巴特沃兹有源低通滤波器设计

合集下载

【完整版毕业论文】巴特沃斯有源低通滤波器的设计

【完整版毕业论文】巴特沃斯有源低通滤波器的设计

巴特沃斯有源低通滤波器的设计摘要随着社会科学技术的飞速发展,各种科技产品在人类社会中随处可见,极大的丰富了人们的日常生活。

物联设备、可穿戴设备以及虚拟仪器产品在各种应用和消费场合变得极为普遍。

就目前而言,在几乎所有的电子产品中,各种增益、带宽以及高性能的滤波器都发挥着至关重要的作用,例如可穿戴设备的语音信号输入系统中,运用高性能的低通滤波器进行语音信号的降噪、滤波、回声消除,来提高系统的音质和语音识别精准度等。

本论文通过对各种低通滤波器的通频带、增益和截止频率的分析,采用通频带最大扁平度技术(巴特沃斯技术)来设计实现四阶高性能低通滤波器,通过Multisum仿真软件,验证了设计的正确性。

在这基础上,本文还对如何提高该滤波器的响应速度进行了研究,提出了一种有效的提高响应速度的方案,并通过仿真软件得以验证。

这在低通滤波器的理论以及实际工程应用中,都具有非常重要的意义。

关键词:有源低通滤波器,巴特沃斯,运算放大器Design of Butterworth Active Low Pass FilterABSTRACTWith the rapid development of social science and technology, various technological products can be seen everywhere in human society, which greatly enriches people's daily lives. IoT devices, wearable devices, and virtual instrument products have become extremely common in various applications and consumer occasions. For now, in almost all electronic products, various gains, bandwidths, and high-performance filters play a vital role. For example, in the voice signal input system of wearable devices, the use of high-performance low-pass The filter performs noise reduction, filtering, and echo cancellation of the speech signal to improve the sound quality of the system and the accuracy of speech recognition.In this paper, through the analysis of the passband, gain and cutoff frequency of various low-pass filters, the maximum flatness of the passband technology (Butterworth technology) is used to design and implement a fourth-order high-performance low-pass filter, through Multisum simulation software To verify the correctness of the design. On this basis, this paper also studies how to improve the response speed of the filter, and puts forward an effective scheme to improve the response speed, which is verified by simulation software. This is of great significance in the theory of low-pass filters and in practical engineering applications.KEYWORDS:active low-pass filter,butterworth,amplifier1绪论1.1 引言在近现代的科技发展中,滤波器作为一种必不可少的组成成分,在仪器仪表、智能控制、计算机科学、通信技术、电子应用技术和现代信号处理等领域有着十分重要的作用。

【完整版毕业论文】巴特沃斯有源低通滤波器的设计

【完整版毕业论文】巴特沃斯有源低通滤波器的设计

巴特沃斯有源低通滤波器的设计摘要随着社会科学技术的飞速发展,各种科技产品在人类社会中随处可见,极大的丰富了人们的日常生活。

物联设备、可穿戴设备以及虚拟仪器产品在各种应用和消费场合变得极为普遍。

就目前而言,在几乎所有的电子产品中,各种增益、带宽以及高性能的滤波器都发挥着至关重要的作用,例如可穿戴设备的语音信号输入系统中,运用高性能的低通滤波器进行语音信号的降噪、滤波、回声消除,来提高系统的音质和语音识别精准度等。

本论文通过对各种低通滤波器的通频带、增益和截止频率的分析,采用通频带最大扁平度技术(巴特沃斯技术)来设计实现四阶高性能低通滤波器,通过Multisum仿真软件,验证了设计的正确性。

