A F 所成角的大小为π3;【小问2详解】直线1A F 与平面ABF 垂直,理由如下:由(1)知(0AF = ,2,2),(2AB = ,0,0),∴10440AF A F ⋅=+-= ,10A F AB ⋅=,1AF A F ∴⊥,1A F AB ⊥,AF AB A = ,AF 、AB ⊂平面ABF ,∴直线1A F 与平面ABF 垂直.18.某快餐配送平台针对外卖员送餐准点情况制定了如下的考核方案:每一单自接单后在规定时间内送达、延迟5分钟内送达、延迟5至10分钟送达、其他延迟情况,分别评定为,,,A B C D 四个等级,各等级依次奖励3元、奖励0元、罚款3元、罚款6元.假定评定为等级,,A B C 的概率分别是313,,4832.(1)若某外卖员接了一个订单,求其不被罚款的概率;(2)若某外卖员接了两个订单,且两个订单互不影响,求这两单获得的奖励之和为3元的概率.【答案】(1)78(2)316【解析】【分析】(1)利用互斥事件的概率公式,即可求解;(2)由条件可知两单共获得的奖励为3元即事件()()1221A B A B ⋃,同样利用互斥事件和的概率,即可求解.【小问1详解】设事件,,,A B C D 分别表示“被评为等级,,,A B C D ”,由题意,事件,,,A B C D 两两互斥,所以()31311483232P D =---=,又A B = “不被罚款”,所以317()()()488P A B P A P B ⋃=+=+=.因此“不被罚款”的概率为78;【小问2详解】设事件,,,i i i i A B C D 表示“第i 单被评为等级,,,A B C D ”,1,2i =,则“两单共获得的奖励为3元”即事件()()1221A B A B ⋃,且事件1221,A B A B 彼此互斥,又()()12213134832P A B P A B ==⨯=,所以()()()()122112213323216P P A B A B P A B P A B =⋃=+=⨯=⎡⎤⎣⎦.19.如图,四棱柱1111ABCD A B C D -的底面ABCD 为直角梯形,90DAB ADC ∠=∠=︒,1AB AD ==,2CD =,1BD CD ⊥.点M 为1CD 的中点,且12CD BM =.(1)证明:平面BDM ⊥平面1BCD ;(2)若钝二面角B DM C --的余弦值为15-,当1BD BD >时,求1BD 的长.【答案】(1)证明见解析(2)2【解析】【分析】(1)先证1BD BD ⊥,BC BD ⊥得到BD ⊥平面1BCD ,可得平面BDM ⊥平面1BCD .(2)根据(1)中的结论,建立空间直角坐标系,利用空间向量解决问题.【小问1详解】因为M 为1CD 中点,且12CD BM =,所以190D BC ∠=︒,即1BD BC ⊥,又1BD CD ⊥,BC CD C ⋂=,,BC CD ⊂平面ABCD ,所以1BD ⊥平面ABCD .又BD ⊂平面ABCD ,所以1BD BD ⊥.因为90DAB ADC ∠=∠=︒,所以//AB CD .又1AB AD ==,2CD =,所以BD BC ==所以222CD BD BC =+,则BC BD ⊥.又1BD BC B = ,1,BD BC ⊂平面1BCD ,所以BD ⊥平面1BCD .又BD ⊂平面BDM ,所以:平面BDM ⊥平面1BCD .【小问2详解】由(1)可知:BC ,BD ,1BD 两两垂直,故可以B 为原点,建立如图空间直角坐标系.则()0,0,0B,)C,()D ,设()10,0,D a(a >,则,0,22a M ⎛⎫ ⎪ ⎪⎝⎭.所以()BD =,,22a DM ⎛⎫= ⎪ ⎪⎝⎭,)DC = .设平面BDM 的一个法向量为 =1,1,1,由00BD m DM m ⎧⋅=⎪⎨⋅=⎪⎩⇒11110022a x z =+=⎪⎩,可取2,0,12m a ⎛⎫=- ⎪ ⎪⎝⎭ .设平面CDM 的一个法向量为 =2,2,2,由00DC n DM n ⎧⋅=⎪⎨⋅=⎪⎩⇒222220022a x z =-+=⎪⎩,可取,,122n a a ⎛⎫= ⎪ ⎪⎝⎭ .11152cos ,15a m n -=- ,整理得:42133314042a a -+=⇒24a =(214213a =<舍去)所以2a =,即12BD =.。

