概率论每章自测题 5
新人教版初中数学九年级数学上册第五单元《概率初步》测试(包含答案解析)(5)

一、选择题1.下列事件是必然事件的是( ) A .打开电视机,正在播放动画片 B .2022年世界杯德国队一定能夺得冠军 C .某彩票中奖率是1%,买100张一定会中奖 D .在一只装有5个红球的袋中摸出1球,一定是红球2.在一个不透明的布袋中装有50个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.3左右,则布袋中白球可能有( ) A .15个B .25个C .35个D .45个3.从﹣2,0,1,2,3中任取一个数作为a ,既要使关于x 一元二次方程ax 2+(2a ﹣4)x+a ﹣8=0有实数解,又要使关于x 的分式方程211x a ax x++--=3有正数解,则符合条件的概率是( ) A .15B .25C .35D .454.用如图所示的两个转盘进行“配紫色”(红色与蓝色能配成紫色)游戏,配得紫色的概率是( )A .12B .13C .14D .165.现有三张正面分别标有数字1-,2,3的不透明卡片,它们除数字外其余完全相同,将它们背而面朝上洗均匀,随机抽取一张,记下数字后放回,背面朝上洗均匀,再随机抽取一张记下数字,前后两次抽取的数字分别记为m ,n ,则点()P m n ,在第二象限的概率为( ) A .12B .13C .23D .296.某学校在进行防溺水安全教育活动中,将以下几种在游泳时的注意事项写在纸条上并折好,内容分别是:①互相关心;②互相提醒;③不要相互嬉水;④相互比潜水深度;⑤选择水流湍急的水域;⑥选择有人看护的游泳池.小颖从这6张纸条中随机抽出一张,抽到内容描述正确的纸条的概率是( )A .12B .13C .23D .167.下列语句所描述的事件是随机事件的是( )A .经过任意两点画一条直线B .任意画一个五边形,其外角和为360°C.过平面内任意三个点画一个圆D.任意画一个平行四边形,是中心对称图形8.某班学生做“用频率估计概率”的实验时,给出的某一结果出现的频率折线图,则符合这一结果的实验可能是()A.抛一枚硬币,出现正面朝上B.从标有1,2,3,4,5,6的六张卡片中任抽一张,出现偶数C.从一个装有6个红球和3个黑球的袋子中任取一球,取到的是黑球D.一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃9.在70周年国庆阅兵式上有两辆阅兵车的车牌号如图所示(每辆阅兵车的车牌号含7位数字或字母),则“9”这个数字在这两辆车牌号中出现的概率为()A.37B.314C.326D.11210.盒子中装有形状、大小完全相同的3个小球,球上分别标有数字-1,1,2,从中随机取出一个,其上的数字记为k,放回后再取一次,其上的数记为b,则函数y=kx+b是增函数的概率为()A.38B.116C.12D.2311.罚球是篮球比赛中得分的一个组成部分,罚球命中率的高低对篮球比赛的结果影响很大.如图是对某球员罚球训练时命中情况的统计:下面三个推断:①当罚球次数是500时,该球员命中次数是411,所以“罚球命中”的概率是0.822;②随着罚球次数的增加,“罚球命中”的频率总在0.812附近摆动,显示出一定的稳定性,可以估计该球员“罚球命中”的概率是0.812;③由于该球员“罚球命中”的频率的平均值是0.809,所以“罚球命中”的概率是0.809.其中合理的是()A .①B .②C .①③D .②③第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案12.有下列事件:①367人中必有2人的生日相同;②抛掷一枚均匀的骰子两次,朝上一面的点数之和一定不小于2;③在标准大气压下,温度低于0℃时冰融化;④如果a ,b 为实数,那么a +b =b +a .其中是必然事件的有( ) A .1个B .2个C .3个D .4个二、填空题13.一只袋中装有三只完全相同的小球,三只小球上分别标有1,2-,3,第一次从袋中摸出一只小球,把这只小球的标号数字记作一次函数y kx b =+中的k ,然后放回袋中搅匀后,再摸出一只小球,把这只小球的标号数字记作一次函数y kx b =+中的b .则一次函数y kx b =+的图象经过一、二、三象限的概率为______.14.2020 年“中华魂”读书活动的主题为“科技托起强国梦”,现准备从万州二中校园电视台2名男主播和3名女主播中任选两人担任演讲比赛主持人,则选中一男一女的概率为__________.15.有如图四张卡片,除卡片上的图案不同其余完全相同,现把这些卡片有图案的一面朝下搅匀,随机抽出一张,上面的图案能够围成一个正方体的概率是________.16.从112-,两个数中随机选取一个数记为,a 再从301-,,三个数中随机选取一个数记为b ,则a b 、的取值使得直线y ax b =+不过第二象限的概率是______.17.往一个装了很多黑球的袋子里放入10个白球,每次倒出5个,记下所倒出的白球的数目,再把它们放回去,共倒了120次,倒出白球共180个,袋子里原有黑球约______个. 18.已知抛物线的解析式为21y ax bx =++,现从﹣1,﹣2,﹣3,4四个数中任选两个不同的数分别作为a 、b 的值,则抛物线21y ax bx =++与x 轴有两个交点的概率是_____.19.一只小鸟自由自在在空中飞翔,然后随意落在下图中,则落在阴影部分的概率是______。
概率论与数理统计自测试卷及答案

概率论与数理统计自测试卷一一、填空题(每题3分,共15分)1、已知随机变量X 服从参数为2的泊松(Poisson )分布,且随机变量22-=X Z ,则()=Z E ____________.2、设A 、B 是随机事件,()7.0=A P ,()3.0=-B A P ,则()=AB P3、设二维随机变量()Y X ,的分布列为若X 与Y 相互独立,则βα、的值分别为 。
4、设 ()()()4, 1, ,0.6D X D Y R X Y ===,则 ()D X Y -=___ _5、设12,,,n X X X 是取自总体),(2σμN 的样本,则统计量2211()ni i X μσ=-∑服从__________分布.二、选择题(每题3分,共15分)1. 一盒产品中有a 只正品,b 只次品,有放回地任取两次,第二次取到正品的概率为 【 】 (A)11a ab -+-; (B)(1)()(1)a a a b a b -++-; (C) a a b +; (D) 2a ab ⎛⎫ ⎪+⎝⎭. 2、设事件A 与B 互不相容,且()0≠A P ,()0≠B P ,则下面结论正确的是【 】(A) A 与B 互不相容; (B)()0>A B P ; (C) ()()()B P A P AB P =; (D)()()A P B A P =.3、设两个相互独立的随机变量X 与Y 分别服从正态分布()1,0N 和()1,1N ,则【 】(A)()210=≤+Y X P ; (B) ()211=≤+Y X P ; (C)()210=≤-Y X P ; (D)()211=≤-Y X P 。
4、 如果Y X ,满足()Y X D Y X D -=+)(,则必有【 】(A )X 与Y 独立;(B )X 与Y 不相关;(C )0=DY ;(D )0=DX5、设相互独立的两个随机变量X 与Y 具有同一分布律,且X 的分布律为则随机变量()Y X Z ,max =的分布律为【 】(A)()()211,210====z P z P ; (B) ()()01,10====z P z P ; (C) ()()431,410====z P z P ;(D) ()()411,430====z P z P 。