在这基础上,本文还对如何提高该滤波器的响应速度进行了研究,提出了一种有效的提高响应速度的方案,并通过仿真软件得以验证。

这在低通滤波器的理论以及实际工程应用中,都具有非常重要的意义。

关键词:有源低通滤波器,巴特沃斯,运算放大器Design of Butterworth Active Low Pass FilterABSTRACTWith the rapid development of social science and technology, various technological products can be seen everywhere in human society, which greatly enriches people's daily lives. IoT devices, wearable devices, and virtual instrument products have become extremely common in various applications and consumer occasions. For now, in almost all electronic products, various gains, bandwidths, and high-performance filters play a vital role. For example, in the voice signal input system of wearable devices, the use of high-performance low-pass The filter performs noise reduction, filtering, and echo cancellation of the speech signal to improve the sound quality of the system and the accuracy of speech recognition.In this paper, through the analysis of the passband, gain and cutoff frequency of various low-pass filters, the maximum flatness of the passband technology (Butterworth technology) is used to design and implement a fourth-order high-performance low-pass filter, through Multisum simulation software To verify the correctness of the design. On this basis, this paper also studies how to improve the response speed of the filter, and puts forward an effective scheme to improve the response speed, which is verified by simulation software. This is of great significance in the theory of low-pass filters and in practical engineering applications.KEYWORDS:active low-pass filter,butterworth,amplifier1绪论1.1 引言在近现代的科技发展中,滤波器作为一种必不可少的组成成分,在仪器仪表、智能控制、计算机科学、通信技术、电子应用技术和现代信号处理等领域有着十分重要的作用。

设计一个巴特沃斯模拟低通滤波器

设计一个巴特沃斯模拟低通滤波器

1. 设计一个巴特沃斯模拟低通滤波器,要求通带截止频率为Hz f p 25=,通带最大衰减dB a p 3=,阻带起始频率Hz f s 50=,阻带最小衰减dB a s 25=。

解:根据已知条件确定巴特沃斯低通滤波器的阶数N :053.01010202520===--s a s δ()()2355.46021.05502.22lg 21053.01lg lg211lg 22==⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-≥p s s ΩΩδN取N =5。

低通滤波器3dB 截止频率为)/(157502s rad πf πΩΩp p c ====则五阶巴特沃斯滤波器的传输函数为:1021.010719.110095.110326.510048.111236.3236.4236.4236.31)(2436495112345++⨯+⨯+⨯+⨯=+⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=----s s s s s Ωs Ωs Ωs Ωs Ωs s H c c ccc2. 设计一个切比雪夫模拟低通滤波器,要求通带截止频率为kHz f p 3=,通带最大衰减dB a p 2.0=,阻带起始频率kHz f s 12=,阻带最小衰减dB a s 50=。

解:由()2.01lg 20-=-p δ,求得9772.0101202.0==--p δ。

则2171.019772.011)1(122=-=--=p δε 由50lg 20-=s δ,求得0032.0102050==-s δ,则23.31610032.011122=-=-=s δδ 所需滤波器的阶数为:()()()()8604.30634.29770.7312arccos 2171.0/23.316arccos arccos arccos ===≥h h ΩΩh εδh N p s取N =4。

则该模拟低通滤波器的幅度表示为:⎪⎭⎫ ⎝⎛⨯⨯+=⎪⎪⎭⎫⎝⎛+=32422210322171.01111)(πΩC ΩΩC εΩj H p Na归一化的系统函数表示为:∏∏==--=-⋅=Nk k Nk k N a p p p p εp H 111)(7368.11)(21)(其中极点k p 为:0715.14438.01j p +-=,4438.00715.12j p +-=,4438.00715.13j p --=,0715.14438.01j p --=将)(p H a 去归一化,求得实际滤波器的系统函数)(s H a()()()8428426414107790.4100394.4107791.4106731.1102687.77368.1)()(⨯+⨯+⨯+⨯+⨯=-==∏==s s s s p Ωs Ωp H s H k k p pΩs p a a p3. 设计一个巴特沃斯模拟高通滤波器,要求通带截止频率为kHz f p 20=,通带最大衰减dB a p 3=,阻带起始频率kHz f s 10=,阻带最小衰减dB a s 15=。

