抽样信号的傅里叶变换
§3.10-抽样信号的傅里叶变换

1.矩形脉冲抽样
第 3
页
(1)抽样信号
f(t)
连 续 信 号 f t
抽样信号
fs t
o
t
p(t)
抽样脉冲
pt
o TS
t
连续:信f号 t
抽样脉冲 : p序 t 列
fS(t)
抽样 : fst信 ftp 号 t o TS
t
X
频谱关系 连续:信 ft号 ;
第 4 页
f t F ( m m )
抽样脉冲:序 pt列 pt P,
限带
信号
抽样:信 fst号
fst F s
fstftpt Fs21πFP
•越小,越能反刻 映之 离, 值 散从 时信号传输, 角
更关f心 st中有无 ft的全部信息,必 fst须 的考 频虑
谱结构。
X
第
抽样信号的频谱结构
5 页
F sF ftpt2 1 πF P
pt P2πP nns n
Ts
o m
事 业 单 位 人员 进行2017年 度 个人的 意义在 于使事 业单位 人员不 断提升 自身的 政 治 素 养 、 业务水 平和综 合能力 。以下 是小编 为大家 精心整 理的事 业单位 人员 2017年 度 , 欢 迎 大 家阅读 。 事 业 单 位 人员 2017年 度个人 工作总 结一在 局领导 和 部 门 领 导 的正确 带领下 ,与同 事们的 齐心协 力、共 同努力 、大力 支持与 密切配 合 下 , 使 我 的工作 取得了 一定的 成绩。 对于不 利于团 结的话 不说, 不力于 工作的 事 不 做 , 对 于违法 的事坚 决不干 。现将 一年来 的工作 总结如 下: 一 、 学 习方 面 深 入 学 习科 学发展 观,并 且认真 学习邓 小平理 论和三 个代表 重要思 想、中 央 新 疆 工 作 座谈会 精神, 全面提 高了自 己的思 想道德 素质和 科学文 化素质 ;全心全 意 为 局 里 的 大事小 事服务 、处处 事事以 集体利 益为重 ,增强 了责任 感和自 觉性。 在 工 作 中 , 通过学 习和实 践科学 发展观 ,以及 相关业 务知识 ,不断 提高自 己的综 合 素质。 二 、工作 方面 1、电 话方面 :对待 上级部 门的来 电,问 清什么 事, 什 么 要 求 , 及时向 领导汇 报。对 待北京 的来电 ,问清 什么事 ,都是 让他们 通过
傅里叶变换及其性质

αt
1
单边指数函数e-αt; (b) e-αt
的幅度谱
o
(b)
F(j) f(t)ejtdt etejtdt
01 02 e(j)t (j)
01j
1
ja rcta n
ea
a22
其振幅频谱及相位频谱分
解
别为
F ( ) 1
2 2
( ) arctan
例 2.4-3 求图 2.43(a)所示 双边指数 函数的频 谱函数。
02 或
2
B
2(rad/s)
1
Bf
(Hz)
周期信号的能量是无限的,而其平均功率是有界的, 因而周期信号是功率信号。为了方便,往往将周期信 号在1Ω电阻上消耗的平均功率定义为周期信号的功率。 显然,对于周期信号f(t), 无论它是电压信号还是电
流信号,其平均功率均为 T
12 2
P f (t)dt 2.3.3 周期信号的功率T T2
( )
02
-
4
-
2
o
门函数; (b) 门函数的频谱;- 4(c)-幅2 度谱; (d) 相位谱
o 2 4
2 4
-
(c)
(d )
f
(t)
e at
0
f (t)
例 2.4-2 求指数函数f(t)
的1频 谱 函 数 。 e-t (>0)
o
t
(a)
t 0 ( 0)
t 0
图 2.4-2 单边指F(数)函数e-
性。
2.2 周期信号的连续时间傅里叶级数
f (t) Fnejnt
2.2.1 指数形式的傅里叶级数 n
满足Dirichlet条件的周期函数可以展成复指数形式的傅里叶级数:
抽样信号的傅里叶变换与序列的傅里叶变换探讨

摘
要 : 抽样 信 号 的傅 里 叶 变换 与序 列 的傅 里 叶 变 换二 者之 间 的 关 系进 行 了探 讨 。 对