概率练习题_概率自测题第五章

第五章一、填空题1. 0.7, 0.3;2.α31=+β ,92, 91;3. ⎩⎨⎧∈=.,0,),(,6),(其它G y x y x f ;4.二维正态分布; 二、选择题1. C 2. B 3. C 三、计算题1.由题设可知},{j Y i X ==的取值情况为4,3,2,1=i ,i j ≤。
有},{j Y i X P ==}|{}{i X j Y P i X P ==⋅==i141⋅=,4,3,2,1=i ,i j ≤。
),(Y X 的联合分布律为X 的边缘分布律为Y 的边缘分布律为2. 解:⑴ ),(Y X 的所有可能取值为)2,0(,)3,0(,)1,1(,)2,1(,)0,2(,)1,2(。
由题意有}2,0{==Y X P 310112702C C C C ⨯⨯=12021=,}3,0{==Y X P 310013702C C C C ⨯⨯=12035=, }1,1{==Y X P 310111712C C C C ⨯⨯=12014=,}2,1{==Y X P 310012712C C C C ⨯⨯=12042=, }0,2{==Y X P 310110722C C C C ⨯⨯=1201=,}1,2{==Y X P 310011722C C C C ⨯⨯=1207=, 则),(Y X 的联合分布律为⑵由题意知故X故Y 的边缘分布律为⑶取),(Y X 的可能取值)2,0(,由于}2{}0{)2,0(==≠==Y P X P Y X P ,所以X 与Y 不独立.3. 解:⑴ 先求关于X 的边缘密度函数)(x f X ⎰∞+∞-=dy y x f ),(⎪⎩⎪⎨⎧<<-==⎰.,0,10,44831其它x x x xydy x即)(x f X ⎩⎨⎧<<-=.,0,10,443其它x x x .再求关于Y 的边缘密度函数)(y f Y ⎰∞+∞-=dx y x f ),(⎪⎩⎪⎨⎧<<==⎰.,0,10,4830其它y y xydx y即)(y f Y ⎩⎨⎧<<=.,0,10,43其它y y⑵}1{≤+Y X P ⎰⎰-=2101]8[x xdx xydy 61=⑶当10,0<<<<y y x 时,≠),(y x f )(x f X )(y f Y ,故X 与Y 不独立. 4.解 ⑴ 由1),(=⎰⎰∞+∞-∞+∞-dxdy y x f 可得=⎰⎰∞+∞++-0)43(][dy dx ke y x =⎰⎰∞+∞+--043dy e dx e k y x 112=k,故12=k ; ⑵}20,10{≤≤≤≤Y X P ⎰⎰+-=120)43(]12[dx dy e y x==⎰⎰--124312dy e dx ey x)1)(1(83----e e 。
概率复习题自测题解答

概率论与数理统计练习册 复习题和自测题解答第一章 复习题1、一个工人生产了n 个零件,以事件i A 表示他生产的第i 个零件是正品(i =1,2,3,……,n ),用i A 表示下列事件: (1) 没有一个零件是次品; (2) 至少有一个零件是次品; (3) 仅仅只有一个零件是次品; (4) 至少有两个零件是次品。
解:1)1ni i A A ==2)1ni i A =3)11nn i j i j j i B A A ==≠⎡⎤⎛⎫⎢⎥ ⎪=⎢⎥⎪ ⎪⎢⎥⎝⎭⎣⎦4)A B2、任意两个正整数,求它们的和为偶数的概率。
解:{}(S =奇,奇),(奇,偶),(偶,奇),(偶,偶) 12P ∴=3、从数1,2,3,……,n 中任意取两数,求所取两数之和为偶数的概率。
解:i A -第i 次取到奇数(i =1,2);A -两次的和为偶数1212()()P A P A A A A =当n 为奇数时:11111112222()112n n n n n P A n n nn n----+--=⋅+⋅=--当n 为偶数时:1122222()112(1)nnn nn P A n n n n n ---=⋅+⋅=---4、在正方形{(,)|1,1}p q p q ≤≤中任意取一点(,)p q ,求使方程20x px q ++=有两个实根的概率。
解: 21411136xS dx dy --==⎰⎰13136424p ∴==5、盒中放有5个乒乓球,其中4个是新的,第一次比赛时从盒中任意取2个球去用,比赛后放回盒中,第二次比赛时再从盒中任意取2个球,求第二次比赛时取出的2个球都是新球的概率。
解:i A -第一次比赛时拿到i 只新球(i =1,2)B -第二次比赛时拿到2只新球1)()()1122()()|()|P B P A P B A P A P B A =⋅+⋅2122344222225555950C C C C C C C C =⨯+⨯=6、两台机床加工同样的零件,第一台加工的零件比第二台多一倍,而它们生产的废品率分别为0.03与0.02,现把加工出来的零件放在一起 (1)求从中任意取一件而得到合格品的概率;(2)如果任意取一件得到的是废品,求它是第一台机床所加工的概率。
概率论与数理统计第五章考试卷

注意事项: 1. 请在本试卷上直接答题. 2. 密封线下面不得写班级,姓名,学号等. ………………………………………装订线…………………………………装订线…………………………………装订线………………………………………作业序号______姓名班级教师姓名………………………………………密封线…………………………………密封线…………………………………密封线……………《概率论与数理统计B》第五章考试卷1.设随机变量),(~211σμNX,),(~222σμNY,且}1|{|}1|{|21<-><-μμYPXP,则必有( ).(A)21σσ>;(B) 21σσ<;(C) 21μμ<;(D) 21μμ>.2.设随机变量序列}{nX相互独立,],[~nnUX n-,,2,1=n,则对}{nX( ).(A)可使用切比雪夫大数定律;(B) 不可使用切比雪夫大数定律;(C) 可使用辛钦大数定律;(D) 不可使用辛钦大数定律.3.设随机事件A在第i次独试验中发生的概率为i p,ni,,2,1=.m表示事件A在n次试验中发生的次数,则对于任意正数ε恒有=⎪⎪⎭⎫⎝⎛<∑-=∞→εniinpnnmP11l i m( ).(A)1;(B) 0;(C)21;(D)不可确定.4.设,,,,21nXXX相互独立且都服从参数为λ的指数分布,则下述选项中成立的是( ).(A) )(lim1xxnXPniinΦ=⎪⎪⎪⎪⎭⎫⎝⎛≤-∑=∞→λλ;(B) )(lim1xxnnXPniinΦ=⎪⎪⎪⎪⎭⎫⎝⎛≤-∑=∞→;(C) )(lim1xxnnXPniinΦ=⎪⎪⎪⎪⎭⎫⎝⎛≤-∑=∞→λ;(D) )(lim1xxnXPniinΦ=⎪⎪⎪⎪⎭⎫⎝⎛≤-∑=∞→λλ.5.设随机变量序列,,,,21nXXX相互独立同分布,0)(=iXE,2)(σ=iXD,且)(4i XE存在,则对任意0>ε,下述选项中正确的是( ).(A) 11lim21=⎪⎪⎭⎫⎝⎛<-∑=∞→εσniinXnP;(B) 11lim212≤⎪⎪⎭⎫⎝⎛<-∑=∞→εσniinXnP;(C) 11lim212=⎪⎪⎭⎫⎝⎛<-∑=∞→εσniinXnP;(D) 01lim212=⎪⎪⎭⎫⎝⎛<-∑=∞→εσniinXnP.