浙江省宁波市镇海2024-2025学年高二上学期期中测试数学试卷含答案

浙江省宁波市镇海2024-2025学年高二上学期期中测试数学试卷含答案

镇海2024学年第一学期期中考试高二数学试题卷(答案在最后)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.1.在等差数列{}n a 中,已知12a =,315S =,则4a 等于()A.11B.13C.15D.16【答案】A 【解析】【分析】根据等差数列通项公式和前n 项和表达式即可得到方程,解出即可.【详解】设等差数列的公差为d ,则3111215S a a d a d =++++=,即6315d +=,解得3d =,则4132911a a d =+=+=.故选:A.2.若椭圆2212x y m +=的右焦点与抛物线24y x =的焦点重合,则m 的值为()A .1B.3C.4D.5【答案】B 【解析】【分析】求出抛物线的焦点坐标,可得出关于m 的等式,即可得解.【详解】对于抛物线24y x =,24p =,可得2p =,12p=,故该抛物线的焦点为()10F ,,由题意可知,椭圆的右焦点为()10F ,,则22221c a b m =-=-=,解得3m =,故选:B.3.若点P 到直线1x =-和它到点()1,0的距离相等,则点P 的轨迹方程为()A.2x y =B.2y x= C.24x y= D.24y x=【答案】D 【解析】【分析】分析可知点P 的轨迹是以点()1,0为焦点,直线1x =-为准线的抛物线,即可得解.【详解】因为点P 到直线1x =-和它到点()1,0的距离相等,所以,点P 的轨迹是以点()1,0为焦点,直线1x =-为准线的抛物线,设其方程为22y px =,则12p=,可得2p =,故点P 的轨迹方程为24y x =.故选:D.4.任取一个正整数,若是奇数,就将该数乘3再加上1;若是偶数,就将该数除以2.反复进行上述两种运算,经过有限次步骤后,必进入循环圈1421→→→.这就是数学史上著名的“冰雹猜想”(又称“角谷猜想”等).已知数列{}n a 满足:11a =,1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩当为偶数当为奇数,则2024S =()A.4720B.4722C.4723D.4725【答案】C 【解析】【分析】根据“冰雹猜想”结合递推关系,利用规律求解即可【详解】1234561,4,2,1,4,2,a a a a a a ====== ,可知数列{}n a 是以3为周期的数列,因为202423674-=⨯,所以()2024674142144723S =⨯++++=,故选:C5.已知函数()f x 是奇函数,函数()g x 是偶函数,且当0x >时,()0f x '>,()0g x '>,则0x <时,以下说法正确的是()A.()()0f x g x ''+>B.()()0f xg x ''->C.()()0f x g x ''> D.()()0f x g x ''>【答案】B 【解析】【分析】通过函数的奇偶性与导函数的符号,判断当0x <时导函数的符号结合不等式性质即可判断各项.【详解】因为函数()f x 是奇函数,所以函数在对称区间上单调性相同,又当0x >时,()0f x '>;所以当0x <时,()0f x '>;因为函数()g x 是偶函数,所以函数在对称区间上单调性相反;又当0x >时,()0g x '>;所以当0x <时,()0g x '<;而当()()g x f x ''>时,()()0f x g x ''+<,故A 错;由()0g x '<,则()0g x '->,又()0f x '>,所以()()0f x g x ''->,故B 对;()(),f x g x ''异号,所以()()0f x g x ''<,()()0f x g x ''<,故CD 错;故选:B6.若函数()211kx f x x +=+在[)2,+∞上单调递增,则k 的取值范围为()A.43k ≥-B.1k ≤- C.1k ≤ D.43k ≤-【答案】D 【解析】【分析】求出导函数,根据单调性把问题转化为不等式恒成立,利用函数单调性求出最值即可【详解】由()211kx f x x +=+,得()()22221kx x k f x x --++'=,又()f x 在[)2,+∞上单调递增,所以′≥0在[)2,+∞上恒成立,即220kx x k +-≤在[)2,+∞上恒成立,即21k x x ≤-在[)2,+∞上恒成立,只需求出21x x-的最小值即可,又1t x x =-在[)2,+∞单调递减,所以32t ≤-,则2103t -≤<,所以4203t-≤<,故43k ≤-.故选:D7.已知2023log 2024a =,2024log 2025b =,2025log 2026c =,则()A.a b c >>B.a c b>> C.c b a>> D.c a b>>【答案】A【解析】【分析】构造函数()()ln 1ln x f x x+=,其中1x >,利用导数分析函数()f x 在()1,+∞上的单调性,可得出()2023a f =,()2024b f =,()2025c f =,结合函数()f x 的单调性可得出a 、b 、c 的大小关系.【详解】构造函数()()ln 1ln x f x x+=,其中1x >,当1x >时,11x x +>>,()ln 1ln 0x x +>>,由不等式的性质可得()()1ln 1ln x x x x ++>,()()()()()()()22ln 1ln ln 1ln 110ln 1ln x x x x x x x x f x x x x x +--+++'==<+⋅,所以,函数()f x 在()1,+∞上为减函数,因为()2023ln 2024log 20242023ln 2023a f ===,()2024ln 2025log 20252024ln 2024b f ===,()2025ln 2026log 20262025ln 2025c f ===,所以,()()()202320242025f f f >>,即a b c >>,故选:A.8.已知椭圆22:13627x y C +=,左焦点为F ,在椭圆C 上取三个不同点P 、Q 、R ,且2π3PFQ QFR RFP ∠=∠=∠=,则123FP FQ FR ++的最小值为()A.4336- B.4339- C.42339- D.4333-【答案】B 【解析】【分析】以F 为顶点,x 轴的正方向为θ始边的方向,FP 为角θ的终边,推导出92cos PF θ=-,同理可得出92π2cos 3FQ θ=⎛⎫-+ ⎪⎝⎭,94π2cos 3FR θ=⎛⎫-+ ⎪⎝⎭,然后利用三角恒等变换化简可得出123FP FQ FR++的最小值.【详解】在椭圆C 中,6a =,b =3c =,如下图所示:椭圆的左准线为212a x c=-=-,以F 为顶点,x 轴的正方向为θ始边的方向,FP 为角θ的终边,当π02θ<<时,过点P 作PN l ⊥,过点F 作FM PN ^,垂足分别为点N 、M ,易知四边形EFMN 为矩形,则21239a MN EF c c==-=-=,由椭圆第二定义可得12PF e PN==,则2PN PF =,又因为//PN x 轴,则FPN θ∠=,所以,cos PM PFθ=,所以,cos PM PF θ=,因为PN PM MN =+,即2cos 9PF PF θ=+,所以,92cos PF θ=-,同理可知,当θ为任意角时,等式92cos PF θ=-仍然成立,同理可得92π2cos 3FQ θ=⎛⎫-+ ⎪⎝⎭,94π2cos 3FR θ=⎛⎫-+ ⎪⎝⎭,因此,2π4π42cos 63cos 1232cos 33999FP FQ FR θθθ⎛⎫⎛⎫-+-+ ⎪ ⎪-⎝⎭⎝⎭++=++412π4πcos 2cos 3cos 3933θθθ⎡⎤⎛⎫⎛⎫=-++++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦413cos cos cos 3922θθθθθ⎛⎫=--+-- ⎪ ⎪⎝⎭4134πsin cos 3922393θθθ⎛⎫⎛⎫=++=++ ⎪ ⎪ ⎪⎝⎭⎝⎭,故123FP FQ FR ++的最小值为4339-.故选:B.【点睛】方法点睛:圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对得6分,部分选对的得部分分,有选错的得0分.9.下列选项正确的是()A.1y x =,21y x'=- B.2x y =,2ln2x y '=C.ln y x =,1y x'=D.cos2y x =,sin2y x=-'【答案】ABC 【解析】【分析】对于ABC ,由基本初等函数的导数公式即可判断;对于D ,由复合函数的求导法则即可求出函数cos2y x =的导函数,从而得解.【详解】对于A ,1y x =,则21y x'=-,故A 正确;对于B ,2x y =,则2ln2x y '=,故B 正确;对于C ,ln y x =,则1y x'=,故C 正确;对于D ,cos2y x =,则()22sin 2sin2x x y =⨯=--',故D 错误.故选:ABC.10.已知抛物线2:4C y x =,F 为其焦点,直线l 与抛物线交C 于()11,M x y ,()22,N x y 两点,则下列说法正确的是()A.若点A 为抛物线上的一点,点B 坐标为()3,1,则AF AB +的最小值为3B.若直线l 过焦点F ,则以MN 为直径的圆与1x =-相切C.若直线l 过焦点F ,当MN OF ⊥时,则5OM ON ⋅=D.设直线MN 的中点坐标为()()000,0x y y ≠,则该直线的斜率与0x 无关,与0y 有关【答案】BCD 【解析】【分析】利用抛物线的定义以及数形结合可判断A 选项;利用抛物线的焦点弦公式可判断B 选项;求出M 、N 的坐标,利用两点间的距离公式可判断C 选项;利用点差法可判断D 选项.【详解】对于A 选项,如下图所示:抛物线的焦点为()10F ,,准线为:1l x =-,设点A 在直线l 上的射影点为D ,由抛物线的定义可得AD AF =,则AB AF AB AD +=+,当且仅当A 、B 、D 三点共线时,即当BD l ⊥时,AB AF +取最小值314+=,A 错;对于B 选项,若直线l 过焦点F ,则122=++MN x x ,线段MN 的中点E 到直线l 的距离为1212x x d +=+,所以,2MN d =,因此,以MN 为直径的圆与1x =-相切,B 对;对于C 选项,当MN OF ⊥时,直线MN 的方程为1x =,联立214x y x =⎧⎨=⎩可得12x y =⎧⎨=±⎩,不妨取()1,2M 、()1,2N -,则OM ON ==,此时,5OM ON ⋅=,C 对;对于D 选项,线段MN 的中点坐标为()()000,0x y y ≠,若MN x ⊥轴,则线段MN 的中点在x 轴上,不合乎题意,所以直线MN 的斜率存在,由题意可得12012022x x x y y y +=⎧⎨+=⎩,由21122244y x y x ⎧=⎨=⎩作差得()()()1212124y y y y x x -+=-,所以,121212004422MN y y k x x y y y y -====-+,D 对.故选:BCD.11.数列{}n a 满足11a =,22a =,21n n n a a a ++>+,则下列结论中一定正确的是()A .1050a > B.20500a < C.10100a < D.20500a >【答案】AD 【解析】【分析】根据数列的递推关系可判断各项的取值范围.【详解】由题意得,数列{}n a 为递增数列.n *∀∈N ,21n n n a a a ++>+,11a =,22a =,所以,3213a a a >+=,4325a a a >+>,5438a a a >+>,65413a a a >+>,76521a a a >+>,87634a a a >+>,98755a a a >+>,109889a a a >+>,11109144a a a >+>,121110233a a a >+>,131211377a a a >+>,141312610a a a >+>,151413987a a a >+>,1615141597a a a >+>,1716152584a a a >+>,1817164181a a a >+>,1918176765a a a >+>,20191810946a a a >+>.故选:AD.【点睛】关键点点睛:解本题的关键在于利用递推公式逐项求解各项的范围即可.三、填空题:本题共3小题,每小题5分,共15分.12.已知1n a +=,11a =,则100a =__________.【答案】110##0.1【解析】【分析】把递推公式变形并判断数列21n a ⎧⎫⎨⎬⎩⎭是等差数列,然后求出通项即可求得【详解】由1n a +=,得221111n n a a +-=,又11a =,则2111a =,所以数列21n a ⎧⎫⎨⎬⎩⎭首项为1,公差为1的等差数列,所以21nn a =,又1n a +=可得10nn a a +>,又11a =,所以0n a >,得n a =,所以100110a ==,故答案为:11013.已知双曲线22221x y a b-=与直线1y x =-相交于A ,B 两点,其中AB 中点的横坐标为23-,则该双曲线的离心率为_____.【答案】2【解析】【分析】根据点差法可求,a b 的关系,从而可求离心率.【详解】设1,1,2,2,AB 中点为M ,则23M x =-,故53M y =-,因为2222112222221,1x y x y a b a b -=-=,故()()()()1212121222x x x x y y y y a b -+-+-=,所以()()12122225330x x y y a a ⎛⎫⎛⎫-⨯--⨯- ⎪ ⎪⎝⎭⎝⎭-=,而1AB k =,故2225033a b -+=,故22222522b a c a ==-,故2c a =,故答案为:214.