关 键 词 : 里 叶 变换 ; 样 信 号 ; 列 傅 抽 序 中 图分 类 号 : N l . T 91 7 文 献标 识 码 : A 中 文 章 编 号 :0 8 7 5 (0 2 0 — 1 7 0 10 — 3 4 2 1 }1 0 6 — 2
’●1
l
D  ̄ [ ( ) ( ) T xn ] =
n : ∞
( )e ( ) n・ 1
讨 设 )为连 续 时间 信号 , t为周 期 性抽 样 脉 冲信 ft ( P()
号 。 进 行 理 论 分 析 的 时 候 , 常选 定 周 期 冲 激 信 号 8() 在 通 ,t 作 为 P() 此 处 ,r ) 8 tn , 整 数 (= , l 2 t( 8( = t ( )n取 — n 0± , , ±
熊文 杰 王 勉 z 邝 先 飞 。
(. 山 师范 学 院 物理 与 电子 工程 系 , 东 1 韩 广 潮州 5 14 ;. 西 现 代 职业 技 术 学 院 , 2 0 12 江 江西 304 ) 30 5 南昌 30 9 ;. 西农 业 大 3 0 53江 学理学院 . 江西 南 昌
1 离 散 时 间信 号 一 序 列
(: ∑F 一 ) ( (n 2 ) 孕 J 1 )
n ∞ 1
式() 31 2为 .O节 中给出的(一 O ) 。显然 , 3 l 2式 不能 直观
地 看 出式 ( 与 式 () 间 有什 么联 系 。 1 ) 2 之
4 二 者 之 间的 联 系
利 用傅里 叶变换 的定义 , 激抽样信 号 冲
§3-7 抽样信号的的傅里叶变换

X ( jΩ ) = 0 , Ω > Ω m
《Signals & systems》 systems》
fs ≥ 2 fm
( Ω s ≥ 2Ω m )
大连海事大学信息科学技术学院
《信号与系统》 信号与系统》
第三章
连续时间信号与系统的傅里叶分析
x(t )
X ( jΩ)
0
t
− Ωm
Ωm
Ω
×
δT (t )
(1)
t
− 3T − 2T − T T 2T 3T 《Signals & systems》 systems》
t
大连海事大学信息科学技术学院
《信号与系统》 信号与系统》
第三章
连续时间信号与系统的傅里叶分析
这里“抽样”的实现可以描述为
x(t) s(t)
xs (t)
xs (t) = x(t) ⋅ s(t)
信号s(t)称为开关信号。上式关系可以用右图表示。
∑ X [ j (Ω − kΩ
s
)]
《Signals & systems》 systems》
大连海事大学信息科学技术学院
《信号与系统》 信号与系统》
第三章
连续时间信号与系统的傅里叶分析
如果不满足抽样定理,此时
x(t )
fs < 2 fm
(Ω s < 2Ω m )
X ( jΩ)
1
0
t
− Ωm
Ωm
Ω
δT (t )
X ( jΩ ) = X s ( jΩ ) ⋅ H ( jΩ )
大连海事大学信息科学技术学院
《Signals & systems》 systems》
信号与系统3.11抽样定理

(其中m=2
fm),或者说,最低抽样频率为2f
。
m
第3章 傅里叶变换
从上一节可以
看出,假定信号f(t)
的频谱F( )限制在
-m~ m范围内,
若以间隔T(s 或重复
频率s=
2
Ts
)对f(t)
进行抽样,抽样后
信号fs (t)的频谱
Fs ()是F ()以s为
周期重复。
只有满足抽样定理,才不会产生“频谱混叠”的现象。这样,抽样信号 保留了原来连续信号的全部信息,完全可以用fs(t)恢复出f(t)。
由前面的例题已知它是抽样函数(Sa函数)。
第3章 傅里叶变换
h t
c
Sa(c t)
因为 fs t பைடு நூலகம் nTs t nTs n
所以
f t fs tht
n
f
nTs
t
nTs
c
Sa(c t)
= c
n
f
nTs Sa[c t nTs ]
这说明ft 可以展开成正交抽样函数Sa函数的无穷级数,级数的系数等于
2tm