二、填空题(本题共5小题, 每小题4分, 共20分.把答案填在题中横线上)6.随机变量X的方差为2,则根据切比雪夫不等式估计≤≥-}2|{|)(XEXP.7.设随机变量X和Y的期望都是2,方差分别为1和4,而其相关系数为0.5,则根据切比雪夫不等式≤≥-}6|{|YXP.8.设n X是n重贝努里试验中事件A出现的次数,又A在每次实验中出现的概率为)10(<<pp,则对任意的0>ε,有=⎪⎪⎭⎫⎝⎛≥-∞→εpnXP nnlim.9.设随机变量,,,1nXX相互独立同分布,且具有有限的均值与方差,)(,)(2≠==σμiiXDXE,随机变量σμnnXYniin-∑==1的分布函数)(xFn,对任意的x,满足PxFnn=∞→)(lim{ }= .10.设随机变量序列,,,,21nXXX相互独立同分布,且0)(=nXE,则=∑<=∞→)(lim1niinnXP.三、解答题 (本题共6小题, 共60分)11(本题满分10分)某年的统计资料表示,在索赔户中被盗索赔户占20%,以X表示在随机抽查的100个索赔户中因盗窃而向保险公司索赔的户数.(1)写出X的概率分布;(2)求被盗索赔户不少于14户且不多于30户的概率的近似值.第五章考试卷第1页;共2页。
概率论与数理统计自测题

, 概率论与数理统计自测题(含答案,先自己做再对照)一、单项选择题1.设A 与B 互为对立事件,且P 〔A 〕>0,P 〔B 〕>0,那么以下各式中错误的选项是......〔 〕 A .0)|(=B A P B .P 〔B |A 〕=0 C .P 〔AB 〕=0D .P 〔A ∪B 〕=12.设A ,B 为两个随机事件,且P 〔AB 〕>0,那么P 〔A|AB 〕=〔 〕 A .P 〔A 〕 B .P 〔AB 〕 C .P 〔A|B 〕 D .13.设随机变量X 在区间[2,4]上服从均匀分布,那么P{2<X<3}=〔 〕 A .P{3.5<X<4.5} B .P{1.5<X<2.5} C .P{2.5<X<3.5} D .P{4.5<X<5.5} 4.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧≤>,1,0;1,2x x x c 那么常数c 等于〔 〕A .-1B .21-C .21D .1 5.设二维随机变量〔X ,Y 〕的分布律为那么A .0.3 B .0.5 C .0.7 D .0.86.设随机变量X 服从参数为2的指数分布,那么以下各项中正确的选项是〔 〕 A .E 〔X 〕=0.5,D 〔X 〕=0.25 B .E 〔X 〕=2,D 〔X 〕=2 C .E 〔X 〕=0.5,D 〔X 〕=0.5 D .E 〔X 〕=2,D 〔X 〕=47.设随机变量X 服从参数为3的泊松分布,Y~B 〔8,31〕,且X ,Y 相互独立,那么D 〔X-3Y-4〕=〔 〕A .-13B .15C .19D .238.D 〔X 〕=1,D 〔Y 〕=25,ρXY =0.4,那么D 〔X-Y 〕=〔 〕 A .6 B .22 C .30 D .469.在假设检验问题中,犯第一类错误的概率α的意义是〔 〕 A .在H 0不成立的条件下,经检验H 0被拒绝的概率 B .在H 0不成立的条件下,经检验H 0被承受的概率 C .在H 0成立的条件下,经检验H 0被拒绝的概率 D .在H 0成立的条件下,经检验H 0被承受的概率10.设总体X 服从[0,2θ]上的均匀分布〔θ>0〕,x 1, x 2, …, x n 是来自该总体的样本,x 为样本均值,那么θ的矩估计θˆ=〔 〕A .x 2B .xC .2xD .x 21 1A 2.D 3.C4.D5.A6.A7.C8.B9.C10.B二、填空题11.设事件A 与B 互不相容,P 〔A 〕=0.2,P 〔B 〕=0.3,那么P 〔B A ⋃〕=____________. 12.一个盒子中有6颗黑棋子、9颗白棋子,从中任取两颗,那么这两颗棋子是不同色的概率为____________.13.甲、乙两门高射炮彼此独立地向一架飞机各发一炮,甲、乙击中飞机的概率分别为0.4,0.5,那么飞机至少被击中一炮的概率为____________.14.20件产品中,有2件次品,不放回地从中接连取两次,每次取一件产品,那么第二次取到的是正品的概率为____________. 15.设随机变量X~N 〔1,4〕,标准正态分布函数值Φ〔1〕=0.8413,为使P{X<a}<0.8413,那么常数a<____________.16.抛一枚均匀硬币5次,记正面向上的次数为X ,那么P{X ≥1}=____________. 17.随机变量X 的所有可能取值为0和x ,且P{X=0}=0.3,E 〔X 〕=1,那么x=____________. 18.设随机变量X 的分布律为那么D 〔X 〕=____________.19.设随机变量X 服从参数为3的指数分布,那么D 〔2X+1〕=____________. 20.设二维随机变量〔X ,Y 〕的概率密度为f (x, y)=⎩⎨⎧≤≤≤≤,,0;10,10,1其他y x那么P{X ≤21}=____________. 21.设二维随机变量〔X ,Y 〕的概率密度为 ⎪⎩⎪⎨⎧>>=+-,,0;0,0,),()(其他y x ey x f y x 那么当y>0时,〔X ,Y 〕关于Y 的边缘概率密度f Y (y )= ____________.25.设总体X~N 〔μ,σ2〕,x 1,x 2,x 3为来自X 的样本,那么当常数a=____________时,3212141ˆx ax x ++=μ是未知参数μ的无偏估计. 11. 0.5 12. 351813.0.7 14. 0.9 15. 3 16.323117.71018.1 19.9420.2121. ye - 25. 41三、计算题26.设二维随机变量〔X ,Y 〕的分布律为 试问:X 与Y 是否相互独立?为什么?因为对一切i,j 有}{}P{},P{j i j i Y Y P X X Y Y X X =⋅====所以X ,Y 独立。
自考概率论与数理统计各章真题
第一章自测(每一个题都要写清楚过程,填空选择推导过程或者用到的公式写在题目旁边)1.设A 与B 互为对立事件,且P (A )>0,P (B )>0,则下列各式中错误..的是( ) A.P (A )=1-P (B ) B.P (AB )=P (A )P (B ) C.P 1)(=ABD.P (A ∪B )=12.设A ,B 为两个随机事件,且P (A )>0,则P (A ∪B |A )=( ) A.P (AB )B.P (A )C.P (B )D.13.从标号为1,2,…,101的101个灯泡中任取一个,则取得标号为偶数的灯泡的概率为( ) A .10150 B .10151 C .10050 D .10051 4.设事件A 、B 满足P (A B )=0.2,P (B )=0.6,则P (AB )=( )A .0.12B .0.4C .0.6D .0.8 5.设随机变量X~N (1,4),Y=2X+1,则Y 所服从的分布为( ) A .N (3,4) B .N (3,8) C .N (3,16) D .N (3,17)6.设每次试验成功的概率为p(0<p<1),则在3次独立重复试验中至少成功一次的概率为( )A .1-(1-p )3B .p(1-p)2C .213)1(p p C -D .p+p 2+P 37.