概率论测试题

合集下载

概率论测试题

概率论测试题

第一章测试题一、填空题()()11,P(AB)0,(AC)P(BC ,1.)416P A P P B P C ======则事件A,B,C 全不发生的概已知()率为()2.,(A)0.5,(B)0.6P(B|A)0.8A B P P B ===设事件满足,,则P (A )=()3.P =p =q =∅已知(A ),P (B )且AB ,则A 与B 恰有一个发生的概率为()4.====A B P 设事件,满足(A )0.4,P (B )0.3,P (A B )0.6,则P (AB )()5.r r ≤设有(3<r 365)个人,并设每人的生日在一年365天中的每一天的可能性为均等性,则此个人中恰有3个人生日相同(其他人的生日各不相同)的概率为()6.103张奖券中含有张中奖的奖券,现有三人各买1张,则恰有一人中奖的概率为()7.n n<N N 将个小球随机放到()个盒子中去,则某指定盒子中至多有1球的概率是()8.48081一袋中有两个黑球和若干个白球,现有放回地摸球次,若至少摸到一次白球的概率为,则袋中白球数是()9.a b k k+袋中有个白球,个黑球,现从中一次取球,则第次和第1次取得不同颜色球的概率是()111110.,,,5436A B C D 四人独立破译一份密码,已知每人能破译的概率分别为,,,,则密码最终能破译的概率为()11.若在区间(0,1)内任取两个数,则事件“两数之和小于1.2”的概率为()。

12.p n A A 设在一次试验中事件发生的概率为,现重复进行次独立试验,则事件至多发生一次的概率为()13.a h l l o o halloo 将,,,,,这六个字母任排一行,则拍成的概率为14.1042设件产品中有件不合格品,从中任取件,已知所取的2件中有1件是不合格品,则另一件也是不合格品的概率为()15.%%%设一批产品中的一、二、三等品各占60,30,10,先从中任取一件,结果不是三等品,则取到的是一等品的概率为()二、单项选择题1.,. =-=-==A B A P B 设为随机事件,则下列各式中正确的是()(AB )P(A)P (B ) B. P (A B )P (A )P (B )C. P (A )P (A-B ) D. P (AB )P(A)+P(B)2.. B.C. A A A 若用事件表示“甲产品畅销,乙产品滞销”,则事件表示()甲产品滞销,乙产品畅销甲、乙两产品均畅销甲产品滞销 D.甲产品滞销或乙产品畅销3.A. P -=A B A 设,为随机事件,则下列各式中不能恒成立的是()(A B )P(A)-P(AB) B. P(AB)=P(B)P(A|B),其中P (B )>0C. P(A B)=P(A)+P(B) D. P(A)+P()=14.A. P P 1. P =+AB C ≠∅≥≤≤若,则下列各式中错误的是()(AB )0 B.(AB )(A B )P (A )P (B ) D.P(A-B)P(A)5.. A,B B. =. = D. P(A-B)=P(A)AB A A B C AB ≠∅∅若,则()为对立事件6.,A. . B A A B P C ⊂若则()(A )<P(B) B. P(B-A)>0若不发生则也不发生 D. 若B 发生则A 必发生1117.. P min{P } B. A n {}()nnni i A P Ai Ai P Ai ==≤≠Ω≤≤∑∑下列关于概率的不等式,不正确的是()(AB )(A ),P (B )若,则(A )<1C. P()P(A1A2A ) D. P 8.今有十张电影票,其中只有两张座号在第一排,现采取抽签方式发放给10名同学,则()A. 先抽者有更大可能性抽到第一排座票B. 后抽者更可能获得第一排座票C. 各人抽签结果与抽签顺序无关D. 抽签结果受抽签顺序的制约12121212129.10052=≥设件产品中有件不合格产品,今从中依次取件。