已知函数()()()5e ln 155xf x a x a x =++-+-,若()0f x ≥在()0,∞+上恒成立,则实数a 的取值范围为__________.【答案】5a ≤【解析】【分析】就0a >、0a ≤分类讨论,前者再就05,5a a ≤≤>分类后结合导数的符号讨论单调性后可得相应范围,后者结合常见的函数不等式可得恒成立,故可得参数的取值范围.【详解】当0a >时,()()15e 55e ,011x x a a f x a a x x x '=+--=+++-->,设()()5e ,011xa g x a x x =++-->,则()()25e 1x a g x x '=-+因为0a >,故()25e 1,xay x y =-+=均为()0,∞+上的增函数,故()g x '在()0,∞+上为增函数,若50a -≥即05a <≤,则()0g x '>在()0,∞+上恒成立,故()g x 在()0,∞+上为增函数,故()()00g x g >=恒成立,故()f x 为()0,∞+上为增函数,故()()00f x f >=恒成立,故05a <≤符合,若50a -<即5a >,此时()050g a '=-<,而)1110g '=->,故存在()01x ∈,使得()00g x '=,且()00,x x ∀∈,()0g x '<即()g x 在()00,x 上为减函数,故()00,x x ∀∈,()()00g x g <=即()f x 在()00,x 上为减函数,故()()00f x f <=,与题设矛盾,当0a ≤时,设()()ln 1,0s x x x x =-+>,则()01xs x x '=>+,故()s x 在()0,∞+上为增函数,故()()00sx s >=即ln(1)0,0x x x -+>>,设()e 1,0xt x x x =-->,则()e 10xt x '=->,()t x 在()0,∞+上为增函数,故()()00t x t >=即e 10,0x x x -->>,而0a ≤,故()()5e 1ln 10xx a x x ⎡⎤----+>⎣⎦,即()()5e ln 1550xa x a x ++-+->即()0f x >,故()0f x ≥也成立,综上,5a ≤,故答案为:5a ≤.【点睛】思路点睛:不等式的恒成立,注意验证区间的端点处的函数值,如果函数值为零,则往往需要讨论导数(或二阶导数)在端点处的函数值的符号,从而得到分类讨论的标准.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知函数()e xf x x =.(1)求()f x 的最小值;(2)求()f x 在点()1,e 处的切线方程.【答案】(1)()min 1ef x =-(2)2e e y x =-【解析】【分析】(1)求出函数的导数后讨论其符号,结合单调性可求最小值;(2)求出函数在1x =处的导数后可求切线方程.【小问1详解】()()1e x f x x '=+,当1x <-时,()0f x '<;当1x >-时,()0f x '>,故()f x 在(),1∞--上为减函数,在()1,-+∞上为增函数,故()()min 11ef x f =-=-.【小问2详解】由(1)可得()12e f '=,而()1e f =,故切线方程为:()2e 1e 2e e y x x =-+=-,即切线方程为:2e e y x =-.16.设等比数列{}n a 的前n 项和为n S ,且11a =-,122n n n S S S ++=+.(1)求数列{}n a 的通项公式.(2)求数列()1nn n a ⎧⎫-⋅⎪⎪⎨⎬⎪⎪⎩⎭的前n 项和n T .【答案】(1)()12n n a -=--(2)42219332nn T n ⎛⎫⎛⎫=-+- ⎪⎪⎝⎭⎝⎭【解析】【分析】(1)根据题设的递归关系可得212n n a a ++=-,故可得公比,从而可求通项;(2)利用错位相减法可求n T .【小问1详解】因为122n n n S S S ++=+,所以12122n n n n S S S S +++-=-,所以212n n a a ++=-,而为等比数列,故公比2q =-,故()12n n a -=--.【小问2详解】()()()1111122nnn n nnn n a ---⋅-⋅⎛⎫==- ⎪⎝⎭--,故012111111232222n n T n -⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+⨯-+⨯-++⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以1231111112322222nn T n ⎛⎫⎛⎫⎛⎫⎛⎫-=⨯-+⨯-+⨯-++⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ,所以01213111111222222n nn T n -⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+-+-++--- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭2112211322332n n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=----=-+-⎢⎥ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,故42219332nn T n ⎛⎫⎛⎫=-+- ⎪⎪⎝⎭⎝⎭.17.已知双曲线22:13y C x -=(1)求双曲线C 的渐近线方程;(2)已知点()0,4P 、()2,0Q ,直线PQ 与双曲线C 交于A 、B 两点,1PQ QA λ=,2PQ QB λ=,求12λλ+的值.【答案】(1)y =(2)83-【解析】【分析】(1)根据双曲线的方程可得出其渐近线方程;(2)设点1,1、2,2,将直线PQ 的方程与双曲线的方程联立,列出韦达定理,利用平面向量的坐标运算结合韦达定理可求得12λλ+的值.【小问1详解】在双曲线22:13y C x -=中,1a =,b =,所以,该双曲线的渐近线方程为by x a=±=.【小问2详解】由题意可知,直线PQ 的方程为124x y+=,即24y x =-+,且()2,4PQ =- ,设点1,1、2,2,联立222433y x x y =-+⎧⎨-=⎩,可得216190x x -+=,2164190∆=-⨯>,由韦达定理可得1216x x +=,1219x x =,()112,QA x y =- ,()222,QB x y =- ,且1PQ QA λ=,2PQ QB λ=,则()()()1112222,42,2,x y x y λλ-=-=-,所以,()()1122222x x λλ-=-=,()()()()()12121212121212242422222224x x x x x x x x x x x x λλ+-+-+=+==-----++()216424819216493⨯-===--⨯+-.18.已知函数()()21ln f x mx x m x =+-∈R ,()21e 1x g x x x x=---,其中()f x 在1x =处取得极值(1)求m 的值;(2)求函数()f x 的单调区间;(3)若()()nx g x f x ≤-恒成立,求实数n 的取值范围.【答案】(1)1m =-(2)增区间为()0,1,减区间为()1,+∞(3)(],1-∞【解析】【分析】(1)由题意可得()10f '=,可求出m 的值,然后检验即可;(2)利用函数的单调性与导数的关系可求得函数()f x 的增区间和减区间;(3)由参变量分离法可得出ln 1e xx n x +≤-,利用导数求出函数()ln 1e xx h x x+=-在0,+∞上的最小值,即可得出实数n 的取值范围.【小问1详解】因为()()21ln f x mx x m x =+-∈R ,则()2112f x mx x x=++',其中0x >,因为函数()f x 在1x =处取得极值,则()1220f m +'==,解得1m =-,经检验,合乎题意.因此,1m =-.【小问2详解】由(1)可知,()21ln f x x x x=-+-,其中0x >,则()()()23222122111212x x x x x f x x x x x x--++-++=-++==',由()0f x '=,可得1x =,列表如下:所以,函数()f x 的增区间为0,1,减区间为1,+∞.【小问3详解】()()2211e 1ln e ln 1x x g x f x x x x x x x x x ⎛⎫-=-----+-=-- ⎪⎝⎭,当0x >时,由()()e ln 1xnx g x f x x x ≤-=--,可得ln 1e xx n x+≤-,令()ln 1e xx h x x +=-,其中0x >,则()()22221ln 1ln e ln e e x x x x x x x x x h x x x x ⋅-++=-=+=',令()2e ln xp x x x =+,其中0x >,则′=2+2e +1>0,所以,函数()p x 在区间0,+∞上单调递增,因为1=e >0,11e2e21e 1e 10e ep -⎛⎫=-=-< ⎪⎝⎭,由零点存在定理可知,存在唯一的1,1e t ⎛⎫∈ ⎪⎝⎭,使得2e ln 0t t t +=,即111e ln ln tt t t t t=-=,即11e ln e ln t ttt=,令()ln q x x x =,其中1x >,则′=1+ln >0,所以,函数()q x 在1,+∞上为增函数,因为1,1e t ⎛⎫∈ ⎪⎝⎭,则e 1t >,11t >,由11e ln e ln t tt t =,可得()1etq q t ⎛⎫= ⎪⎝⎭,则1e tt =,所以,1ln ln tt t ==-,且当0x t <<时,()0p x <,即ℎ′<0,当x t >时,()0p x >,即ℎ′>0,所以,函数ℎ的减区间为()0,t ,增区间为(),t ∞+,所以,()()min ln 111e 1tt th x h t t t t+-==-=-=,则1n ≤,所以,实数n 的取值范围是(],1-∞.【点睛】结论点睛:利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解:(1)x D ∀∈,()()min m f x m f x ≤⇔≤;(2)x D ∀∈,()()max m f x m f x ≥⇔≥;(3)x D ∃∈,()()max m f x m f x ≤⇔≤;(4)x D ∃∈,()()min m f x m f x ≥⇔≥.19.在必修一中,我们曾经学习过用二分法来求方程的近似解,而牛顿(Issac Newton ,1643-1727)在《流数法》一书中给出了“牛顿切线法”求方程的近似解.具体步骤如下:设r 是函数=的一个零点,任意选取0x 作为r 的初始近似值,曲线=在点0,0处的切线为1l ,设1l 与x 轴交点的横坐标为1x ,并称1x 为r 的1次近似值;曲线=在点1,1处的切线为2l ,设2l 与x 轴交点的横坐标为2x ,称2x 为r 的2次近似值.一般地,曲线=在点()()(),N n n x f x n ∈处的切线为1n l+,记1n l +与x 轴交点的横坐标为1n x +,并称1n x +为r 的1n +次近似值.不断重复以上操作,在一定精确度下,就可取n x 为方程()0f x =的近似解.现在用这种方法求函数()22f x x =-的大于零的零点r 的近似值,取02x =.(1)求1x 和2x ;(2)求n x 和1n x -的关系并证明()*N n ∈;(3()1*1N i i n x n ∑=<<+∈.【答案】(1)132x =;21712x =(2)21122n n n x x x --+=,证明见解析(3)证明见解析【解析】【分析】(1)根据题干中的1x 为r 的1次近似值和2x 为r 的2次近似值的定义即可求解;(2)求出直线n l 的方程,直接求横截距即可.(3)借助第(22n x <≤,后面再根据此不等式进行放缩得到()2211224n n x x --<-,再进行放缩得12n n x <+,利用不等式的性质和数列分组求和即可【小问1详解】()2f x x '=,()24f '=,()1:242l y x -=-,令0y =,得132x =,332f ⎛⎫= ⎪⎭'⎝,所以213:342l y x ⎛⎫-=- ⎪⎝⎭,令0y =,得21712x =,【小问2详解】由题意得,()()2111:22n n n n l y x x x x -----=-,令0y =,得21122n n n x x x --+=【小问3详解】由(2)知,2111121222n n n n n x x x x x ----⎛⎫+==+ ⎪⎝⎭,所以221211444n n n x x x --⎛⎫=++ ⎪⎝⎭,由几何意义易知:2n x <≤,1iinx∑=<,由22nx>得,()222211121141414464424n n n nnx x x xx----⎛⎫⎛⎫=++<++=+⎪ ⎪⎝⎭⎝⎭,即()221164n nx x-<+,所以()()22210112222444nn n nx x x-⎛⎫-<-<<-=⎪⎝⎭,所以12n nx<<,所以21111122111212nii nnx∑=⎛⎫-⎪⎝⎭<+=+-<+-,()1*1Niinx n∑=<<+∈【点睛】关键点点睛:第(1)问的关键是对新定义的理解,然后结合所学知识进行每一个的处理即可得出,第(2)问的关键是求出切线n l的方程即可得证,第(3)问的关键是由几何意义得到2nx<≤,从而可以放缩,放缩后的类比等比数列的构造,为不等式的证明提供了关键性的处理.。