设A 与B 互为对立事件,且P (A )>0,P (B )>0,下列各式中错误..的是( ) A .0)|(=B A PB .P (B |A )=0C .P (AB )=0D .P (A ∪B )=18.设A ,B 为两个随机事件,且P (AB )>0,则P (A|AB )=( ) A .P (A ) B .P (AB ) C .P (A|B ) D .19.设事件A 与B 相互独立,且P(A)>0,P(B)>0,则下列等式成立的是( ) A.AB=φ B.P(A B )=P(A)P(B ) C.P(B)=1-P(A)D.P(B |A )=010.设A 、B 、C 为三事件,则事件=C B A ( ) A.A C BB.A B CC.( A B )CD.( A B )C11.一批产品共10件,其中有2件次品,从这批产品中任取3件,则取出的3件中恰有一 件次品的概率为( ) A .601 B .457C .51 D .157 12.设随机事件A 与B 互不相容,P (A )=0.2,P(B)=0.4,则P (B|A )=( )A .0B .0.2C .0.4D .1 13.设事件A ,B 互不相容,已知P (A )=0.4,P(B)=0.5,则P(A B )=( ) A .0.1 B .0.4 C .0.9 D .114.已知事件A ,B 相互独立,且P (A )>0,P(B)>0,则下列等式成立的是( )A .P(A B)=P(A)+P(B)B .P(A B)=1-P(A )P(B )C .P(A B)=P(A)P(B)D .P(A B)=115.某人射击三次,其命中率为0.8,则三次中至多命中一次的概率为( )A .0.002B .0.04C .0.08D .0.10416.设A 为随机事件,则下列命题中错误..的是( ) A .A 与A 互为对立事件 B .A 与A 互不相容 C .Ω=⋃A AD .A A =17.设A 与B 相互独立,2.0)(=A P ,4.0)(=B P ,则=)(B A P ( ) A .0.2 B .0.4C .0.6D .0.818.同时抛掷3枚均匀的硬币,则恰好三枚均为正面朝上的概率为( ) A.0.125 B.0.25 C.0.375 D.0.5 19.设A 、B 为任意两个事件,则有( ) A.(A ∪B )-B=A B.(A-B)∪B=A C.(A ∪B)-B ⊂A D.(A-B)∪B ⊂A20.某人射击三次,其命中率为0.7,则三次中至多击中一次的概率为( ) A.0.027 B.0.081 C.0.189 D.0.216 21.设A ,B 为两个互不相容事件,则下列各式错误..的是( ) A .P (AB )=0B .P (A ∪B )=P (A )+P (B )C .P (AB )=P (A )P (B )D .P (B-A )=P (B )22.设事件A ,B 相互独立,且P (A )=31,P (B )>0,则P (A|B )=( )A .151 B .51 C .154 D .31 23.设事件A 与B 互不相容,且P (A )>0,P (B ) >0,则有( ) A .P (AB )=lB .P (A )=1-P (B )C .P (AB )=P (A )P (B )D .P (A ∪B )=124.设A 、B 相互独立,且P (A )>0,P (B )>0,则下列等式成立的是( ) A .P (AB )=0B .P (A -B )=P (A )P (B )C .P (A )+P (B )=1D .P (A |B )=025.同时抛掷3枚均匀的硬币,则恰好有两枚正面朝上的概率为( ) A .0.125 B .0.25 C .0.375 D .0.5026.设在三次独立重复试验中,事件A 出现的概率都相等,若已知A 至少出现一次的概率为19/27,则事件A 在一次试验中出现的概率为( ) A .61 B .41 C .31 D .2127.某射手向一目标射击两次,A i 表示事件“第i 次射击命中目标”,i =1,2,B 表示事件“仅 第一次射击命中目标”,则B =( ) A .A 1A 2 B .21A C .21A AD .21A A28.某人每次射击命中目标的概率为p (0<p <1),他向目标连续射击,则第一次未中第二次命中的概率为( ) A .p 2 B .(1-p )2 C .1-2p D .p (1-p )29.已知P (A )=0.4,P (B )=0.5,且A ⊂B ,则P (A |B )=( ) A .0 B .0.4 C .0.8 D .130.一批产品中有5%不合格品,而合格品中一等品占60%,从这批产品中任取一件,则该件产品是一等品的概率为( ) A .0.20 B .0.30 C .0.38 D .0.57 31.若A 与B 互为对立事件,则下式成立的是( ) A.P (A ⋃B )=Ω B.P (AB )=P (A )P (B ) C.P (A )=1-P (B )D.P (AB )=φ32.将一枚均匀的硬币抛掷三次,恰有一次出现正面的概率为( )A.81B.41C.83 D.21 33.设A ,B 为两事件,已知P (A )=31,P (A|B )=32,53)A |B (P =,则P (B )=( )A. 51B.52 C.53 D. 54 34.设A 与B 是任意两个互不相容事件,则下列结论中正确的是( ) A .P (A )=1-P (B ) B .P (A -B )=P (B ) C .P (AB )=P (A )P (B )D .P (A -B )=P (A )35.设A ,B 为两个随机事件,且0)(,>⊂B P A B ,则P (A |B )=( ) A .1 B .P (A )C .P (B )D .P (AB )35.设A 、B 为两事件,已知P (B )=21,P (B A )=32,若事件A ,B 相互独立,则P (A )=( ) A .91 B .61 C .31 D .2136.对于事件A ,B ,下列命题正确的是( ) A .如果A ,B 互不相容,则B ,A 也互不相容 B .如果B A ⊂,则B A ⊂ C .如果B A ⊃,则B A ⊃D .如果A ,B 对立,则B ,A 也对立37.每次试验成功率为p (0<p <1),则在3次重复试验中至少失败一次的概率为( ) A .(1-p )3 B .1-p 3 C .3(1-p ) D .(1-p )3+p (1-p )2+p 2(1-p )38.设事件A ,B 相互独立,且P (A )=0.2,P (B )=0.4,则P (A ∪B )=___________。
新人教版初中数学九年级数学上册第五单元《概率初步》测试题(包含答案解析)