则抽样后的频谱F1()可以唯一地表示原信号。
从物理概念上不难理解,因为在频域中对F 进行抽样, 等效于f t 在时域中重复。只要抽样间隔不大于 1 ,则在时
2tm 域中波形不会产生混叠,用矩形脉冲作选通信号就可以无失真 地恢复出原信号f(t)。
(Nyquist)频率”,把最大允许的抽样间隔
Ts=
m
=1 2fm
称为“奈奎斯特间隔”。
(二第3)章由傅抽里叶样变换信号恢复原连续信号
从前图可以看出,在满足抽样定理的条件下,
为了从频谱Fs ()在无失真地选出F(),可以用如 下的矩形函数H()与Fs ()相乘,即
信号课件第三章傅里叶变换

• 任何周期函数在满足狄义赫利的条件下,可以展成正交函 数线性组合的无穷级数。如果正交函数集是三角函数集或 指数函数集,此时周期函数所展成的级数就是“傅里叶级 数”。
T1 T1 T1 2
f (t) sin n1tdt 0
2 T1
a0 T1
2
an T1
2 T1
T21
2 T1
2
f (t)dt
f (t) c
2f T1 0
osn1tdt
(t)dt
4 T1
T1 2
0
f (t) cosn1tdt
所以,在偶函数的傅里叶级数中不会有正弦项,只可能 含有(直流)和余弦分量。
α>0
F (w) f (t)e jwt dt ete jwt dt 1
0
jw
f (t) 1
t
F(w) 1
2 w2
1/ F( j)
(
)
arctan(
)
( )
/2
/2
2、双边指数信号
f (t)
f (t) e t α>0
1
2/ F()
F (w) f (t)e jwt dt
dt
E
e jnw1t
/2
E
e jnw1 / 2 e jnw1 / 2
T / 2
T
jnw1
T
/ 2
jnw1
Ts
t
2E T
e jnw1 / 2 e jnw1 / 2 2 jnw1
傅里叶变换原理

傅里叶变换原理傅里叶变换是一种非常重要的数学工具,它在信号处理、图像处理、通信系统等领域都有着广泛的应用。
傅里叶变换的原理是将一个信号分解成不同频率的正弦和余弦函数的叠加,从而可以分析信号的频谱特性。
在本文中,我们将详细介绍傅里叶变换的原理及其在实际应用中的重要性。
首先,让我们来了解一下傅里叶变换的数学表达式。
对于一个连续信号 f(t),它的傅里叶变换F(ω) 定义为:F(ω) = ∫f(t)e^(-jωt)dt。
其中,e^(-jωt) 是复指数函数,ω 是频率。
这个公式表示了信号 f(t) 在频域上的表示,也就是说,它将信号 f(t) 转换成了频率域上的复数函数F(ω)。
通过傅里叶变换,我们可以得到信号的频谱信息,从而可以分析信号的频率成分和能量分布。
傅里叶变换的原理可以通过一个简单的例子来说明。
假设我们有一个周期为 T 的正弦信号f(t) = Asin(2πft),其中 A 是振幅,f 是频率。
对这个信号进行傅里叶变换,我们可以得到频谱F(ω)= A/2 (δ(ω-f) δ(ω+f)),其中δ(ω) 是狄拉克δ函数。
这个频谱表示了信号只包含了频率为 f 的正弦成分,而其他频率成分的能量为零。
这样,我们就可以通过傅里叶变换来分析信号的频率特性。
在实际应用中,傅里叶变换有着广泛的应用。
在信号处理中,我们可以通过傅里叶变换来对信号进行滤波、频谱分析等操作。
在图像处理中,傅里叶变换可以用来进行图像的频域滤波、频谱分析等操作。
在通信系统中,傅里叶变换可以用来对调制信号进行频谱分析、信道估计等操作。
可以说,傅里叶变换已经成为了现代科学技术中不可或缺的数学工具。
总之,傅里叶变换是一种非常重要的数学工具,它可以将一个信号从时域转换到频域,从而可以分析信号的频率特性。
通过傅里叶变换,我们可以对信号进行频谱分析、滤波等操作,从而可以更好地理解和处理信号。
傅里叶变换在信号处理、图像处理、通信系统等领域都有着广泛的应用,它已经成为了现代科学技术中不可或缺的数学工具。
傅里叶变换的证明

1 T nm 2 cos(nw1t ) cos(m w t ) dt 1 0 n m