LC低通滤波器设计(巴特沃斯低通滤波器归一化)讲解

LC低通滤波器设计(巴特沃斯低通滤波器归一化)讲解

C1 1.84776F C2 0.76537F
1NEW

0.76537 K 0.76537 4 12.29μH 5 M 2.512 10
L2NEW
1.84776 K 1.84776 4 29.42μH 5 M 2.512 10
待设计LPF的电容参数为 :
(1 2 )Hz
特征阻抗变换K 4 4 1 四阶Butterworth低通滤波器的电感电容参 数
2018/10/24
只因准备不足,才导致失败
7
四阶Butterworth低通滤波器的归一化LPF基 准滤波器的参数,设 L1 0.76537H L2 1.84776H 得:L
1.84776 1.84776 C1NEW 1.84 μF 5 M K 4 2.512 10 0.76537 0.76537 C2NEW 0.76μF 5 M K 4 2.512 10
2018/10/24 只因准备不足,才导致失败 8
电感采用无损磁芯及细包漆线绕制而成,其 电感值可用数字电桥测量仪器测量得到。
2018/10/24
只因准备不足,才导致失败
1
对滤波器截止角频率的变换是通过先求出待 设计滤波器截止角频率与基准角频率的比值 M,再用这个M去除滤波器中的所有元件值 来计算所需参数,其计算公式如下:
待设计滤波器的截止频 率 M 基准滤波器的截止频率
C (base) Cm(new) M
2018/10/24
5. 低通滤波器设计
1)归一化LPF设计方法 归一化低通滤波器设计数据,指的是特征阻 1 抗为 1 且截止频率为 0.159Hz 的基准 低通滤波器的数据。 2 在设计巴特沃思型的归一化LPF的情况下, 以巴特沃思的归一化LPF设计数据为基准滤 波器,将它的截止频率和特征阻抗变换为待 设计滤波器的相应值。

用MATLAB设计巴特沃斯低通滤波器

用MATLAB设计巴特沃斯低通滤波器

⽤MATLAB设计巴特沃斯低通滤波器⽤MATLAB 设计巴特沃斯低通滤波器1 巴特沃斯低通滤波器的特性⼀个理想低通滤波器的幅频特性如图3-80的阴影部分所⽰。

为了实现这个理想低通特性,需要在从0~ωC 的整个频带内增强增益,在ω>ωC 增益要降到0。

实际上,理想滤波器是不可能实现的。

图3-78是实际滤波器的幅频特性。

但是实际滤波器的特性愈接近理想特性愈好,巴特沃斯(Butterworth )滤波器就是解决这个问题的⽅法之⼀。

巴特沃斯滤波器以巴特沃斯函数来近似滤波器的系统函数,巴特沃斯的低通模平⽅函数为:221|()|1,2,,1(/)NC H j N j j ωωω==+ (3-138)式中以C ω是滤波器的电压-3dB 点或半功率点。

不同阶次的巴特沃斯滤波器特性如图3-79(a)所⽰。

4阶巴特沃斯滤波器的极点分布如图3-79(b)所⽰。

巴特沃斯滤波器幅频响应有以下特点:最⼤平坦性:在0=ω附近⼀段范围内是⾮常平直的,它以原点的最⼤平坦性来逼近理想低通滤波器。

通带、阻带下降的单调性。

这种滤波器具有良好的相频特性。

3dB 的不变性:随着N 的增加,频带边缘下降越陡峭,越接近理想特性。

但不管N 是多少,幅频特性都通过-3dB 点。

极点配置在半径为ωC 的圆上,并且均匀分布。

左半平⾯上的N 个极点是)(s H 的极点,右半平⾯上的N 个极点是)(s H -的极点。

2 巴特沃斯低通滤波器的实现为使巴特沃斯滤波器实⽤,我们必须能够实现它。

⼀个较好的⽅法是将巴特沃斯滤波器函数化成若⼲⼆阶节级联,其中每⼀节实现⼀对共轭复极点。

通过将极点以共轭复数的形式配对,对所有的每⼀个⼆阶节都具有实系数。

1图3-78 低通滤波器的幅频特性图3-80所⽰运算放⼤器电路为实现⼀对共轭极点提供了很好的⽅法。

电路的系统函数为202202121121122121)(1)11(1)(ωωω++=+++=s Qs C C R R s C R C R s C C R R s H (3-139)式中,ω0是S 平⾯原点与极点之间的距离,Q 被称为电路的“品质因数”,它提供了对响应峰值尖锐程度的⼀种度量。

巴特沃斯低通滤波器的设计

巴特沃斯低通滤波器的设计

巴特沃斯低通滤波器的设计1、巴特沃斯滤波器的介绍巴特沃斯低通滤波器的幅度平方函数定义为2221|()|1NH j C λλ=+其中C 为一常数参数,N 为滤波器阶数,λ为归一化低通截止频率,/p λ=ΩΩ。