一、选择题1.在一个不透明的布袋中装有50个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.3左右,则布袋中白球可能有()A.15个B.25个C.35个D.45个2.如图,在平面直角坐标系中,点A1,A2在x轴上,点B1,B2在y轴上,其坐标分别为A1(1,0),A2(2,0),B1(0,1),B2(0,2),分别以A1,A2,B1,B2中的任意两点与点O为顶点作三角形,所作三角形是等腰三角形的概率是()A.34B.13C.23D.123.下列说法中正确的是()A.通过多次试验得到某事件发生的频率等于这一事件发生的概率B.某人前9次掷出的硬币都是正面朝上,那么第10次掷出的硬币反面朝上的概率一定大于正面朝上的概率C.不确定事件的概率可能等于1D.试验估计结果与理论概率不一定一致4.国学经典《声律启蒙》中有这样一段话:“斜对正,假对真,韩卢对苏雁,陆橘对庄椿”,现有四张卡片依次写有一“斜”、“正”、“假”、“真”,四个字(4张卡片除了书写汉字不同外其他完全相同),现从四张卡片中随机抽取两张,则抽到的汉字恰为相反意义的概率是()A.12B.13C.23D.145.设口袋中有5个完全相同的小球,它们的标号分别为1,2,3,4,5.现从中随机摸出(同时摸出)两个小球并记下标号,则标号之和大于5的概率是()A.310B.35C.45D.7106.在一个不透明的袋子中,装有红色、黑色、白色的玻璃球共有40个,除颜色外其它完全相同.若小李通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在0.15.和0.45,则该袋子中的白色球可能有()A.6个B.16个C.18个D.24个7.下列语句所描述的事件是随机事件的是()A.经过任意两点画一条直线B.任意画一个五边形,其外角和为360°C.过平面内任意三个点画一个圆D.任意画一个平行四边形,是中心对称图形8.下列事件是必然事件的是()A .阴天一定会下雨B .购买一张体育彩票,中奖C .打开电视机,任选一个频道,屏幕上正在播放新闻联播D .任意画一个三角形,其内角和是180°9.四张质地、大小相同的卡片上,分别画上如图所示的四种汽车标志,在看不到图形的情况下从中任意抽出一张,则抽出的卡片既是中心对称图形,又是轴对称图形的概率是( )A .12 B .14C .34D .110.在1,2,3,4四个数中,随机抽取两个不同的数,其乘积大于4的概率为( ) A .12B .13C .23D .1611.掷一枚普通的正六面体骰子,出现的点数中,以下结果机会最大的是( ) A .点数为3的倍数 B .点数为奇数 C .点数不小于3D .点数不大于312.下列说法正确的是( )A .为了了解某中学1200名学生的视力情况,从中随机抽取了50名学生进行调查,在此次调查中,样本容量为50名学生的视力B .若一个游戏的中奖率是2%,则做50次这样的游戏一定会中奖C .了解无锡市每天的流动人口数,采用抽样调查方式D .“掷一枚硬币,正面朝上”是必然事件二、填空题13.不透明的盒子中装有除标号外完全相同的4个小球,小球上分别标有数-4,-2,3,5.从盒子中随机抽取一个小球,数记为a ,再从剩下的球中随机抽取一个小球,数记为b ,则使得点(),a a b -在第四象限的概率为______.14.在一个不透明的袋子中放有m 个球,其中有6个红球,这些球除颜色外完全相同.若每次把球充分搅匀后,任意摸出一球记下颜色后再放回袋子,通过大量重复试验后,发现摸到红球的频率稳定在0.3左右,则m 的值约为________.15.在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为_____.16.如图所示的转盘分成8等份,若自由转动转盘一次,停止后,指针落在阴影区域内的概率是_______.17.若一个袋子中装有形状与大小均完全相同有4张卡片,4张卡片上分别标有数字2-,1-,2,3,现从中任意抽出其中两张卡片分别记为x,y,并以此确定点()P x,y ,那么点P 落在直线y x 1=-+上的概率是____.18.一个不透明的盒子中装有9个大小相同的乒乓球,其中3个是黄球,6个是白球,从该盒子中任意摸出一个球,摸到白球的概率是_________.19.已知a 为正整数,且二次函数()273y x a x =+-+的对称轴在y 轴右侧,则a 使关于y 的分式方程4211ay yy y--=--有正整数解的概率为_______. 20.从1.2.3.4四个数中随机选取两个不同的数,分别记为a,c ,则关于x 的一元二次方程ax 2+4x +c =0有实数解的概率为____三、解答题21.2019年10月下旬,我校初三年级举办了“教育教学质量周”活动,在本次活动中每个学科都举办了学科特色活动.其中数学学科举办了“计算能力竞赛”活动,并在班内进行了评比:A 为优秀;B 为良好;C 为合格;D 为不合格.某班的数学老师对该班学生的成绩做了统计,绘制了下列两幅尚不完整的统计图,请根据下列所给信息回答问题:(1)该班共有 人,扇形统计图中的C 所对应的圆心角为 度. (2)请根据信息补全条形统计图.(3)为了初步了解学生出错的原因,该班数学老师从D 类学生中随机抽取2人的试卷进行错题统计.已知D 类学生中有2名男生,2名女生,请用树状图或列表法求出恰好选中一男一女的试卷的概率.22.在一只不透明的布袋中装有红球2个、黄球1个,这些球除颜色外都相同,均匀摇匀.(1)从布袋中一次摸出1个球,计算“摸出的球恰是黄球”的概率;(2)从布袋中一次摸出2个球,计算“摸出的球恰是一红一黄”的概率(用“画树状图”或“列表”).23.为响应垃圾分类处理,改善生态环境,某小区将生活垃圾分成三类:厨余垃圾、可回收垃圾和其他垃圾,分别记为a ,b ,c ,并且设置了相应的垃圾箱,“厨余垃圾”箱,“可回收垃圾”箱和“其他垃圾”箱,分别记为A ,B ,C(1)小明将垃圾分装在三个袋中,任意投放,用画树状图或列表的方法求把三个袋子都放错位置的概率是多少?(2)某学习小组为了了解居民生活垃圾分类投放的情况,现随机抽取了某天三类垃圾箱中总共100吨的生活垃圾,数据统计如表(单位:吨):A B Ca401010b3243c226调查发现,在“可回收垃圾”中塑料类垃圾占10%,每回收1吨塑料类垃圾可获得0.7吨二级原料,某城市每天大约产生200吨生活垃圾假设该城市每天处理投放正确的垃圾,每天大概可回收多少吨塑料类垃圾的二级原料?24.“五一”假期,黔西南州某公司组织部分员工分别到甲、乙、丙、丁四地考察,公司按定额购买了前往各地的车票,如图所示是用来制作完整的车票种类和相应数量的条形统计图,根据统计图回答下列问题:(1)若去丁地的车票占全部车票的10%,请求出去丁地的车票数量,并补全统计图(如图所示).(2)若公司采用随机抽取的方式发车票,小胡先从所有的车票中随机抽取一张(所有车票的形状、大小、质地完全相同、均匀),那么员工小胡抽到去甲地的车票的概率是多少?(3)若有一张车票,小王和小李都想去,决定采取摸球的方式确定,具体规则:“每人从不透明袋子中摸出分别标有1、2、3、4的四个球中摸出一球(球除数字不同外完全相同),并放回让另一人摸,若小王摸得的数字比小李的小,车票给小王,否则给小李.”试用列表法或画树状图的方法分析这个规则对双方是否公平?25.一只不透明的箱子里共有8个球,其中2个白球,1个红球,5个黄球,它们除颜色外均相同.(1)从箱子中随机摸出一个球是白球的概率是多少?(2)再往箱子中放入多少个黄球,可以使摸到白球的概率变为0.2?26.刘雨泽和黎昕两位同学玩抽数字游戏.五张卡片上分别写有2、4、6、8、x这五个数字,其中两张卡片上的数字是相同的,从中随机抽出一张,已知P(抽到数字4的卡片)2.5(1)求这五张卡片上的数字的众数;(2)若刘雨泽已抽走一张数字2的卡片,黎昕准备从剩余4张卡片中抽出一张.①所剩的4张卡片上数字的中位数与原来5张卡片上数字的中位数是否相同?并简要说明理由;②黎昕先随机抽出一张卡片后放回,之后又随机抽出一张,用列表法(或树状图)求黎昕两次都抽到数字4的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】利用频率估计概率得到摸到黄球的概率为0.3,根据概率公式计算即可.