即有: t
t0 T1
0
t0 T1
t0
1 T nm 2 sin(nw1t ) sin(m w t ) dt 1 0 n m
n
F (nw1)e
jnw1t
n
jnw1t F e n (6)
证明:思路由三角形式→指数形式
f (t ) a0 [an cos(nw1t ) bn sin(nw1t )] ( 7)
n 1
利用欧拉公式:
jnw1t jnw1t 1 cos( nw t ) ( e e ) 1 2 8) jnw1t jnw1t ( 1 e ) sin(nw1t ) 2 j (e
把(10),(11)代入(9)得
f (t ) a0 [ F (nw1 )e jnw1t F (nw1 )e jnw1t ] ( 12 )
n 1
令a0 F (0)
F ቤተ መጻሕፍቲ ባይዱnw )e
n1 1
jnw1t
n
F (nw )e
1
1
jnw1t
(12)式写为f (t )
an
t0 T1 1 T1 t 0
f (t )dt
信号的平均值、直流分量
是nw1的偶函数 是nw1的奇函数
t0 T1 2 T1 t 0
f (t ) cos(nw1t )dt
2 bn T 1
t0 T1
t0
f (t ) sin(nw1t )dt
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.抽样方式
抽样有两种方式: 1.时域抽样 2.频域抽样
.
二、时域抽样
设连续信号 f(t) FTF(w)
抽样脉冲信号 p(t) FT P(w)
抽样后信号fs(t) fs(t) F T Fs(w)
若采用均匀抽样,抽样周期为Ts,抽样频率为
ws
2fs
2
Ts
抽样过程:通过抽样脉冲序列p(t)与连续信号f(t)
…
…
…
…
Ts0 T s 2Ts
t
ws 0
ws
w
p(t)T(t) (tnsT) .
n
相 乘
fs(t)f(t)p(t)
频谱
fs (t) 0 Ts
频谱 t
求得频谱包络幅度:
1
Fs(w)2F(w)*P(w)
卷
积
Fs(w) PnF(wnw s)
n
1 Fs (w)
Ts
…
…
ws 0
ws
w
P nT 1 T 2 T s 2 sp (t)ejn std w tT 1 T 2 T s 2 s T(t)ejn std w tT 1 s
根据时域卷积定理
F1(w)I FTf1(t)
1 f(t)*
w1
n
(tnT1)
1
w1
n
f
(tnT1)
连 续 信 号 f(t)的 频 谱 F()抽 样 后 对 应 的
信 号 f1(t)等 效 于 f(t)以 T12 1周 期 重 复
频域抽样,时域周期延拓。
时域抽样,频域周期延拓。 .
抽样信号与周期信号的特性
(2) 框图
连续信号 f(t)
抽样
抽样信号 fs(t)
数字信号 量化编码
抽样脉冲 p(t)
抽样过程方框图
.
4.抽样后,提出的问题
抽样后,有两个问题要解决:
1.抽样信号fs(t)的傅里叶变换?它和未经抽样的 原连续信号f(t)的傅里叶变换有什么联系?(本 节讨论的内容)
2.连续信号被抽样后,它是否保留了原信号f(t) 的全部信息? 即 在什么条件下,可从抽样信号fs(t)中无失真地恢 复出原连续信号f(t)?(下节讨论)
1E
n
San21n1
f (t)
2 E F1(w)
E
…
T1
…
2
2
T1
0
T1
2.抽样信号
抽样信号:经抽取后的一系列的离散信号称之。
请同学们注意区别:抽样信号与抽样函数 Sa(t)=sint/t是完全不同的两个含义。 抽样也称为“采样”或“取样”。
.
3.实现抽样的原理及框图
(1)原理
抽样原理:连续信号经抽样成抽样信号,再经量化、 编码变成数字信号。将这种数字信号经传输,进行 上述逆过程,就可恢复出原连续信号。
§ 3.9 抽样信号的傅里叶变换
• 主要内容
•抽样、抽样信号的概念、提出及抽样方式 •时域抽样 •频域抽样
• 重点:矩形脉冲抽样和冲激抽样 • 难点:频域抽样
.