式中N 为整数,是滤波器的阶次。

巴特沃斯低通滤波器在通带内具有最大平坦的振幅特性,这就是说,N 阶低通滤波器在0Ω=处幅度平方函数的前2N-1阶导数等于零,在阻带内的逼近是单调变化的。

巴特沃斯低通滤波器的振幅特性如图a 所示。

滤波器的特性完全由其阶数N 决定。

当N 增加时,滤波器的特性曲线变得更陡峭,这时虽然由a 式决定了在p Ω=Ω处的幅度函数总是衰减3dB ,但是它们将在通带的更大范围内接近于1,在阻带内更迅速的接近于零,因而振幅特性更接近于理想的矩形频率特性。

滤波器的振幅特性对参数N 的依赖关系如图a 所示。

设归一化巴特沃斯低通滤波器的归一化频率为λ,归一化传递函数为()H p ,其中p j λ=,则可得:2221()1(1)N NpjH j C pλλ==+- 由于p图a 巴特沃斯低通滤波器的振幅特性221()()()1()a a jsNcH s H s A s j Ω=--=Ω=+Ω所以巴特沃斯滤波器属于全极点滤波器。

2、常用设计巴特沃斯低通滤波器指标p λ:通带截止频率; p α:通带衰减,单位:dB ;s λ:阻带起始频率;s α:阻带衰减,单位:dB 。

说明:(1)衰减在这里以分贝(dB )为单位;即222110lg10lg 1()NC H j αλλ⎡⎤==+⎣⎦(2)当3dB α=时p C Ω=Ω为通常意义上的截止频率。

(3)在滤波器设计中常选用归一化的频率/C λ=ΩΩ,即1,p sp s ppλλΩΩ===ΩΩ图b 为巴特沃斯低通滤波器指标3、设计巴特沃斯低通滤波器的方法如下:(1)计算归一化频率1p p pλΩ==Ω,ss pλΩ=Ω。

(2) 根据设计要求按照210101pC α=-和lg lg saN λ=其中a =特沃斯滤波器的参数C 和阶次N ;注意当3p dB α=时 C=1。

巴特沃斯低通滤波器课程设计

巴特沃斯低通滤波器课程设计

电路基础课程设计巴特沃斯低通滤波器设计目标:通带边界频率ωc=4396rad/s (f c=700Hz);通带最大衰减αmax=3dB;阻带边界频率ωs=26376rad/s(f s=4200Hz); 阻带最小衰减αmin=30dB;1.设计步骤⑴设计电压转移函数①将给定的电压衰减技术指标进行频率归一化选取归一化角频率ωr=ωc,这样通带边界频率Ωc=ωc/ ωr=1,阻带边界频率Ωs=ωs/ ωr=ωs/ωc。

②根据归一化的技术指标求出电压转移函数巴特沃斯低通滤波器的阶数n=Log(100.1αmin−1) 2Log(Ωs)带入数据求得n=1.93 取整得n=2由a k=2sin(2k−1)π2n,b k=1和H(s)=U out(s)U in(s)=∏A ks2+a k s+b kn2k=1可得到电压转移函数H(s)=U out(s)U in(s)=1s2+√2s+1将转移函数进行反归一化,即另s=sωc 得到实际转移函数H(s)=U out(s)U in(s)=1s243962+√2s4396+1⑵转移函数的实现选取下图作为实现转移函数的具体电路:列节点方程求解转移函数节点1 U1(1R1+1R2+s∗C1)−1R1U in−1R2−s∗C1∗U2=0节点2 (1R2+s∗C2)U2−1R2U1=0又有U out=U3解得H(s)=U outU in=11+(R2+R2)s∗C2+C1C2R1R2s2对比解得的电压转移函数和推得的电压转移函数里各项的系数并且令R1= R2,C1=1μF,可以得到C1=11000000F=1μFR1=250000√21099Ω=321.705ΩR2=250000√21099Ω==321.705ΩC2=12000000F=0.5μF因实验室没有0.5μF的电容因此取C2=0.47μF2.计算机仿真⑴软件环境:Multisim 10⑵电路图:⑶仿真结果:①700Hz下的波形图②4200Hz下的波形图③波特图◎700Hz下衰减2.673dB◎4200Hz下衰减30.491dB3.实验室实际操作因实验室没有0.5μF的电容和321.705Ω的电阻,因此取C2=0.47μFR1=R2=330Ω实际连电路时,选取集成电路块的第1、2、3引脚分别作为放大器的输出端、负端和正端,第4和11引脚作为供电端,C2一端连接电压源的接地线。