【详解】∵小红通过多次摸球试验后发现,估计摸到黄球的概率为0.3,∴黄球的个数为50×0.3=15,则白球可能有50-15=35个.故选:C.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.2.D解析:D【分析】根据题意画出树状图,进而得出以A1、A2、B1、B2其中的任意两点与点O为顶点作三角形是等腰三角形的情况,求出概率即可.【详解】解:∵以A1、A2、B1、B2其中的任意两点与点O为顶点作三角形,∴画树状图得:共可以组成4个三角形,所作三角形是等腰三角形只有:△OA1B1,△OA2B2,所作三角形是等腰三角形的概率是:21 =42.故选:D.【点睛】此题主要考查了利用树状图求概率以及等腰三角形的判定等知识,利用树状图表示出所有可能是解题关键.3.D解析:D【分析】大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值,而不是一种必然的结果,故选D.【详解】A. 错,应为:多次试验得到某事件发生的频率可以估计这一事件发生的概率;B. 错,反面朝上的概率仍为0.5;C. 错,概率等于1即为必然事件;D. 正确.故答案选D.【点睛】本题考查了概率的意义,解题的关键是熟练的掌握概率的意义.4.B解析:B【分析】根据题意画出树状图,得出所有可能数和所求情况数,根据概率公式即可得答案.【详解】根据题意画出树状图:∵事件发生的所有可能性为12种;抽到的汉字恰为相反意义的事件为4种;∴抽到的汉字恰为相反意义的概率是:412=13,故选:B.【点睛】本题考查列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数的比;正确画出树状图,熟练掌握概率公式是解题关键.5.B解析:B【分析】根据列表或画树状图方法列出所有可能性,根据概率公式计算即可.【详解】解:列表得于5的概率是123= 205.故选:B【点睛】本题考查了列表法或画树状图求概率,解题关键是根据列表法或画柱状图确定出所有可能性,注意本题同时摸出两个小球这一条件.6.B解析:B【分析】先由频率之和为1计算出白球的频率,再由数据总数×频率=频数计算白球的个数,即可求出答案.【详解】解:∵摸到红色球、黑色球的频率稳定在0.15和0.45,∴摸到白球的频率为1-0.15-0.45=0.4,故口袋中白色球的个数可能是40×0.4=16个.故选:B.【点睛】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.7.C解析:C【分析】直接利用多边形的性质以及直线的性质、中心对称图形的定义分别分析得出答案.【详解】解:A 、经过任意两点画一条直线,是必然事件,故此选项错误; B 、任意画一个五边形,其外角和为360°,是必然事件,故此选项错误; C 、过平面内任意三个点画一个圆,是随机事件,故此选项错误;D 、任意画一个平行四边形,是中心对称图形,是必然事件,故此选项错误; 故选:C . 【点睛】此题主要考查了随机事件的定义,有可能发生有可能不发生的时间叫做随机时间,正确掌握相关性质是解题关键.8.D解析:D 【分析】根据必然事件的概念可得答案. 【详解】A 、阴天下雨是随机事件;B 、购买一张体育彩票,中奖是随机事件;C 、打开电视机,任选一个频道,屏幕上正在播放新闻联播是随机事件;D 、任意画一个三角形,其内角和是180°是必然事件; 故选:D . 【点睛】本题考查了必然事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.9.B解析:B 【分析】从四个图形中找到中心对称图形的个数,然后利用概率公式求解即可. 【详解】∵四种汽车标志中,既是中心对称图形,又是轴对称图形的有1个, ∴既是中心对称图形,又是轴对称图形的概率为14; 故选B . 【点睛】本题考查概率的求法与运用,一般方法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率()P A =m n. 10.A解析:A 【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与其乘积大于4的情况,再利用概率公式即可求得答案.【详解】画树状图得:∵共有12种等可能的结果,任取两个不同的数,其乘积大于4的有6种情况,∴从1、2、3、4中任取两个不同的数,其乘积大于4的概率是:61=122.故答案为:12.故选:A.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.11.C解析:C【分析】总共有六种情况,分别计算出所求情况的个数,比较即可得出可能性最大的.【详解】解:掷一枚普通的正六面体骰子共6种情况,A.掷一枚骰子,点数为3的倍数有2种,概率1 3 ;B.点数为奇数有3种,概率1 2 ;C.点数不小于3有四种,概率2 3 ;D.点数不大于3有3种,概率12,故可能性最大的是点数不小于3,选C.【点睛】可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等.12.C解析:C【分析】根据样本容量为所抽查对象的数量,抽样调查,随机事件,即可解答. 【详解】解:A .为了了解某中学1200名学生的视力情况,从中随机抽取了50名学生进行调查,在此次调查中,样本容量为50,不是50名学生的视力,故此项错误;B .若一个游戏的中奖率是2%,2%是概率而不是做50次这样的游戏一定会中奖,故此项错误;C .了解无锡市每天的流动人口数,采用抽查方式,正确;D .“掷一枚硬币,正面朝上”是必然事件是随机事件,故此项错误; 故选:C . 【点睛】本题考查了样本容量,抽样调查,随机事件,解决本题的关键是明确相关概念.二、填空题13.【分析】画树状图展示所有12种等可能的结果找出点在第四象限的结果数然后根据概率公式求解【详解】解:画树状图为:共有12种等可能的结果其中点在第四象限的结果数为1所以使得点在第四象限的概率=故答案为: 解析:112【分析】画树状图展示所有12种等可能的结果,找出点(),a a b -在第四象限的结果数,然后根据概率公式求解. 【详解】 解:画树状图为:共有12种等可能的结果,其中点(),a a b -在第四象限的结果数为1, 所以使得点(),a a b -在第四象限的概率=112. 故答案为:112. 【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.也考查了第四象限内点的坐标特征.14.20【分析】根据频率估计概率简单事件的概率公式即可得【详解】由题意得:任意摸出一球是红球的概率约为则解得故答案为:20【点睛】本题考查了频率估计概率简单事件的概率公式熟练掌握频率估计概率是解题关键解析:20【分析】根据频率估计概率、简单事件的概率公式即可得.【详解】由题意得:任意摸出一球是红球的概率约为0.3,则60.3 m≈,解得20m≈,故答案为:20.【点睛】本题考查了频率估计概率、简单事件的概率公式,熟练掌握频率估计概率是解题关键.15.20【分析】利用频率估计概率设原来红球个数为x个根据摸取30次有10次摸到白色小球结合概率公式可得关于x的方程解方程即可得【详解】设原来红球个数为x个则有=解得x=20经检验x=20是原方程的根故答解析:20【分析】利用频率估计概率,设原来红球个数为x个,根据摸取30次,有10次摸到白色小球结合概率公式可得关于x的方程,解方程即可得.