安徽省池州市贵池区2024-2025学年高二上学期期中检测数学试题含答案

安徽省池州市贵池区2024-2025学年高二上学期期中检测数学试题含答案

2024~2025学年第一学期高二期中检测数学(答案在最后)全卷满分150分,考试时间120分钟.注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将条形码粘贴在答题卡上的指定位置.2.请按题号顺序在答题卡上各题目的答题区域内作答,写在试卷、草稿纸和答题卡上的非答题区域均无效.3.选择题用2B 铅笔在答题卡上把所选答案的标号涂黑;非选择题用黑色签字笔在答题卡上作答;字体工整,笔迹清楚.4.考试结束后,请将试卷和答题卡一并上交.5.本卷主要考查内容:选择性必修第一册第一章~第二章.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知向量()1,2,4a =,()1,0,2b =-r,则a b ⋅的值为()A.()1,0,8- B.9C.-7D.7【答案】D 【解析】【分析】根据空间向量数量积坐标运算法则进行计算.【详解】()()1,1,2,00874,21a b ⋅⋅=-=-++=.故选:D2.直线+1=0x 的倾斜角为()A.34π B.4π C.2π D.不存在【答案】C 【解析】【分析】根据倾斜角的定义可得结果【详解】因为直线+1=0x 即直线1x =-垂直于轴,根据倾斜角的定义可知该直线的倾斜角为2π,故选:C.3.与直线20x y +=垂直,且在x 轴上的截距为-2的直线方程为().A.220x y -+=B.220x y --= C.220x y -+= D.220x y --=【答案】A 【解析】【分析】先求出直线的斜率,再利用直线的点斜式方程求解.【详解】由题得所求直线的斜率为12,∴所求直线方程为10(2)2y x -=+,整理为220x y -+=.故选:A【点睛】方法点睛:求直线的方程,常用的方法:待定系数法,先定式(从直线的五种形式中选择一种作为直线的方程),后定量(求出直线方程中的待定系数).4.如图所示,在平行六面体1111ABCD A B C D -中,点E 为上底面对角线11A C 的中点,若1BE AA x AB y AD =++,则()A.11,22x y =-=B.11,22x y ==-C.11,22x y =-=-D.11,22x y ==【答案】A 【解析】【分析】根据空间向量的线性运算即可求解.【详解】根据题意,得;11()2BE BB BA BC =++11122AA BA BC=++111,22AA AB AD =-+ 1BE AA xAB y AD =++ 又11,,22x y =-=∴故选:A5.已知向量()0,0,2a = ,()1,1,1b =- ,向量a b + 在向量a上的投影向量为().A.()0,0,3 B.()0,0,6C.()3,3,9- D.()3,3,9--【答案】A 【解析】【分析】根据空间向量的坐标运算及投影向量的公式计算即可.【详解】由题意可知()1,13a b +=-,,()6,2a b a a +⋅== ,所以向量a b + 在向量a上的投影向量为()()()60,0,20,0,322a b a a a a +⋅⋅=⨯=⋅ .故选:A6.若圆()()2213425O x y -+-=:和圆()()()222228510O x y r r +++=<<:相切,则r 等于A.6B.7C.8D.9【答案】C 【解析】【分析】根据的圆标准方程求得两圆的圆心与半径,再根据两圆内切、外切的条件,分别求得r 的值并验证510r <<即可得结果.【详解】圆()()2213425O x y -+-=:的圆心()13,4O ,半径为5;圆()()2222:28O x y r +++=的圆心()22,8O --,半径为r.=|r-5|,求得r=18或-8,不满足5<r<10.=|r+5|,求得r=8或-18(舍去),故选C.【点睛】本题主要考查圆的方程以及圆与圆的位置关系,属于基础题.两圆半径为,R r ,两圆心间的距离为d ,比较d 与R r -及d 与R r +的大小,即可得到两圆的位置关系.7.在空间直角坐标系Oxyz 中,已知点()2,1,0D ,向量()4,1,2,m m =⊥平面DEF ,则点O 到平面DEF 的距离为()A.21B.7C.21D.21【答案】B 【解析】【分析】根据空间向量的坐标运算直接计算点O 到平面DEF 的距离.【详解】因为()2,1,0D ,所以()2,1,0OD = ,又向量()4,1,2,m m =⊥平面DEF ,所以()4,1,2m =是平面DEF 的一个法向量所以点O 到平面DEF的距离为7OD m d m ⋅===.故答案为:7.8.已知直线l :x -my +4m -3=0(m ∈R ),点P 在圆221x y +=上,则点P 到直线l 的距离的最大值为()A.3B.4C.5D.6【答案】D 【解析】【分析】先求得直线过的定点的坐标,再由圆心到定点的距离加半径求解.【详解】解:直线l :x -my +4m -3=0(m ∈R )即为()()340x y m -+-=,所以直线过定点()3,4Q ,所以点P 到直线l的距离的最大值为16OQ r +=+=,故选:D二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知直线2y x =与0x y a ++=交于点()1,P b ,则()A.3a =-B.2b =C.点P 到直线30ax by ++=的距离为13D.点P 到直线30ax by ++=的距离为13【答案】ABD 【解析】【分析】联立直线方程结合其交点坐标求参数a 、b ,进而应用点线距离公式求P 到直线30ax by ++=的距离即可.【详解】由题意,得:210b b a =⎧⎨++=⎩,解得3a =-,2b =,故A 、B 正确,∴()1,2到直线3230x y -++=的距离13d ==,故C 错误,D 正确.故选:ABD.10.已知空间向量()()3,1,2,3,3,1a b =--= ,则下列说法正确的是()A.()32//a b a+B.()57a a b⊥+C.a =D.b =【答案】BCD 【解析】【分析】根据题意,结合向量的坐标运算,以及向量的共线和垂直的坐标表示,准确计算,即可求解.【详解】因为向量()()3,1,2,3,3,1a b =--= ,可得214,10a a b =⋅=-,对于A 中,由()323,3,8a b +=-,设32a b a λ+= ,即()3,3,8(3,1,2)λ-=--,可得33382λλλ-=-⎧⎪=-⎨⎪=⎩,此时方程组无解,所以32a b + 与a 不平行,所以A 错误;对于B 中,由()257575147(10)0a a b a a b ⋅+=+⋅=⨯+⨯-=,所以()57a a b ⊥+,所以B 正确;对于C中,由a ==,所以C 正确;对于D中,由b == D 正确.故选:BCD.11.直线2y x m =+与曲线y =恰有两个交点,则实数m 的值可能是()A.4B.5C.3D.4110【答案】AD 【解析】【分析】做出函数图象,数形结合,求出m 的取值范围,再进行选择.【详解】做出函数2y x m =+与y =的草图.设2y x m =+与圆224x y +=2=⇒m =m =-(舍去).因为函数2y x m =+与y =有两个交点,所以4m ≤<.故选:AD三、填空题:本题共3小题,每小题5分,共15分.12.已知在空间直角坐标系xOy 中,点A 的坐标为(1,2,)3-,点B 的坐标为(0,1,4)--,点A 与点C 关于x 轴对称,则||BC =___________.【答案】【解析】【分析】首先根据对称求出点C 的坐标,然后根据两点间的距离公式求||BC 的值即可.【详解】因为点A 与点C 关于x 轴对称,所以点C 的坐标为()1,2,3-,又因为点B 的坐标为(0,1,4)--,所以BC ==.13.过点()2,4作圆224x y +=的切线,则切线方程为___________.【答案】2x =或34100x y -+=【解析】【分析】考虑直线斜率不存在和直线斜率存在两种情况,利用圆心到直线距离等于半径列出方程,求出切线方程.【详解】①直线的斜率不存在时2x =满足,②直线斜率存在时,设切线方程为()42y k x -=-,则324d k ==⇒=,所以切线方程为4y -=()324x -,即34100x y -+=.故答案为:2x =或34100x y -+=.14.在平面直角坐标系xOy 中,设直线y =-x +2与圆x 2+y 2=r 2(r >0)交于A ,B 两点.若圆上存在一点C ,满足5344OC OA OB =+,则r 的值为________.【答案】【解析】【详解】22225325539OC OA OB OA 2OA OB OB44164416⎛⎫=+=+⋅⋅+ ⎪⎝⎭即222225159r r r cos AOB r 16816=+∠+,整理化简得cos∠AOB=-35,过点O 作AB 的垂线交AB 于D,则cos∠AOB=2cos 2∠AOD-1=-35,得cos 2∠AOD=15.又圆心到直线的距离为OD==,所以cos 2∠AOD=15=22OD r=22r ,所以r 2.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程及演算步骤.15.已知直线l 过点()2,1P -.(1)若直线l 与直线230x y ++=垂直,求直线l 的方程(2)若直线l 在两坐标轴的截距互为相反数,求直线l 的方程.【答案】(1)240x y --=;(2)20x y +=或30x y --=.【解析】【分析】(1)根据直线方程垂直设出方程求解未知数即可;(2)根据截距的概念分类讨论求方程即可.【小问1详解】因为直线l 与直线230x y ++=垂直,所以可设直线l 的方程为20x y m -+=,因为直线l 过点()2,1P -,所以()2210m -⨯-+=,解得4m =-,所以直线l 的方程为240x y --=【小问2详解】当直线l 过原点时,直线l 的方程是2xy =-,即20x y +=.当直线l 不过原点时,设直线l 的方程为x y a -=,把点()2,1P -代入方程得3a =,所以直线l 的方程是30x y --=.综上,所求直线l 的方程为20x y +=或30x y --=16.已知向量()()1,1,,2,,a t t t b t t =--=.(1)若a b ⊥ ,求t 的值;(2)求b a -的最小值.【答案】(1)2(2)5【解析】【分析】(1)由空间向量垂直得到方程,求出答案;(2)计算出()1,21,0b a t t -=+-,利用模长公式得到b a -= ,求出最小值.【小问1详解】因为a b ⊥ ,所以0a b ⋅=,即()()22110t t t t -+-+=,解得2t=;【小问2详解】()1,21,0 b a t t-=+-所以b a-=.所以当15t=时,b a-取得最小值为5.17.如图,在四棱锥P ABCD-中,底面ABCD为直角梯形,//AD BC,AB BC⊥,AP⊥平面ABCD,Q为线段PD上的点,2DQ PQ=,1AB BC PA===,2AD=.(1)证明://BP平面ACQ;(2)求直线PC与平面ACQ所成角的正弦值.【答案】(1)证明见解析(2)13【解析】【分析】(1)利用三角形相似得2MD MB=,结合2DQ PQ=,则有//MQ BP,利用线面平行的判定即可证明;(2)以A为坐标原点,建立合适的空间直角坐标系,求出平面ACQ的法向量,利用线面角的空间向量法即可得到答案.【小问1详解】如图,连接BD与AC相交于点M,连接MQ,∵//BC AD,2AD BC=,则AMD CMB,∴2MD ADMB CB==,2MD MB=,∵2DQ PQ=,∴//MQ BP,BP ⊄ 平面ACQ ,MQ Ì平面ACQ ,∴//BP 平面ACQ ;【小问2详解】AP ⊥ 平面ABCD ,,AB AD ⊂平面ABCD ,,AP AB AP AD ∴⊥⊥,因为底面AB BC ⊥,则AB ,AD ,AP 两两垂直,以A 为坐标原点,建立如图所示空间直角坐标系,各点坐标如下:()0,0,0A ,()1,1,0C ,()0,0,1P ,220,,33Q ⎛⎫⎪⎝⎭.设平面ACQ 的法向量为(),,m x y z =,由()1,1,0AC = ,220,,33AQ ⎛⎫= ⎪⎝⎭ ,有02233AC m x y AQ m y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩,令1x =,1y =-,1z =,可得()1,1,1m =- ,由()1,1,1CP =-- ,有1CP m ⋅=,CP m ==,则1cos ,3CP m == .故直线PC 与平面ACQ 所成角的正弦值为13.18.如图,在正方体1111ABCD A B C D -中,,F G 分别是棱1,CC AD 的中点,E 为棱AB 上一点,且异面直线1B E 与BG 所成角的余弦值为25.(1)证明:E 为AB 的中点;(2)求平面1B EF 与平面11ABC D 所成锐二面角的余弦值.【答案】(1)见解析(2)4242【解析】【分析】(1)以D 为坐标原点,建立如图所示的空间直角坐标系D xyz -,不妨令正方体的棱长为2,设()2,,0E a ,利用111cos ,B E BG B E BG B E BG⋅= ,解得1a =,即可证得;(2)分别求得平面1B EF 与平面11ABC D 的法向量m n ,,利用cos ,m n m n m n⋅=⋅ 求解即可.【小问1详解】证明:以D 为坐标原点,建立如图所示的空间直角坐标系D xyz -.不妨令正方体的棱长为2,则()0,0,0D ,()1,0,0G ,()2,2,0B ,()12,2,2B ,()0,2,1F ,设()2,,0E a ,则()10,2,2B E a =-- ,()1,2,0BG =-- ,所以()1121422cos ,5524B E BG a B E BG B E BG a ⋅-===-+ ,所以2430a a -+=,解得1a =(3a =舍去),即E 为AB 的中点.【小问2详解】由(1)可得()10,1,2B E =-- ,()2,1,1EF =- ,设(),,m x y z = 是平面1B EF 的法向量,则12020m B E y z m EF x y z ⎧⋅=--=⎪⎨⋅=-++=⎪⎩ .令2z =,得()1,4,2m =-- .易得平面11ABC D 的一个法向量为()12,0,2n DA == ,所以cos ,42m n m n m n ⋅===⋅ .所以所求锐二面角的余弦值为42.19.已知圆C 过点(1,0)M -且与直线20x +-=相切于点1,22⎛⎫ ⎪ ⎪⎝⎭,直线:30l kx y k --+=与圆C 交于不同的两点A ,B .(1)求圆C 的方程;(2)若圆C 与x 轴的正半轴交于点P ,直线PA ,PB 的斜率分别为1k ,2k ,求证:12k k +是定值.【答案】(1)221x y +=(2)证明见解析.【解析】【分析】(1)确定圆心和半径,可得圆C 的方程.(2)把直线方程与圆C 方程联立,得到12x x +,21x x ,再表示出12k k +,运算整理即可.【小问1详解】过点1,22⎛⎫ ⎪ ⎪⎝⎭且与直线20x +-=垂直的直线为:1022x y ⎛⎫⎫---= ⎪⎪ ⎪⎭⎝⎭0y -=.又线段MN,其中1,22N ⎛⎫ ⎪ ⎪⎝⎭的垂直平分线为:()222213122x y x y ⎛⎫⎛⎫++=-+- ⎪ ⎪ ⎪⎝⎭⎝⎭0y +=.由00y y -=+=,得圆心()0,0C ,又221r CM ==.故圆C 的方程为:221x y +=.【小问2详解】将()3y kx k =+-代入221x y +=得:()2231x kx k ⎡⎤++-=⎣⎦,整理得:()()()222123310k x k k x k ++-+--=.由0∆>⇒()()()22224341310k k k k ⎡⎤--+-->⎣⎦⇒43k >.设1,1,2,2,则()122231k k x x k -+=+,()2122311k x x k --=+.又()1,0P ,所以()111111133111k x y k k x x x -+===+---,同理:2231k k x =+-.所以121233211k k k x x +=++--()()()121236211x x k x x +-=+--()()1212123621x x k x x x x +-=+-++()()()22222336123123111k k k k k k k k k -⨯-+=+----+++()()()22222336123123111k k k k k k k k k -⨯-+=+----+++18629k k --=+23=-.所以1223k k +=-为定值.。

山东省济南市山东省实验中学2024-2025学年高二上学期11月期中考试数学试题(含答案)

山东省济南市山东省实验中学2024-2025学年高二上学期11月期中考试数学试题(含答案)

山东省实验中学2024~2025学年第一学期期中高二数学试题 2024.11(选择性必修—检测)说明:本试卷满分150分,分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷为第1页至第2页,第Ⅱ卷为第3页至第4页.试题答案请用2B 铅笔或0.5mm 签字笔填涂到答题卡规定位置上,书写在试题上的答案无效。