低通滤波器 实验报告

低通滤波器 实验报告

1.概述低通滤波器LPF是滤除噪声用得最多的滤波器。

由于高阶有源低通滤波器的每个滤波节皆由二阶滤波器和一阶滤波器组成。

我们设计一个巴特沃兹二阶有源低通滤波器。

并使用电子电路仿真软件进行性能仿真。

(2)巴特沃斯低通滤波器的幅频特性为: n c uo u A j A 211)(⎪⎪⎭⎫ ⎝⎛+=ωωω . . . . . . (1)其中Auo 为通带内的电压放大倍数,ωC 为截止角频率,n 称为滤波器的阶。

从(1)式中可知,当ω=0时,(1)式有最大值1;ω=ωC 时,(1)式等于0.707,即Au 衰减了 3dB ;n 取得越大,随着ω的增加,滤波器的输出电压衰减越快,滤波器的幅频特性 越接近于理想特性。

当 ω>>ωC 时, n c uo u A j A ⎪⎪⎭⎫ ⎝⎛≈ωωω1)( . . . . . . (2) 两边取对数,得:lg 20cuo u n A j A ωωωlg 20)(-≈ . . . . . . (3) 此时阻带衰减速率为: -20ndB/十倍频或-6ndB/倍频,该式称为计算公式。

2.工作原理图图2-1低通滤波器原理图2-2低通滤波器原理图工作原理:(1)滤波器是具有频率选择作用的电路或运算处理系统。

滤波处理可以利用模拟电路实现,也可以利用数字运算处理系统实现。

滤波器的工作原理是当信号与噪声分布在不同频带中时,可以在频率与域中实现信号分离。

在实际测量系统中,噪声与信号的频率往往有一定的重叠,如果重叠不严重,仍可利用滤波器有效地抑制噪声功率,提高测量精度。

任何复杂地滤波网络,可由若干简单地、相互隔离地一阶与二阶滤波电路级联等效构成。

一阶滤波电路只能构成低通和高通滤波器,而不能构成带通和带阻。

可先设计一个一阶滤波电路来熟悉电路设计思路以及器件使用要求和软件地进一步学习。

有源滤波器地设计,主要包括确定传递函数,选择电路结构,选择有源器件与计算无源元件参数四个过程。

巴特沃斯滤波器的特点是通频带内的频率响应曲线最大限度平坦,没有起伏,而在阻频带则逐渐下降为零。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

巴特沃兹有源低通滤波器设计
李彦哲 关恩明
(中国电子科技集团第49研究所,黑龙江 哈尔滨 150001)
摘要:给出了二阶巴特沃兹有源低通滤波器的设计方法和设计实例,通过multisim 电路仿真试验能够得到一个性能优良的二阶有源低通滤波器。

关键词:有源;低通滤波器;设计 1 概述
低通滤波器LPF是滤除噪声用得最多的滤波器。

由于高阶有源低通滤波器的每个滤波节皆由二阶滤波器和一阶滤波器组成。

我们设计一个巴特沃兹二阶有源低通滤波器。

并使用电子电路仿真软件进行性能仿真。

2 设计方法 2.1频率特性
巴特沃斯低通滤波器的幅频特性为:
n
c
uo
u A j A 211)
(⎪⎪⎭
⎫ ⎝⎛+=ωωω . . . . . . (1)
其中Auo 为通带内的电压放大倍数,ωC 为截止角频率,n 称为滤波器的阶。

从(1)式中可知,当ω=0时,(1)式有最大值1;ω=ωC 时,(1)式等于0.707,即Au 衰减了 3dB ;n 取得越大,随着ω的增加,滤波器的输出电压衰减越快,滤波器的幅频特性 越接近于理想特性。

当 ω>>ωC 时,
n
c uo u A j A ⎪⎪⎭

⎝⎛≈ωωω1
)( . . . . . . (2) 两边取对数,得:
lg
20c
uo u n A j A ωω
ωlg 20)(-≈ . . . . . . (3) 此时阻带衰减速率为: -20ndB/十倍频或-6ndB/倍频,该式称为衰减估算式。