一、抽样、抽样信号的概念、提出及抽样方式
1.抽样
抽样:利用抽样脉冲序列p(t)从边续信号f(t) 中“抽取”一系列的离散样值的过程,称之。
.
三、频率抽样
设连续信号 f(t) FTF(w)
若已知连续信号频谱 F(w) I F T f(t) 对 F(w) w(w )F1(w) 即在频域上抽样:
则抽样后的频谱: F 1(w )F(w )w 1(w )
其中理想抽样信号为: w1(w) (wnw1) n w 1(w )n (w nw 1) I F T w 1 1 T(t) .
.
可采用不同的抽样脉冲进行抽样,讨论两种典型 的抽样脉冲序列:
1.矩形脉冲抽样(自然抽样) 2.冲激抽样(理想抽样)
.
1.矩形脉冲抽样(自然抽样)
抽样脉冲p(t)是矩形,它的脉冲幅度为E,脉宽 为,抽样角频率为s(抽样间隔为Ts),
f (t)
F (w)
频谱
0
t
0
w
E p(t)
…
0 Ts
频谱 …
.
例3-12:
画出周期矩形信号经冲激抽样后的频谱。
解:设周期单 矩脉 形f冲 信 0t为 号的 即f0tEgtF0ESa2
f0 (t)
E
F0 (w)
E
0
t
2
2
2 0 2
w
.
则f0t以T1为间隔进行重周 复期 可矩 构形 成 f(脉 t) 冲
即ftf0tnT1 频 域 特 性 F1F01 n
抽样特性1:时域周期信号(T1)f(t) F
频域离散频谱(n1);
时 域 连 续 信 号 f (t) 抽样
时 域 抽 样 信 号 (Ts ) fs (t) F
频 域 重 复 频 谱 ( s )
.
抽样特性2:时域周期信号(T1) f1(t) F 1
频域抽样频谱(1)
F 时域连续信号f (t)
t
E P(w)
Ts
2
ws0 w s
w
.
频谱
相 乘
fs(t)f(t)p(t)
fs (t) 0
频谱
t
1
Fs(w)2F(w)*P(w)
卷
积 Fs(w) PnF(wnws)
n E Fs (w)
Ts
2
ws0 w s
求得频谱包络幅度:
P n T 1 T 2 T s 2 sp (t)e jn std w T t1 T 2 T s 2 sE jn e std w tE T sS(n a 2 sw )
.
得到矩形抽样信号的频谱:
E F s(w )T s n
S(a n2 sw )F (w nsw )
说明:矩形抽样在脉冲顶部不是平的,而是随 f(t)变化的,故称之“自然抽样”。
.
2.冲激抽样(理想抽样)
若抽样脉冲p(t)是冲激序列
f (t)
F (w)
频谱
0
t
0
w
E p(t)
频谱
P(w) ws
得到冲激抽样信号的频谱:
1
Fs(w)Ts n.
F(wnw s)
结论
不管矩形脉冲抽样或冲激抽样,其抽样后的信号 其频谱是离散周期的信号,其频谱的周期为:
ws
2
Ts
对于矩形脉冲抽样,其频谱的幅度随Sa函数变化。
对于冲激抽样,其频谱的幅度为常数。
冲激抽样是矩形脉冲抽样的一种极限情况。实际 抽样为矩形脉冲抽样。
相乘。即:
fs(t)f(t. )p(t)
p(t)是周期信号,其傅里叶变换
P(w)2Pn(wnw s)
其中
n
1
Pn
T
Ts
2 Ts
2
p(t)ejn d wst t
是p(t)的傅里叶级数的系数
根据频域卷积定理:
1
Fs(w)2F(w)*P(w)
化简 Fs(w) PnF(wnw s) n
.
结论:
信号时域抽样: (1)其频谱Fs(w)是连续信号频谱F(w)是原信 号频谱的周期延拓; (2)其周期为抽样频率ws, (3)其幅度被Pn加权。由于Pn仅是n的函数, 所以其形状不会发生变化。