考试时间120分钟。

第Ⅰ卷(共58分)一、单选题(本题包括8小题,每小题5分,共40分。

每小题只有一个选项符合题意)1.已知空间向量,,,若,,共面,则实数( )A.1B.2C.3D.42.“”是“直线与直线平行”的( )A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件3.给出下列说法,其中不正确的是()A.若,则,与空间中其它任何向量都不能构成空间的一个基底向量B.若,则点是线段的中点C.若,则,,,四点共面D.若平面,的法向量分别为,,且,则3.若三条直线,,不能围成三角形,则实数的取值最多有( )A.2个B.3个C.4个D.5个4.实数,满足,则的最小值为( )A. B.7C. D.36.若直线与曲线有两个不同的交点,则实数的取值范围是( )A.()1,2,0a = ()0,1,1b =- ()2,3,c m = a b cm =1m =-()1:2310l mx m y +++=2:30l x my ++=a b ∥a b c2PM PA PB =+M AB 2OA OB OC OD =+-A B C D αβ()12,1,1n =- ()21,,1n t =-αβ⊥3t =1:43l x y +=2:0l x y +=3:2l x my -=m x y 2222x y x y +=-3x y -+3+:20l kx y --=:1C x =-k k >5k <≤k <<1k <≤7.在三棱锥中,为的重心,,,,,,若交平面于点,且,则的最小值为( )A.B.C.1D.8.已知椭圆的左、右焦点分别为,,点在上且位于第一象限,圆与线段的延长线,线段以及轴均相切,的内切圆为圆.若圆与圆外切,且圆与圆的面积之比为4,则的离心率为( )A.C.二.多选题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,有选错的得0分,部分选对的得部分分.)9.下列说法正确的是()A.若直线的倾斜角越大,则直线的斜率就越大B.圆与直线必有两个交点C.在轴、轴上的截距分别为,的直线方程为D.设,,若直线与线段有交点,则实数的取值范围是10.已知椭圆的离心率为,长轴长为6,,分别是椭圆的左、右焦点,是一个定点,是椭圆上的动点,则下列说法正确的是( )A.焦距为2B.椭圆的标准方程为P ABC -G ABC △PD PA λ= PE PB μ= 12PF PC =λ()0,1μ∈PG DEF M 12PM PG =λμ+122343()2222:10x y C a b a b+=>>1F 2F P C 1O 1F P 2PF x 12PF F △2O 1O 2O 1O 2O C 123522:4O x y +=10mx y m +--=x y a b 1x y a b+=()2,2A -()1,1B :10l ax y ++=AB a (]322⎡⎫-∞-+∞⎪⎢⎣⎭,,()2222:10x y E a b a b +=>>23F F '()1,1A P E E 22195x y +=C.D.的最大值为11.立体几何中有很多立体图形都体现了数学的对称美,其中半正多面体是由两种或两种以上的正多边形围成的多面体,半正多面体因其最早由阿基米德研究发现,故也被称作阿基米德体.如图,这是一个棱数24,棱长为的半正多面体,它所有顶点都在同一个正方体的表面上,可以看成是由一个正方体截去八个一样的四面体所得的,下列结论正确的有()A.平面B.,,,四点共面C.点到平面的距离为D.若为线段上的动点,则直线与直线所成角的余弦值范围为第Ⅱ卷(非选择题,共92分)三、填空题(本题共3小题,每小题5分,共15分,其中14题第一空2分,第二空3分.)12.已知直线的倾斜角,则直线的斜率的取值范围为______.13.如图,已知点,,从点射出的光线经直线反射后再射到直线上,最后经直线反射后又回到点,则光线所经过的路程是______.14.杭州第19届亚运会的主会场——杭州奥体中心体育场,又称“大莲花”(如图1所示).会场造型取意于杭州丝绸纹理与纺织体系,建筑体态源于钱塘江水的动态,其简笔画如图2所示.一同学初学简笔画,先AF '=PA PF +6AG ⊥BCDG A F C D B ACD E BC DE AF 12⎡⎢⎣l 2,43ππθ⎛⎫∈⎪⎝⎭l ()8,0A ()0,4B -()3,0P AB OB OB P画了一个椭圆与圆弧的线稿,如图3所示.若椭圆的方程为,下顶点为,为坐标原点,为圆上任意一点,满足,则点的坐标为______;若为椭圆上一动点,当取最大值时,点恰好有两个,则的取值范围为______.图1 图2 图3四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15.(13分)已知两直线和的交点为.(1)直线过点且与直线平行,求直线的一般式方程;(2)圆过点且与相切于点,求圆的一般方程.16.(15分)已知椭圆,且过点.(1)求椭圆的方程;(2)若斜率为的直线与椭圆交于,两点,且点在第一象限,点,分别为椭圆的右顶点和上顶点,求四边形面积的最大值.17.(15分)在梯形中,,,,为的中点,线段与交于点(如图1).将沿折起到位置,使得(如图2).图1 图2(1)求证:平面平面;(2)线段上是否存在点,使得与平面的值;若不存在,请说明理由.E()222210x ya ba b+=>>10,2A⎛⎫-⎪⎝⎭O P C2PO PA=C Q QC Q a1:20l x y++=2:3210l x y-+=Pl P310x y++=lC()1,01l P C()2222:10x yC a ba b+=>>⎛⎝C12l C M N M A B CAMBN SABCD AB CD∥3BADπ∠=224AB AD CD===P AB AC DP O ACD△AC ACD'△D O OP'⊥D AC'⊥ABCPD'Q CQ BCD'PQPD'18.(17分)已知直线,半径为2的圆与相切,圆心在轴上且在直线的右上方.(1)求圆的方程;(2)直线与圆交于不同的,两点,且,求直线的斜率;(3)过点的直线与圆交于,两点(在轴上方),问在轴正半轴上是否存在定点,使得轴平分?若存在,请求出点的坐标:若不存在,请说明理由.19.(17分)已知点,是平面内不同的两点,若点满足(,且),则点的轨迹是以有序点对为“稳点”的-阿波罗尼斯圆.若点满足,则点的轨迹是以为“稳点”的-卡西尼卵形线.已知在平面直角坐标系中,,.(1)若以为“稳点”的-阿波罗尼斯圆的方程为,求,,的值;(2)在(1)的条件下,若点在以为“稳点”的5-卡西尼卵形线上,求(为原点)的取值范围;(3)卡西尼卵形线是中心对称图形,且只有1个对称中心,若,,求证:不存在实数,,使得以—阿波罗尼斯圆与—卡西尼卵形线都关于同一个点对称.:40l x ++=C l C x l C 2y kx =-C M N 120MCN ︒∠=2y kx =-()0,1M C A B A x y N y ANB ∠N A B P PAPBλ=0λ>1λ≠P (),A B λQ ()0QA QB μμ⋅=>Q (),A B μ()2,0A -()(),2B a b a ≠-(),A B λ221240x y x +-+=a b λQ (),A B OQ O 0b =λ=a μ(),A B μ山东省实验中学2024~2025学年第一学期期中高二数学试题参考答案 2024.11选择题1234567891011ABCBDDCCBDBCDABD填空题12..13.,.解答题15.【答案】(1)(2).【详解】(1)直线与直线平行,故设直线为,……1分联立方程组,解得.直线和的交点.……3分又直线过点,则,解得,即直线的方程为.……5分(2)设所求圆的标准方程为,的斜率为,故直线的斜率为1,由题意可得,……8分解得,……11分故所求圆的方程为.(()1,-∞-+∞ ,20,3⎛⎫-⎪⎝⎭a >340x y ++=221140333x y x y +++-=l 310x y ++=l 130x y C ++=203210x y x y ++=⎧⎨-+=⎩11x y =-⎧⎨=-⎩∴1:20l x y ++=2:3210l x y -+=()1,1P --l P 1130C --+=14C =l 340x y ++=()()222x a y b r -+-=1:20l x y ++=1-CP ()()()()2222221110111a b r a b r b a ⎧--+--=⎪⎪-+-=⎨⎪+⎪=+⎩216162518a b r ⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩2211256618x y ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭化为一般式:.……13分16.【答案】(1)(2)【详解】(1)由椭圆,解得,……2分由椭圆过点,得,联立解得,,……4分所以椭圆的方程为.……5分(2)由题意可设,点在第一象限,,……6分设,,点,到直线的距离分别为,,由,消可得,,,……8分10分,,直线的一般式方程:,,,,……12分14分当时,有最大值为……15分17.【答案】(1)证明见解析(2)存在,【详解】(1)证明:在梯形中,,22114333x y x y+++-=2214xy+=2222:1x yCa b+==2a b= C⎛⎝221314a b+=2a=1b=C2214xy+=1:2l y x m=+M11m∴-<<()11,M x y()22,N x y A B l1d2d221412xyy x m⎧+=⎪⎪⎨⎪=+⎪⎩y222220x mx m++-=122x x m∴+=-21222x x m=-MN∴===()2,0A()0,1B l220x y m-+=1d∴=2d=12d d∴+=()121122AMN BMNS S S MN d d∴=+=⋅+==△△m=S13ABCD AB CD∥,,为的中点,,,,……1分是正三角形,四边形为菱形,,,……3分,,又,,平面,平面,……5分平面,平面平面.……6分(2)存在,,理由如下:……8分平面,,,,两两互相垂直,如图,以点为坐标原点,,,所在直线为,,轴建立空间直角坐标系.则,,,,,,设平面的一个法向量为,则,即,令,则,,,……11分设,,,, (12)分设与平面所成角为,则,即,,解得,224AB AD CD ===3BAD π∠=P AB CD PB ∴∥CD PB =BC DP =ADP ∴△DPBC AC BC ∴⊥AC DP ⊥AC D O ⊥' D O OP '⊥AC OP O = AC OP ⊂ABC D O ∴'⊥ABC D O ⊂' D AC '∴D AC '⊥ABC 13PQ PD '=D O ⊥' BAC OP AC ⊥OA ∴OP OD 'O OA OP OD 'x y z ()C ()2,0B ()0,0,1D '()0,1,0P )2,1BD ∴'=- )CD '=CBD '(),,n x y z =00n BD n CD ⎧⋅=⎪⎨⋅=⎪⎩'' 200y z z -+=+=⎪⎩1x =0y =z =(1,0,n ∴=()01PQ PD λλ'=≤≤)CP =()0,1,1PD =-'),CQ CP PQ CP PD λλλ∴=+=+=- CQ BCD 'θsin cos ,CQ n CQ n CQ n θ⋅====23720λλ-+=01λ≤≤ 13λ=线段上存在点,且,使得与平面……15分18.【答案】(1)(2)(3)【详解】(1)设圆心,则,……2分解得或(舍),故圆的方程为.……4分(2)由题意可知圆心到直线的距离为,……6分,解得.……8分(3)当直线的斜率存在时,设直线的方程为,,,,由得,……10分,……12分若轴平分,则,即,即,即,即,即,……14分当时,上式恒成立,即;……15分当直线的斜率不存在或斜率为0时,易知满足题意;综上,当点的坐标为时,轴平分.……17分19.【答案】(1),,(2)(3)证明见解析【详解】(1)因为以为“稳点”的—阿波罗尼斯圆的方程为,设是该圆上任意一点,则,……1分所以,……3分∴PD 'Q 13PQ PD '=CQ BCD '224x y +=k =()0,4N ()(),04C a a >-422a +=0a =8a =-C 224x y +=C 2y kx =-2sin 301︒=1=k =AB AB ()10y kx k =+≠()()0,0N t t >()11,A x y ()22,B x y 224,1x y y kx ⎧+=⎨=+⎩()221230k x kx ++-=12221k x x k -∴+=+12231x x k -=+y ANB ∠AN BN k k =-12120y t y t x x --+=1212110kx t kx tx x +-+-+=()()1212210kx x t x x +-+=()()22126011t k k k k -⨯--+=++40k kt -+=4t =()0,4N AB ()0,4N N ()0,4y ANB ∠2a =0b =λ=[]1,3(),A B λ221240x y x +-+=(),P x y 22124x y x +=-()()()()22222222222222244162212224PA x y x y x x x y ax by a b a x by a bx a y b PB+++++===+--++--+-+-+-因为为常数,所以,,且,……5分所以,,.……6分(2)解:由(1)知,,设,由,所以,……7分,整理得,即,所以,……9分,……10分由,得,即的取值范围是.……12分(3)证明:若,则以—阿波罗尼斯圆的方程为,整理得,该圆关于点对称.……15分由点,关于点对称及,可得—卡西尼卵形线关于点对称,令,解得,与矛盾,所以不存在实数,,使得以—阿波罗尼斯圆与—卡西尼卵形线都关于同一个点对称……17分22PA PB2λ2240a b -+=0b =2a ≠-2a =0b =λ==()2,0A -()2,0B (),Q x y 5QA QB ⋅=5=()222242516x y x ++=+2240y x =--≥42890x x --≤()()22190x x +-≤209x ≤≤OQ ==209x ≤≤13OQ ≤≤OQ []1,30b =(),A B ()()222222x y x a y ⎡⎤++=-+⎣⎦()22244240x y a x a +-++-=()22,0a +()2,0A -(),0B a 2,02a -⎛⎫⎪⎝⎭QA QB μ⋅=μ2,02a -⎛⎫⎪⎝⎭2222a a -+=2a =-2a ≠=-a μ(),A B μ。

山东省 2023~2024学年第一学期期中高二数学试题[含答案]

山东省 2023~2024学年第一学期期中高二数学试题[含答案]

42
2 y
22
4
,化
为 (x 2)2 ( y 1)2 1,故选 A.
考点:1、圆的标准方程;2、“逆代法”求轨迹方程.
【方法点晴】本题主要考查圆的标准方程、“逆代法”求轨迹方程,属于难题.求轨迹方程的常见方法有:①直
接法,设出动点的坐标
x,
y
,根据题意列出关于
x,
y
的等式即可;②定义法,根据题意动点符合已知曲
y 1 mx 2m R
5. 在平面直角坐标系中,动圆
与直线
相切,则面积最
大的圆的标准方程为( )
x 12 y 12 4
A.
x 12 y 12 5
B.
x 12 y 12 6
C. 【答案】B
x 12 y 12 8
D.
【解析】
【分析】据题意分析可知直线经过定点 P ;圆的圆心到直线距离的最大时,圆的半径最大,即可得到面积
当直线 x ay 1 0 与直线 ax y 1 0 相互垂直时, a 1 不一定成立,所以“ a 1 ”是“直线
x ay 1 0 与直线 ax y 1 0 相互垂直”的非必要条件.
所以“ a 1 ”是“直线 x ay 1 0 与直线 ax y 1 0 相互垂直”的充分非必要条件.
2023~2024 学年第一学期期中高二数学试题
(选择性必修一检测) 2023.11
说明:本试卷满分 150 分,分为第 I 卷(选择题)和第 II 卷(非选择题)两部分,第 I 卷为 第 1 页至第 3 页,第 II 卷为第 3 页至第 4 页.试题答案请用 2B 铅笔或 0.5mm 签字笔填涂到 答题卡规定位置上,书写在试题上的答案无效.考试时间 120 分钟.