任何高阶滤波器都可由一阶和二阶滤波器级联而成。

对于n 为偶数的高阶滤波器,可以由
2n 节二阶滤波器级联而成;而n 为奇数的高阶滤波器可以由2
1
-n 节二阶滤波器和一节一阶滤波器级联而成,因此一阶滤波器和二阶滤波器是高阶滤波器的基础。

2.2设计步骤
有源滤波器的设计,就是根据所给定的指标要求,确定滤波器的阶数n ,选择具体的电路形式,算出电路中各元件的具体数值,安装电路和调试,使设计的滤波器满足指标要求,以巴特沃斯响应的二阶滤波器的设计为例。

具体步骤如下:
1)根据阻带衰减速率要求,确定滤波器的阶数。

2)选择具体的电路形式。

3)根据电路的传递函数和归一化滤波器传递函数的分母多项式,建立起系数的方 程组。

4)解方程组求出电路中元件的具体数值。

5)安装电路并进行调试,使电路的性能满足指标要求。

3 设计实例
设计一个有源低通滤波器,指标为:截止频率 f C =1kHz ,通带电压放大倍数:A uo =2,在f = 10f c 时,要求幅度衰减大于30dB 。

3.1设计步骤
1)由衰减估算式:-20ndB/+倍频,算出n = 2。

2)选择Sallen-Key 电路作为低通滤波器的电路形式。

R 3 R 4
u o
图1 压控电压源二阶有源低通滤波器
该电路的传递函数:
2
22
)(c c
c uo u s Q
s A s A ωωω++
=
. . . . . . (4)
其归一化函数:
1
1)(2
++=
L L uo
L u s Q
s A s A . . . . . . (5)
将上式分母与表1归一化传递函数的分母多项式比较得:
21
=Q
通带内的电压放大倍数:
3
4
1R R A A f uo +
===2. . . . . . (6) 滤波器的截止角频率:
c c f C C R R πω212
121==
=3102⨯π. . . . . . (7)
则:
2
212111
)
1(11C R A C R C R Q
uo c
-++=
ω21023⨯⨯=π. . . . . .(8) 4321//R R R R =+. . . . . . (9) 在上面四个式子中共有六个未知数,三个已知量,因此有许多元件组可满足给定特性的
要求,这就需要先确定某些元件的值,元件的取值有几种:
1) 当A f =1时,先取R 1=R 2=R ,然后再计算C 1和C 2。

2) 当A f ≠1时,取R 1=R 2=R ,C 1=C 2=C 。

3) 先取C 1=C 2=C ,然后再计算R 1和R 2。

此时C 必须满足:)(10
21F f C C C c
μ=== 4) 先取C 1,接着按比例算出C 2=KC 1,然后再算出R 1和R 2的值。

其中K 必须满足条件:K ≤A f -1+
2
41Q
对于本例,由于A f =2,因此先确定电容C 1=C 2的值,即取: F F F f C C C μμμ01.0)(10
10
)(103021===
==, 将C 1=C 2=C 代入(7)和(8)式,可分别求得: Ω⨯=⨯⨯⨯⨯==
3
16
311026.111001.021021πωC Q R c Ω⨯=⨯⨯⨯=
=
-36
321052.2210
01.01022
1πωC
Q R c Ω⨯=⨯+⨯=+=3
3
2141056.6710)52.2226.11(2)(R R A R f
Ω⨯=-⨯=-=33
431056.671
21056.671f A R R
3.2仿真结果
通过multisim 电路仿真试验能够得到一个性能优良的巴特沃兹二阶有源低通滤波器。

1Hz 时 6.02dB, 1kHz 时3dB, 10kHz 时-33.989dB,满足设计要求。

4结论
通过设计的二阶有源低通滤波器,给出了设计有源低通滤波器的基本设计方法,步骤,经过电路仿真我们设计的二阶有源低通滤波器性能优良。

参考文献
[1]童诗白,华成英模拟电子技术基础高等教育出版社1980;
[2]邵毅全,马耀庭三阶有源低通滤波器设计与仿真研究内江师范学院学报200908;。

相关文档
最新文档