【详解】设原来红球个数为x个,则有1010x+=1030,解得,x=20,经检验x=20是原方程的根.故答案为20.【点睛】本题考查了利用频率估计概率和概率公式的应用,熟练掌握概率的求解方法以及分式方程的求解方法是解题的关键.16.【分析】用阴影部分的份数除以总份数即可得【详解】解:由图可知自由转动转盘一次停止后指针落在阴影区域的概率是故答案为:【点睛】本题考查了概率公式解题的关键是掌握随机事件A的概率P(A)=事件A可能出现解析:5 8【分析】用阴影部分的份数除以总份数即可得.【详解】解:由图可知自由转动转盘一次,停止后,指针落在阴影区域的概率是58,故答案为:58.【点睛】本题考查了概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.17.【分析】画出树状图再求出在直线上的点的坐标的个数然后根据概率公式列式计算即可得解【详解】解:画树状图如下:由树状图可知共有12种等可能结果其中点P落在直线y=-x+1上的有(-23)(-12)(2-解析:1 3【分析】画出树状图,再求出在直线上的点的坐标的个数,然后根据概率公式列式计算即可得解.【详解】解:画树状图如下:由树状图可知共有12种等可能结果,其中点P落在直线y=-x+1上的有(-2,3)、(-1,2)、(2,-1)、(3,-2),所以点P落在直线y=-x+1上的概率是41=123,故答案为13.【点睛】本题考查了列表法与树状图法,以及一次函数图象上点的坐标特征.18.【分析】用白球的个数除以球的总个数即可确定摸到白球的概率【详解】解:盒子中装有9个大小相同的乒乓球其中3个是黄球6个是白球则摸到白球的概率是:故答案为【点睛】本题考查概率的求法与运用正确应用概率公式解析:2 3【分析】用白球的个数除以球的总个数,即可确定摸到白球的概率.【详解】解:盒子中装有9个大小相同的乒乓球,其中3个是黄球,6个是白球,则摸到白球的概率是:62 93 =.故答案为23.【点睛】本题考查概率的求法与运用,正确应用概率公式是解答本题的关键.19.【分析】利用二次函数对称轴公式求得从而确定a所有的正整数解然后解关于y的方程得然后确定符合题意的a的值然后根据概率公式求解【详解】解:由题意可知:解得因为为正整数∴a可以取123456共6种等可能结解析:1 3【分析】利用二次函数对称轴公式求得72a-->,从而确定a所有的正整数解,然后解关于y的方程,得21ya=-,然后确定符合题意的a的值,然后根据概率公式求解.【详解】解:由题意可知:72a-->,解得7a<因为a为正整数,∴a可以取1,2,3,4,5,6共6种等可能结果解4211ay yy y--=--化为:42(1)ay y y---=-解得:21 ya=-当a=2或3时,y有正整数解,符合题意共2种∴a使关于y的分式方程4211ay yy y--=--有正整数解的概率为21=63故答案为:13.【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.也考查了根的判别式和分式方程的解.20.【分析】首先画出树状图即可求得所有等可能的结果与使ac≤4的情况然后利用概率公式求解即可求得答案【详解】画树状图得:由树形图可知:一共有12种等可能的结果其中使ac≤4的有6种结果∴关于x的一元二次解析:1 2【分析】首先画出树状图即可求得所有等可能的结果与使ac≤4的情况,然后利用概率公式求解即可求得答案.【详解】画树状图得:由树形图可知:一共有12种等可能的结果,其中使ac≤4的有6种结果,∴关于x的一元二次方程ax2+4x+c=0有实数解的概率为12故答案为:1 2 .【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.三、解答题21.(1)50,43.2;(2)见解析;(3)23.【分析】(1)用A等级的人数除以所占的百分比求出总人数;用360°乘以C等级所占的百分比即可得出扇形统计图中的C所对应的圆心角的度数;(2)用总人数减去其它等级的人数求出B等级的人数,从而补全统计图;(3)据题意画出树状图,然后由树状图求得所有等可能的结果与恰好选中一男一女的试卷的情况,再利用概率公式求解即可求得答案.【详解】解:(1)该班共有人数是:25÷50%=50(人),扇形统计图中的C所对应的圆心角为:360°×650=43.2°;故答案为:50,43.2;(2)B等级的人数有:50﹣25﹣6﹣4=15人,补图如下:(3)画树状图得:∵共有12可能的结果,恰好选中一男一女的试卷的有8情况,∴恰好选中一男一女的试卷的概率为:812=23.【点睛】本题考查了列表法或树状图法求概率以及条形统计图与扇形统计图.用到的知识点为:概率=所求情况数与总情况数之比.22.(1)“摸出的球恰是黄球”的概率为13;(2)“摸出的球恰是一红一黄”的概率为23.【分析】(1)用黄球个数除以球的总个数即可得;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果及“摸出的球恰是一红一黄”的情况数,继而根据概率公式计算可得.【详解】(1)由于袋子中一共有4个球,其中黄球只有1个,所以“摸出的球恰是黄球”的概率为:13;(2)画树状图得:则共有6种等可能的结果,其中“摸出的球恰是一红一黄”的有4种,所以“摸出的球恰是一红一黄”的概率为:42 63 =.【点睛】本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.23.(1)13;(2)每天大概可回收3.36吨塑料类垃圾的二级原料.【分析】(1)画树状图得出所有等可能结果,从中找到把三个袋子都放错位置的结果数,再根据概率公式计算可得;(2)根据样本,首先求得可回收垃圾量,然后再求塑料类垃圾中投放正确的,再根据每回收1吨塑料类垃圾可获得0.7吨二级原料计算即可.【详解】解:(1)画树状图如下:由树状图知,共有6种等可能结果,其中把三个袋子都放错位置的有2种结果,所以把三个袋子都放错位置的概率是26=13;(2)200×3243100++×0.1×2430×0.7=3.36(吨),答:每天大概可回收3.36吨塑料类垃圾的二级原料.【点睛】此题考查了列表法与树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.24.(1)丁地车票数为10张,补全条形统计图见解析;(2)15;(3)不公平.【分析】(1)根据丁地车票的百分比求出甲,乙,丙地车票所占的百分比之和,用甲,乙,丙车票之和除以百分比求出总票数,得出丁车票的数量,补全条形统计图即可.(2)根据甲,乙,丙,丁车票总数,与甲地车票数为20张,即可求出所求的概率.(3)列表或画树状图得出所有等可能的情况数,求出两人获胜概率,比较即可得到公平与否.【详解】。
概率论与数理统计自测题5
则P(X < π 6 )=
⎧
π
⎪
f
cos x , 0 ≤ x ≤
( x) = ⎨
2
⎩ 0 , 其它
。
6. 若随机变量 X 和Y 相互独立,且 D( ) = 1 ,D( Y ) = 4 ,则 D( X − 2 ) = ________。
X
2
Y
7. 设离散随机变量 X 的数学期望为 E (X ) ,方差为 D(X ) = σ > 0 ,则
,其中 λ > 0 是未知参数。设样本观
⎩ 0, x ≤ 0
测值为 x 1, x2 , " , x n ,试求参数 λ 的最大似然估计值。