2023-2024学年湖北省部分省级示范高中高二(上)期中数学试卷【答案版】

2023-2024学年湖北省部分省级示范高中高二(上)期中数学试卷【答案版】

2023-2024学年湖北省部分省级示范高中高二(上)期中数学试卷一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知点A (2,0),B (0,4),若过P (﹣6,﹣8)的直线l 与线段AB 相交,则实数k 的取值范围为( ) A .k ≤1B .k ≥2C .k ≥2或k ≤1D .1≤k ≤22.圆 C 1:(x +2)2+(y ﹣2)2=4和圆C 2:(x ﹣2)2+(y ﹣5)2=16的位置关系是( ) A .外离B .相交C .内切D .外切3.若圆C 经过点A (2,5),B (4,3),且圆心在直线l :3x ﹣y ﹣3=0 上,则圆C 的方程为( ) A .(x ﹣2)2+(y ﹣3)2=4 B .(x ﹣2)2+(y ﹣3)2=8 C .(x ﹣3)2+(y ﹣6)2=2D .(x ﹣3)2+(y ﹣6)2=104.已知直线ax +3y +2a =0和2x +(a +1)y ﹣2=0平行,则实数a 的值等于( ) A .a =2或a =﹣3B .a =2C .a =﹣3D .a =﹣2或a =35.如图,在平行六面体ABCD ﹣A 1B 1C 1D 1中,M 为A 1C 1,B 1D 1的交点.若AB →=a →,AD →=b →,AA 1→=c →,则向量BM →=( )A .−12a →+12b →+c →B .12a →+12b →+c →C .−12a →−12b →+c →D .12a →−12b →+c →6.若椭圆x 29+y 24=1的弦AB 被点P (1,1)平分,则AB 所在直线的方程为( )A .4x +9y ﹣13=0B .9x +4y ﹣13=0C .x +2y ﹣3=0D .x +3y ﹣4=07.若直线l :kx ﹣y ﹣2=0与曲线C :√1−(y −1)2=x ﹣1有两个不同的交点,则实数k 的取值范围是( ) A .k >43B .43<k ≤2C .43<k ≤2或−2≤k <−43D .43<k ≤48.吹奏乐器“埙”(如图1)在古代通常是用陶土烧制的,一种埙的外轮廓的上部是半椭圆,下部是半圆.半椭圆y 2a 2+x 2b 2=1(y ≥0,a >b >0且为常数)和半圆x 2+y 2=b 2(y <0)组成的曲线C 如图2所示,曲线C 交x 轴的负半轴于点A ,交y 轴的正半轴于点G ,点M 是半圆上任意一点,当点M 的坐标为(√22,−12)时,△AGM 的面积最大,则半椭圆的方程是( )A .4x 23+y 22=1(y ≥0)B .16x 29+y 23=1(y ≥0)C .2x 23+4y 23=1(y ≥0)D .4x 23+2y 23=1(y ≥0)二、多选题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有2个或2个以上选项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.) 9.下面结论正确的是( )A .若事件A 与B 是互斥事件,则A 与B 也是互斥事件 B .若事件A 与B 是相互独立事件,则A 与B 也是相互独立事件C .若P (A )=0.6,P (B )=0.2,A 与B 相互独立,那么P (A +B )=0.8D .若P (A )=0.8,P (B )=0.7,A 与B 相互独立,那么P(AB)=0.2410.已知直线l :kx ﹣y ﹣k =0,圆M :x 2+y 2+Dx +Ey +1=0的圆心坐标为(2,1),则下列说法正确的是( ) A .直线l 恒过点(0,1)B .D =﹣4,E =﹣2C .直线l 被圆M 截得的最短弦长为2√2D .当k =1时,圆M 上存在无数对点关于直线l 对称 11.设椭圆x 29+y 23=1的右焦点为F ,直线y =m(0<m <√3)与椭圆交于A ,B 两点,则( ) A .|AF |+|BF |=6B .△ABF 的周长的取值范围是[6,12]C .当m =1时,△ABF 的面积为√6D .当m =√32时,△ABF 为直角三角形12.已知正方体ABCD ﹣A 1B 1C 1D 1的棱长为2,点P 为平面ABCD 内一动点,则下列说法正确的是( ) A .若点P 在棱AD 上运动,则A 1P +PC 的最小值为2+2√2B .若点P 是棱AD 的中点,则平面PBC 1截正方体所得截面的周长为2√5+3√2C .若点P 满足PD 1⊥DC 1,则动点P 的轨迹是一条直线 D .若点P 在直线AC 上运动,则P 到棱BC 1的最小距离为2√33三、填空题(本大题共4小题,每小题5分,共20分.把答案填写在答题卡上相应位置的横线上.) 13.若以连续掷两次骰子分别得到的点数m 、n 作为点P 的坐标,则点P 落在圆x 2+y 2=16内的概率是 .14.已知两点A (﹣3,﹣4),B (6,3)到直线l :ax +y +1=0的距离相等,则实数a 的值等于 . 15.古希腊著名数学家阿波罗尼斯发现了平面内到两个定点A ,B 的距离之比为定值λ(λ≠1)的点的轨迹是圆,此圆被称为“阿波罗尼斯圆”.在平面直角坐标系中,已知A (1,0),B (4,0),若动点P 满足|PA||PB|=12,设点P 的轨迹为C ,过点(1,2)作直线l ,C 上恰有三个点到直线l 的距离为1,则满足条件的一条直线l 的方程为 . 16.已知椭圆x 2a 2+y 2b 2=1(a >b >0),F 1,F 2分别是椭圆的左、右焦点,A 是椭圆的下顶点,直线AF 2交椭圆于另一点P ,若|PF 1|=|P A |,则椭圆的离心率为 .四、解答题(本大题共6小题,第17小题10分,其余各小题每题12分,共70分.解答应写出文字说明,证明过程或演算步骤.)17.(10分)甲、乙两名魔方爱好者在30秒内复原魔方的概率分别是0.8和0.6.如果在30秒内将魔方复原称为“复原成功”,且每次复原成功与否相互之间没有影响,求:(1)甲复原三次,第三次才成功的概率;(2)甲、乙两人在第一次复原中至少有一人成功的概率. 18.(12分)已知△ABC 中,A (﹣2,1),B (4,3).(1)若C (3,﹣2),求BC 边上的高AD 所在直线的一般式方程; (2)若点M (3,1)为边AC 的中点,求BC 边所在直线的一般式方程.19.(12分)如图,在长方体ABCD ﹣A 1B 1C 1D 1中,AB =3,AD =AA 1=2,点E 在AB 上,且AE =1. (1)求直线A 1E 与BC 1所成角的余弦值; (2)求点B 到平面A 1EC 的距离.20.(12分)已知点A (1,2),圆C :x 2+y 2+2mx +2y +2=0. (1)若过点A 可以作两条圆的切线,求m 的取值范围;(2)当m =﹣2时,过直线2x ﹣y +3=0上一点P 作圆的两条切线PM 、PN ,求四边形PMCN 面积的最小值.21.(12分)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F(√3,0),长半轴长与短半轴长的比值为2.(1)求椭圆C 的方程;(2)设经过点A (1,0)的直线l 与椭圆C 相交于不同的两点M ,N .若点B (0,1)在以线段MN 为直径的圆上,求直线l 的方程.22.(12分)如图1,已知ABFE 是直角梯形,EF ∥AB ,∠ABF =90°,∠BAE =60°,C 、D 分别为BF 、AE 的中点,AB =5,EF =1,将直角梯形ABFE 沿CD 翻折,使得二面角F ﹣DC ﹣B 的大小为60°,如图2所示,设N 为BC 的中点.(1)证明:FN ⊥AD ;(2)若M 为AE 上一点,且AMAE =λ,则当λ为何值时,直线BM 与平面ADE 所成角的正弦值为5√714.2023-2024学年湖北省部分省级示范高中高二(上)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知点A (2,0),B (0,4),若过P (﹣6,﹣8)的直线l 与线段AB 相交,则实数k 的取值范围为( ) A .k ≤1B .k ≥2C .k ≥2或k ≤1D .1≤k ≤2解:过P (﹣6,﹣8)的直线l 与线段AB 相交,如图所示:可得k AP ≤k ≤k PB , 即0−(−8)2−(−6)≤k ≤4−(−8)0−(−6),即k ∈[1,2].故选:D .2.圆 C 1:(x +2)2+(y ﹣2)2=4和圆C 2:(x ﹣2)2+(y ﹣5)2=16的位置关系是( ) A .外离B .相交C .内切D .外切解:两个圆的圆心分别为 C 1(﹣2,2)、C 2:(2,5),半径分别为2、4,两圆的圆心距 C 1C 2=√(2+2)2+(5−2)2=5,大于半径之差而小于半径之和,故两个圆相交, 故选:B .3.若圆C 经过点A (2,5),B (4,3),且圆心在直线l :3x ﹣y ﹣3=0 上,则圆C 的方程为( ) A .(x ﹣2)2+(y ﹣3)2=4 B .(x ﹣2)2+(y ﹣3)2=8 C .(x ﹣3)2+(y ﹣6)2=2D .(x ﹣3)2+(y ﹣6)2=10解:圆C 经过点A (2,5),B (4,3),可得线段AB 的中点为(3,4),又 k AB =5−32−4=−1,所以线段AB 的中垂线的方程为y ﹣4=x ﹣3,即x ﹣y +1=0. 由{x −y +1=03x −y −3=0,解得{x =2y =3,即C (2,3),圆C 的半径 r =√(2−2)2+(5−3)2=2, 所以圆C 的方程为 (x ﹣2)2+(y ﹣3)2=4. 故选:A .4.已知直线ax +3y +2a =0和2x +(a +1)y ﹣2=0平行,则实数a 的值等于( ) A .a =2或a =﹣3B .a =2C .a =﹣3D .a =﹣2或a =3解:由直线ax +3y +2a =0和2x +(a +1)y ﹣2=0平行, 可得{a(a +1)=2×33×(−2)≠2a(a +1),解得a =2或a =﹣3.故选:A .5.如图,在平行六面体ABCD ﹣A 1B 1C 1D 1中,M 为A 1C 1,B 1D 1的交点.若AB →=a →,AD →=b →,AA 1→=c →,则向量BM →=( )A .−12a →+12b →+c →B .12a →+12b →+c →C .−12a →−12b →+c →D .12a →−12b →+c →解:∵在平行六面体ABCD ﹣A 1B 1C 1D 1中,M 为A 1C 1,B 1D 1的交点. AB →=a →,AD →=b →,AA 1→=c →,∴向量BM →=BB 1→+12B 1D 1→=BB 1→+12(BA →+AD →) =−12a →+12b →+c →.故选:A . 6.