四、证明题(本题总计 6 分)
设随机变量 X 服从指数分布 e(λ ) ,证明:对于任意的非负实数 s 及 t ,有: P( X ≥ s + t X ≥ s) = P( X ≥ t)
概率论与数理统计概率论与数理统计b概率论和数理统计概率论数理统计概率论与数理统计a概率论与数理统计4概率论与数理统计学概率论与统计学概率论与统计概率论与统计原理
<<概率论与数理统计>>自测题五
一、填空题(本题总计 20 分,每小题 2 分)
1. 设事件 A , A ," , 相互独立,P ( A ) = p (i = 1 ,2 ," , n) ,则所有事件均发生的概率为
必有
。
-1-
(A)
E( X
−
2
c)
=
E(X2)
− c2
(B) E ( X − c) 2 = E ( X − µ 2
2
2
2
概率论与数理统计第五章习题
概率论与数理统计习题 第五章 大数定律及中心极限定理习题5-1 据以往经验,某种电器元件的寿命服从均值为100小时的指数分布,现随机地取16只,设它们的寿命是相互独立的。
求这16只元件的寿命的总和大于1920小时的概率。
解:设第i 只寿命为X i ,(1≤i ≤16),故E (X i )=100,D (X i )=1002(l=1,2,…,16).依本章定理1知⎪⎪⎪⎪⎪⎭⎫⎝⎛≤-=⎪⎪⎪⎪⎪⎭⎫⎝⎛⨯-≤⨯-=≤∑∑∑===8.040016001001616001920100161600)1920(1616161i i i i i i X P X P X P.7881.0)8.0(=Φ=从而.2119.07881.01)1920(1)1920(161161=-=≤-=>∑∑==i ii iXP XP习题5-2 设各零件的重量都是随机变量,它们相互独立且服从相同的分布,其数学期望为0.5kg ,均方差为0.1kg ,问5000只零件的总重量超过2510kg 的概率是多少?解设X i 表示第i 只零件的重量, 则E (X i )=0.5, D (X i )=0.01. 于是5000只零件的总重量X =∑=50001i iX, 所以由独立同分布中心极限定理知,{2510}P X >=P >1Φ≈-=1-0.921=0.079.习题5-3 有一批建筑房屋用的木柱,其中80%的长度不小于3m ,现从这批木柱中随机地取出100根,问其中至少有30根短于3m 的概率是多少? 解设100根中有X 根短于3m ,则X ~B (100,0.2)从而{30}1{30}1P X P X ≥=-<≈-Φ1(2.5)10.99380.0062.=-Φ=-=习题5-4(1)一复杂的系统由100个相互独立起作用的部件所组成.在整个运行期间每个部件损坏的概率为0.10 ,为了使整个系统起作用,至少必须有85个部件正常工作,求整个系统起作用的概率.100(100,0.9),85{85)11( 1.67)(1.67)0.9525X X B P X ⨯⨯≈Φ-Φ≥≈-Φ=-Φ-=Φ=注释:设这个部件中没有损坏部件数为, 则服从二项分布且有______EX=np=1000.9=90,DX=npq=900.1=9由拉普拉斯定理,b-EX a-EXP{a<X<b}故至少须有个部件工作的概率为:85-90(2)一复杂的系统由n 个相互独立起作用的部件所组成.每个部件的可靠性为0.90,且必须至少有80%的部件工作才能使整个系统正常工作,问n 至少为多大才能使系统的可靠性不低于0.95?解:(2)设每个部件为X i (i=1,2,……n )⎩⎨⎧=部件损坏不工作部件工作1i XP {X i =1}=p =0.9, P {X i =0}=1-p =0.1 E (X i ) =p =0.9,D (X i ) =0.9×0.1=0.09由问题知95.0100801=⎭⎬⎫⎩⎨⎧>∑=n i i n X P 求n=?而⎭⎬⎫⎩⎨⎧>∑=n X P n i i 100801⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧->-=∑=)(10080)(1i i ni i X nD np n X nD npX P=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧->-∑=n n n nn X P ni i 3.09.0100803.09.01=1-⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧-≤-∑=n n n nn X P n i i 3.09.0100803.09.01由中心极限定理知=95.03.01.03.01.01≥⎪⎪⎭⎫⎝⎛Φ=⎪⎪⎭⎫⎝⎛-Φ-n n n n 查标准正态分布表得645.13.01.0≥nn解得n ≥24.35取n=25,即n 至少为25才能使系统可靠性为0.95.习题5-5 随机地选取两组学生,每组80人,分别在两个实验室里测量某种化合物的pH 值.各人测量的结果是随机变量,它们相互独立,且服从同一分布,其数学期望为5,方差为0.3,以Y X ,分别表示第一组和第二组所得结果的算术平均:(1)求}1.59.4{<<X P ; (2)求}1.01.0{<-<-Y X P(1)求P {4.9<1.5<X } (2)1.01.0{<-<-Y X P } 解:由中心极限定理知3.080580801⨯⨯-=∑=i iXU ~N (0,1)3.080580801⨯⨯-=∑=j jYV ~N (0,1)(1)⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧⨯⨯-⨯<⨯⨯-<⨯⨯-⨯=<<∑=3.080580801.53.0805803.080580809.4}1.59.4{801i i X P X P8968.019484.021)63.1(263.12458063.1801=-⨯=-Φ=⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧<⨯-<-∑=i i X P (2)由X i , Y j 的相互独立性知∑∑==801801j ji iYX 与独立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 第五章 自测题
1. 设 12 ,,,, n X X X ××××××是独立同分布的随机变量序列,且均值为m ,方差为 2 s ,那么当n 充分大 时,近似有X ~
或 X n m s - ~ 。
特别是,当同为正态分布时,对于任意 的n ,都精确有X ~ 或 X n m s - ~ .
2. 设供电网有1000盏电灯,夜晚每盏电灯开灯的概率均为0.7,并且彼此开闭与否相互独立, 试用切比雪夫不等式和中心极限定理分别估算夜晚同时开灯数在6800到7200之间的概率。
3. 一系统是由n 个相互独立起作用的部件组成,每个部件正常工作的概率为0.9,且必须至少 由 80%的部件正常工作,系统才能正常工作,问n 至少为多大时,才能使系统正常工作的概 率不低于 0.95?
4. 甲乙两电影院在竞争1000名观众,假设每位观众在选择时随机的,且彼此相互独立,问甲 至少应设多少个座位,才能使观众因无座位而离去的概率小于1% 。
参考答案)
1. 2
2
(,),(0,1),(,),(0,1) N N N N n n
s s m m 2. 0.9475 3. 0.9842 4. 537。