若椭圆x 29+y 24=1的弦AB 被点P (1,1)平分,则AB 所在直线的方程为( )A .4x +9y ﹣13=0B .9x +4y ﹣13=0C .x +2y ﹣3=0D .x +3y ﹣4=0解:设A (x 1,y 1),B (x 2,y 2),则{x 129+y 124=1x 229+y 224=1,所以x 12−x 229+y 12−y 224=0,整理得y 1−y 2x 1−x 2=−4(x 1+x 2)9(y 1+y 2),因为P (1,1)为弦AB 的中点,所以x 1+x 2=2,y 1+y 2=2, 所以k AB =y 1−y2x 1−x 2=−4(x 1+x 2)9(y 1+y 2)=−49,所以弦AB 所在直线的方程为y −1=−49(x −1),即4x +9y ﹣13=0. 故选:A .7.若直线l :kx ﹣y ﹣2=0与曲线C :√1−(y −1)2=x ﹣1有两个不同的交点,则实数k 的取值范围是( ) A .k >43B .43<k ≤2C .43<k ≤2或−2≤k <−43D .43<k ≤4解:直线l :kx ﹣y ﹣2=0恒过定点(0,﹣2),∵√1−(y −1)2=x −1,得到(x ﹣1)2+(y ﹣1)2=1(x ≥1),∴曲线C 表示以点(1,1)为圆心,半径为1,且位于直线x =1右侧的半圆(包括点(1,2),(1,0)),如下图所示:当直线l 经过点(1,0)时,l 与曲线C 有两个不同的交点,此时k =2; 当l 与半圆相切时,则由题可得√k 2+1=1,解得k =43,由图可知,当43<k ≤2时,l 与曲线C 有两个不同的交点. 故选:D .8.吹奏乐器“埙”(如图1)在古代通常是用陶土烧制的,一种埙的外轮廓的上部是半椭圆,下部是半圆.半椭圆y 2a 2+x 2b 2=1(y ≥0,a >b >0且为常数)和半圆x 2+y 2=b 2(y <0)组成的曲线C 如图2所示,曲线C 交x 轴的负半轴于点A ,交y 轴的正半轴于点G ,点M 是半圆上任意一点,当点M 的坐标为(√22,−12)时,△AGM 的面积最大,则半椭圆的方程是( )A .4x 23+y 22=1(y ≥0)B .16x 29+y 23=1(y ≥0)C .2x 23+4y 23=1(y ≥0)D .4x 23+2y 23=1(y ≥0)解:由点M(√22,−12)在半圆上,所以b =√32,G (0,a ),A (﹣b ,0), 要使△AGM 的面积最大,可平行移动AG ,当AG 与半圆相切于M(√22,−12)时,M 到直线AG 的距离最大, 此时OM ⊥AG ,即k OM •k AG =﹣1; 又k OM =−12√22=−√22,k AG =a b ,∴−√22⋅a b =−1,∴a =√2b =√62,所以半椭圆的方程为4x 23+2y 23=1(y ≥0).故选:D .二、多选题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有2个或2个以上选项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.) 9.下面结论正确的是( )A .若事件A 与B 是互斥事件,则A 与B 也是互斥事件 B .若事件A 与B 是相互独立事件,则A 与B 也是相互独立事件C .若P (A )=0.6,P (B )=0.2,A 与B 相互独立,那么P (A +B )=0.8D .若P (A )=0.8,P (B )=0.7,A 与B 相互独立,那么P(AB)=0.24解:A 中,由互斥事件的定义可知,事件A 、B 互斥,则A 与B 也是互斥事件不成立, 比如事件A 、B 是对立事件,则A 与B 是同一事件,显然不互斥,故A 错误; B 中,若A 与B 相互独立,则A 与B ,B 与A ,A 与B 都是相互独立事件,故B 正确;C 中,如果A 与B 相互独立,则P (A +B )=P (A )+P (B )﹣P (AB )=0.8﹣0.12=0.68,故C 错误;D 中,如果A 与B 相互独立,则P(AB)=P(A)P(B)=P(A)(1−P(B))=0.8×(1−0.7)=0.24,故D 正确. 故选:BD .10.已知直线l :kx ﹣y ﹣k =0,圆M :x 2+y 2+Dx +Ey +1=0的圆心坐标为(2,1),则下列说法正确的是( ) A .直线l 恒过点(0,1) B .D =﹣4,E =﹣2C .直线l 被圆M 截得的最短弦长为2√2D .当k =1时,圆M 上存在无数对点关于直线l 对称解:对于A ,直线l :kx ﹣y ﹣k =0⇒k (x ﹣1)﹣y =0,恒过点(1,0),所以A 不正确;对于B ,圆M :x 2+y 2+Dx +Ey +1=0的圆心坐标为(−D2,−E2),所以D =﹣4,E =﹣2,所以B 正确; 对于C ,圆M :x 2+y 2﹣4x ﹣2y +1=0⇒(x ﹣2)2+(y ﹣1)2=4的圆心坐标为(2,1),圆的半径为2. 直线l :kx ﹣y ﹣k =0,恒过点(1,0),圆的圆心到定点的距离为:√12+12=√2<2,直线与圆相交, 直线l 被圆M 截得的最短弦长为2√4−2=2√2,所以C 正确;对于D ,当k =1时,直线方程为:x ﹣y ﹣1=0,经过圆的圆心,所以圆M 上存在无数对点关于直线l 对称,所以D 正确. 故选:BCD . 11.设椭圆x 29+y 23=1的右焦点为F ,直线y =m(0<m <√3)与椭圆交于A ,B 两点,则( ) A .|AF |+|BF |=6B .△ABF 的周长的取值范围是[6,12]C .当m =1时,△ABF 的面积为√6D .当m =√32时,△ABF 为直角三角形解:∵椭圆方程为x 29+y 23=1,∴a =3,b =√3,c =√6,设椭圆的左焦点为F ',则|AF '|=|BF |,∴|AF |+|BF |=|AF |+|AF '|=2a =6,∴A 选项正确; ∵△ABF 的周长为|AB |+|AF |+|BF |,又|AF |+|BF |=6,易知|AB |的范围是(0,6), ∴△ABF 的周长的范围是(6,12),∴B 选项错误;将y =1与椭圆方程联立,解得A(−√6,1),B(√6,1),∴S △ABF =12×2√6×1=√6,∴C 选项正确;将y =√32与椭圆方程联立,可解得A(−3√32,√32),B(3√32,√32),又易知F(√6,0), ∴AF →⋅BF →=(√6+3√32)(√6−3√32)+(√32)2=0,∴△ABF 为直角三角形,∴D 选项正确. 故选:ACD .12.已知正方体ABCD ﹣A 1B 1C 1D 1的棱长为2,点P 为平面ABCD 内一动点,则下列说法正确的是( ) A .若点P 在棱AD 上运动,则A 1P +PC 的最小值为2+2√2B .若点P 是棱AD 的中点,则平面PBC 1截正方体所得截面的周长为2√5+3√2C .若点P 满足PD 1⊥DC 1,则动点P 的轨迹是一条直线D .若点P 在直线AC 上运动,则P 到棱BC 1的最小距离为2√33解:对于A :如图将平面ABCD 展开与平面ADD 1A 1处于一个平面,连接A 1C 与AD 交于点P , 此时A 1P +PC 取得最小值,即(A 1P +PC)min =√22+42=2√5,故A 错误;对于B :如图取DD 1的中点E ,连接BP 、PE 、C 1E 、AD 1, 因为点P 是棱AD 的中点,所以PE ∥AD 1且PE =12AD 1,又AB ∥C 1D 1且AB =C 1D 1,所以四边形ABC 1D 1为平行四边形,所以AD 1∥BC 1, 所以PE ∥BC 1,所以四边形EPBC 1即为平面PBC 1截正方体所得截面, 又BC 1=2√2,PE =12AD 1=√2,BP =EC 1=√12+22=√5, 所以截面周长为3√2+2√5,故B 正确;对于C :如图,DC 1⊥D 1C ,BC ⊥平面DCC 1D 1,DC 1⊂平面DCC 1D 1, 所以DC 1⊥BC ,又D 1C ∩BC =C ,D 1C ,BC ⊂平面BCD 1A 1, 所以DC 1⊥平面BCD 1A 1,因为平面ABCD ∩平面BCD 1A 1=BC , D 1∈平面BCD 1A 1,P ∈平面ABCD ,又PD 1⊥DC 1,所以P 在直线BC 上,即动点P 的轨迹是一条直线,故C 正确;对于D :如图建立空间直角坐标系,则B (2,2,0),C 1(0,2,2),设P (a ,2﹣a ,0)(a ∈[0,2]), 所以BC 1→=(−2,0,2),BP →=(a −2,−a ,0), 所以P 到棱BC 1的距离d =√|BP →|2−(BC 1→⋅BP →|BC 1→|)2=√32a 2−2a +2=√32(a −23)2+43,所以当a =23时d min =√43=2√33,故D 正确.故选:BCD .三、填空题(本大题共4小题,每小题5分,共20分.把答案填写在答题卡上相应位置的横线上.) 13.若以连续掷两次骰子分别得到的点数m 、n 作为点P 的坐标,则点P 落在圆x 2+y 2=16内的概率是29.解:由题意知,本题是一个古典概型,试验发生包含的事件是连续掷两次骰子分别得到的点数m 、n 作为点P 的坐标,共有6×6=36种结果, 而满足条件的事件是点P 落在圆x 2+y 2=16内,列举出落在圆内的情况:(1,1)(1,2)(1,3) (2,1)(2,2)(2,3)(3,1)(3,2),共有8种结果, 根据古典概型概率公式得到P =836=29, 故答案为:2914.已知两点A (﹣3,﹣4),B (6,3)到直线l :ax +y +1=0的距离相等,则实数a 的值等于 −79或−13. 解:∵两点A (﹣3,﹣4),B (6,3)到直线l :ax +y +1=0的距离相等, ∴√a 2+1=√a 2+1,化为|3a +3|=|6a +4|.∴6a +4=±(3a +3),解得a =−79或−13. 故答案为:a =−79或−13.15.古希腊著名数学家阿波罗尼斯发现了平面内到两个定点A ,B 的距离之比为定值λ(λ≠1)的点的轨迹是圆,此圆被称为“阿波罗尼斯圆”.在平面直角坐标系中,已知A (1,0),B (4,0),若动点P 满足|PA||PB|=12,设点P 的轨迹为C ,过点(1,2)作直线l ,C 上恰有三个点到直线l 的距离为1,则满足条件的一条直线l 的方程为 x =1或3x ﹣4y +5=0(写出一条即可) . 解:因为A (1,0),B (4,0),点P 满足|PA||PB|=12,设P (x ,y ),则2222=12,化简得x 2+y 2=4,因为圆C 上恰有三个点到直线l 的距离为1,所以圆心到直线的距离为1. 若直线l 的斜率不存在,直线l 的方程为x =1;若直线l 的斜率存在,设直线l 的方程为y ﹣2=k (x ﹣1),即kx ﹣y ﹣k +2=0, d =|−k+2|√k +1=1,解得k =34,直线l 的方程为:3x ﹣4y +5=0.故答案为:x =1或3x ﹣4y +5=0(写出一条即可).16.已知椭圆x 2a 2+y 2b 2=1(a >b >0),F 1,F 2分别是椭圆的左、右焦点,A 是椭圆的下顶点,直线AF 2交椭圆于另一点P ,若|PF 1|=|P A |,则椭圆的离心率为 √33解:如图所示,∵点P 在椭圆上,∴|PF 1|+|PF 2|=2a , ∵点A 是椭圆的下顶点,∴|AF 1|=|AF 2|=a ,又∵|PF 1|=|P A |=|PF 2|+|AF 2|=|PF 2|+a =2a ﹣|PF 1|+a =3a ﹣|PF 1|, ∴|PF 1|=3a 2,|PF 2|=12a , 在△PF 1A 中,|PF 1|=3a 2,|P A |=3a2,|AF 1|=a , 由余弦定理可得:cos ∠F 1AP =|AF 1|2+|PA|2−|PF 1|22|AF 1||AP|=13,∴sin 2∠F 1AO =1−cos∠F 1AP 2=13, ∴sin ∠F 1AO =√33,又∵sin ∠F 1AO =ca , ∴离心率e =ca =√33, 故答案为:√33.四、解答题(本大题共6小题,第17小题10分,其余各小题每题12分,共70分.解答应写出文字说明,证明过程或演算步骤.)17.(10分)甲、乙两名魔方爱好者在30秒内复原魔方的概率分别是0.8和0.6.如果在30秒内将魔方复原称为“复原成功”,且每次复原成功与否相互之间没有影响,求:(1)甲复原三次,第三次才成功的概率;(2)甲、乙两人在第一次复原中至少有一人成功的概率.解:记“甲第i 次复原成功”为事件A i ,“乙第i 次复原成功”为事件B i , 依题意,P (A i )=0.8,P (B i )=0.6.(1)“甲第三次才成功”为事件A 1A 2A 3,且三次复原过程相互独立, 所以,P(A 1A 2A 3)=P(A 1)P(A 2)P(A 3)=0.2×0.2×0.8=0.032. (2)“甲、乙两人在第一次复原中至少有一人成功”为事件C . 所以P(C)=1−P(A 1⋅B 1)=1−P(A 1)⋅P(B 1)=1−0.2×0.4=0.92. 18.(12分)已知△ABC 中,A (﹣2,1),B (4,3).(1)若C (3,﹣2),求BC 边上的高AD 所在直线的一般式方程; (2)若点M (3,1)为边AC 的中点,求BC 边所在直线的一般式方程.解:(1)因为B (4,3),C (3,﹣2), 所以k BC =−2−33−4=5, 因为AD 是BC 边上的高, 所以k AD ⋅k BC =−1⇒k AD =−15,所以高AD 所在直线的方程为y −1=−15(x +2)⇒x +5y −3=0; (2)因为点M (3,1)为边AC 的中点,所以{3=−2+C x21=1+C y 2⇒C(8,1),因此BC 边所在直线的方程为y−33−1=x−44−8⇒x +2y −10=0.19.(12分)如图,在长方体ABCD ﹣A 1B 1C 1D 1中,AB =3,AD =AA 1=2,点E 在AB 上,且AE =1. (1)求直线A 1E 与BC 1所成角的余弦值; (2)求点B 到平面A 1EC 的距离.解:(1)由题意,建立如图所示空间直角坐标系,A 1(2,0,2),E(2,1,0),A 1E →=(0,1,−2),B(2,3,0),C 1(0,3,2),BC 1→=(−2,0,2), 设直线A 1E 与直线BC 1所成角为α,则cosα=|A 1E →⋅BC 1→|A 1E →|⋅|BC 1→||=5×22=√105.(2)由题意C(0,3,0),EC →=(−2,2,0), 设平面A 1EC 的法向量为n →=(x ,y ,z),则{n →⋅A 1E →=y −2z =0n →⋅EC →=−2x +2y =0,取n →=(2,2,1),又BE →=(0,−2,0),所以B 到平面A 1EC 的距离为|n →⋅BE →|n →||=|−43|=43.20.(12分)已知点A (1,2),圆C :x 2+y 2+2mx +2y +2=0. (1)若过点A 可以作两条圆的切线,求m 的取值范围;(2)当m =﹣2时,过直线2x ﹣y +3=0上一点P 作圆的两条切线PM 、PN ,求四边形PMCN 面积的最小值.解:(1)由题意得A (1,2)在圆外, 则1+4+2m +6>0,即m >−112, 又4m 2+4﹣8>0,即m >1或m <﹣1, 所以−112<m <−1或m >1;故m 的取值范围为(−112,﹣1)∪(1,+∞); (2)m =﹣2时,圆方程为(x ﹣2)2+(y +1)2=3, 则圆的半径r =√3,圆心C (2,﹣1),∴S 四边形PMCN =|PM|⋅r =√3|PM|=√3⋅√|PC|2−r 2=√3⋅√|PC|2−3. 直线方程为2x ﹣y +3=0,设圆心(2,﹣1)到直线2x ﹣y +3=0的距离为d ,∴|PC|min =d =|2×2−(−1)+3|5=85,∴(S 四边形PMCN )min =√3√645−3=√3√495=75√15. 21.(12分)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F(√3,0),长半轴长与短半轴长的比值为2.(1)求椭圆C 的方程;(2)设经过点A (1,0)的直线l 与椭圆C 相交于不同的两点M ,N .若点B (0,1)在以线段MN 为直径的圆上,求直线l 的方程.解:(1)由题可知c =√3,ab =2,a 2=b 2+c 2,∴a =2,b =1.∴椭圆C 的方程为x 24+y 2=1.(2)易知当直线l 的斜率为0或直线l 的斜率不存在时,不合题意.当直线l 的斜率存在且不为0时,设直线l 的方程为x =my +1,M (x 1,y 1),N (x 2,y 2). 联立{x =my +1x 2+4y 2=4,消去x ,可得(4+m 2)y 2+2my ﹣3=0. Δ=16m 2+48>0,y 1+y 2=−2m 4+m 2,y 1y 2=−34+m 2. ∵点B 在以MN 为直径的圆上,∴BM →⋅BN →=0.∵BM →⋅BN →=(my 1+1,y 1−1)⋅(my 2+1,y 2−1)=(m 2+1)y 1y 2+(m ﹣1)(y 1+y 2)+2=0, ∴(m 2+1)⋅−34+m 2+(m −1)⋅−2m4+m 2+2=0, 整理,得3m 2﹣2m ﹣5=0, 解得m =﹣1或m =53.∴直线l 的方程为x +y ﹣1=0或3x ﹣5y ﹣3=0.22.(12分)如图1,已知ABFE 是直角梯形,EF ∥AB ,∠ABF =90°,∠BAE =60°,C 、D 分别为BF 、AE 的中点,AB =5,EF =1,将直角梯形ABFE 沿CD 翻折,使得二面角F ﹣DC ﹣B 的大小为60°,如图2所示,设N 为BC 的中点.(1)证明:FN ⊥AD ;(2)若M 为AE 上一点,且AM AE=λ,则当λ为何值时,直线BM 与平面ADE 所成角的正弦值为5√714. 解:(1)证明:如图1,已知ABFE 是直角梯形,EF ∥AB ,∠ABF =90°,∠BAE =60°,C 、D 分别为BF 、AE 的中点,AB =5,EF =1,将直角梯形ABFE 沿CD 翻折,使得二面角F ﹣DC ﹣B 的大小为60°,如图2所示,设N 为BC 的中点.∵由图1得:DC ⊥CF ,DC ⊥CB ,且CF ∩CB =C ,∴在图2中DC ⊥平面BCF ,∠BCF 是二面角F ﹣DC ﹣B 的平面角,则∠BCF =60°, ∴△BCF 是正三角形,且N 是BC 的中点,FN ⊥BC , 又DC ⊥平面BCF ,FN ⊂平面BCF ,可得FN ⊥CD , ∵BC ∩CD =C ,BC ,CD ⊂平面ABCD . ∴FN ⊥平面ABCD ,∵AD ⊂平面ABCD ,∴FN ⊥AD .(2)∵FN ⊥平面ABCD ,过点N 做AB 平行线NP ,∴以点N 为原点,NP ,NB 、NF 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系N ﹣xyz ,如图,则A(5,√3,0),B(0,√3,0),D(3,−√3,0),E (1,0,3), 设M (x 0,y 0,z 0)则AM →=(x 0−5,y 0−√3,z 0),AE →=(−4,−√3,3), AD →=(−2,−2√3,0),DE →=(−2,√3,3).∵AM →=λAE →,∴{x 0−5=−4λy 0=√3−√3λz 0=3λ⇒{x 0=5−4λy 0=√3−√3λz 0=3λ.∴M(5−4λ,√3−√3λ,3λ),∴BM →=(5−4λ,−√3λ,3λ), 设平面ADE 的法向量为n →=(x ,y ,z)则{n →⋅AD →=0n →⋅DE →=0⇒{−2x −2√3y =0−2x +√3y +3z =0,取x =√3,得n →=(√3,−1,√3), 设直线BM 与平面ADE 所成角为θ, ∴sinθ=|cos〈n →,BM →〉|=|n →⋅BM →||n →|⋅|BM →|=5√3√3+1+3⋅√28λ−40λ+25=5√714,∴28λ2﹣40λ+13=0,解得λ=12或λ=1314. 故当λ为12或1314时,直线BM 与平面ADE 所成角的正弦值为5√714.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二上学期数学期中考试试卷
一、单选题
1. 直线的倾斜角为()
A .
B .
C .
D .
2. 若关于的不等式的解集为
,则的值等于()
A .
B .
C .
D .
3. 若三点共线,则的值为()
A .
B .
C .
D .
4. 如图,在正方体中,E,F,G,H分别为,
,,的中点,则异面直线与
所成的角等于()
A . 45°
B . 60°
C . 90°
D . 120°
5. 在中,若,则
()
A .
B .
C .
D .
6. 若,则下列结论正确的是()
A .
B .
C .
D .
7. 已知等比数列的前项和为,若
,则()
A .
B .
C .
D .
8. 如图是某几何体的三视图,则该几何体的体积是()
A .
B .
C .
D .
9. 已知三内角所对边分别为,若成等差数列,则()
A .
B .
C .
D .
10. 如图,四棱锥的底面是平行四边形,
、分别为线段、上一点,若
,且平面,则
()
A .
B .
C .
D .
二、填空题
11. 已知正方体的表面积为,则其外接球的表面积是________,体积是________.
12. 在中,,当的面积等于时,________,________.
13. 已知直线,则直线过定点________,当变动时,原点到直线的距离的最大值为________.
14. 已知数列满足,则
________.
15. 已知正数满足,则的取值范围是________.
16. 若关于的不等式有解,则实数的取值范围是________.
三、解答题
17. 已知直线与相交于点
,求满足下列条件的直线方程:
过点且过原点的直线方程;
过点且平行于直线的直线方程.
18. 已知等差数列满足 .
求的通项公式;
设等比数列满足,问:是数列中的第几项?
19. 在中,角的对边分别为,满足
.
求角的大小;
若,试求的面积的最大值,并判断此时的形状.
20. 如图,已知平面,, 是边长为2的等边三角形,为的中点,且

求证:平面;
求证:平面平面;
求直线与平面所成角的正弦值.
21. 已知数列的前项和满足
,且 .
求数列的通项公式;
设,证明: .。

相关文档
最新文档