概率论第一章小测试

概率论第一章小测试

第一章小测试一、选择题1.设A 、B 、C 为三个事件,则A 、B 、C 不全发生可表示为( )A. ABCB. ABCC. C B AD. C B A2.设事件A 和B 互为对立事件,则下列各式不成立的是( )A. ()0P AB =B. ()0P AB =C. ()1P A B =D.()1P B A =3.将一枚均匀硬币抛掷3次,则至少有2次出现币值面朝上的概率是( )A. 18B. 38C. 12D. 584.盒内有6个产品,其中正品4个次品2个,不放回地一个一个往外取产品,则第二次才取到次品的概率与第二次取产品时取到次品的概率分别为( )A. 41153,B. 441515,C. 1133, D. 14315, 5.设两个事件A 和B 相互独立,且()0.5P A =,()0.4P B =, 则()P A B 的值是( ) A. 0.9 B. 0.8 C. 0.7 D. 0.66.对于任意事件A,B,若A B ⊂,则下列各等式不成立的是( )A. B B A =B. φ=B -AC. B B A =D. φ=B A7.设A,B 为任意两个概率不为0的互斥事件,则下列结论中一定正确的是( )A. ()()P A B P A =B. ()()()P A B P A P B -=-C. ()()()P AB P A P B =D.()()P A B P A -=8.将一枚均匀硬币抛掷3次,则恰有一次出现币值面朝上的概率是( )A. 38B. 18C. 58D. 129. 已知在10只电子元件中,有2只是次品,从其中取两次,每次随机地取一只,作不放回抽取,则第二次取出的是次品的概率是( )A. 145B. 15C. 1645D. 84510.设两个事件A 和B 相互独立,且()0.6P A =,()0.3P B =, 则()P A B 的值是( ) A. 0.3 B. 0.7 C. 0.72 D. 0.911.事件A 、B 、C 中恰有一个事件发生的事件是( )A .ABCB .C AB C .C B AD .C B A C B A C B A ++12.设A 和B 是两个随机事件,则下列关系式中成立的是( )A.()()()P A B P A P B -=-B.()()()P AB P A P B =+ C.()()()P A B P A P B -≤- D.()()()P AB P A P B ≤+13.设B A ,满足1)(=B A P , 则有( ) A .A 是必然事件 B .B 是必然事件C .Φ=⋂B A D.)B (P )A (P ≥14.已知A ,B 是两个随机事件,且知()0.5P A =,()0.8P B =,则()P AB 的最大值是( )A. 0.5B. 0.8C. 1D. 0.315. 设每次试验成功的概率为)10(<<p p ,重复进行试验直到第n 次才取得成功的概率为( )A .1(1)n p p --B .1(1)n np p --C .1(1)(1)n n p p --- D.1(1)n p --16. 掷一枚钱币,反复掷4次,则恰有3次出现正面的概率是( ).A .116B . 18C . 110 D.1417.设A 、B 、C 为三个事件,则A 、B 、C 全不发生的事件可表示为( )(A )ABC (B )C B A (C )C B A (D )C B A18.设A 和B 是两个随机事件,且A B ⊂,则下列式子正确的是( )(A ))()(A P B A P = (B ))()(A P AB P =(C ))()(B P A B P = (D ))()()(A P B P A B P -=-19.设A 和B 相互独立,4.0)(,6.0)(==B P A P ,则=)(B A P ( )(A )0.4 (B )0.6 (C )0.24 (D )0.520.设c B A P b B P a A P ===)(,)(,)( ,则)(B A P =( )(A )b a - (B )b c - (C ))1(b a - (D )a b -21随机掷两颗骰子,已知点数之和为8,则两颗骰子的点数都是偶数的概率为( )(A )53 (B )21 (C )121 (D )3122.设N 件产品中有n 件是不合格品,从这N 件产品中任取2件,则2件都是不合格品的概率是( )(A )121---n N n (B ))1()1(--N N n n (C )2)1(N n n - (D ))(21n N n -- 23. 设A 和B 是两个随机事件,则下列关系式中成立的是( )A .()()()P AB P A P B -=- B.()()()P A B P A P B =+C.()()()P A B P A P B -≤-D.()()()P A B P A P B ≤+24. 将3个相同的小球随机地放入4个盒子中,则盒子中有小球数最多为一个的概率为( )A. 3/32B. 1/16C. 3/8D. 1/825. 同时抛掷3枚均匀的硬币,则恰好有两枚正面朝上的概率为( )A .0.125B .0.25C .0.375D .0.5026. 设在三次独立重复试验中,事件A 出现的概率都相等,若已知三次独立试验中A 至少出现一次的概率为1927,则事件A 在一次试验中出现的概率为( )A . 31 B .41 C .61 D .21 27. 设A 和B 为两个随机事件,且()0P A >,则[()]P A B A =( )A. ()P ABB. ()P AC. ()P BD. 128. 已知A ,B 是两个随机事件,且知()0.5P A =,()0.8P B =,则()P AB 的最大值是( )A. 0.5B. 0.8C. 1D. 0.329. 设事件A 和B 互斥,且()0P A >,()0P B >,则有( )A .()1P AB =B .()1()P A P B =-C .()()()P AB P A P B =D .()1P A B =30. 设A 、B 相互独立,且()0P A >,()0P B >,则下列等式成立的是( )A .()0P AB =B .()()()P A B P A P B -=C .()()1P A P B +=D .()0P A B =31. 设A 为随机事件,则下列命题中错误的是( )A. A 与A 互为对立事件B. A 与A 互斥C. A A =D. A A =Ω32. 设A 与B 相互独立,()0.2P A =,()0.4P B =,则()P A B =( )A. 0.2B. 0.4C. 0.6D. 0.833. 检查产品时,从一批产品中任取3件样品进行检查,则可能的结果是:未发现次品,发现一件次品,发现两件次品,发现3件次品。

概率论第一章单元测试题

概率论第一章单元测试题

概率论第一章单元测试题一、判断题(每题1分,共5分)1.事件“A,B至少发生一个”与事件“A,B至多发生一个”是对立事件.()2.设A与B为任意两个互不相容事件,则P(AB)=P(A)P(B).()3.设A与B为任意两事件,则A-B不等于B A.()4.设A与B互为对立事件,且P(A)>0,P(B)>0,则()0P B A=.()5.已知P(A)>0,P(B) >0,若A与B互不相容,则A,B一定不独立.()二、选择题(每题1分,共15分)1.设A,B,C是3个事件,则A发生且B与C都不发生可表示为().A.BCA B.CB A C.)S-A D.BC(CB2.设A,B为两个事件,且A≠φ,B≠φ,则)+A+(表示AB)(BA.必然事件B.不可能事件C.A与B不能同时发生 D.A与B恰有一个发生3.对于事件A,B,下列命题正确的是().A.若A,B,互不相容,则BA,也互不相容B.若A,B,相容,则BA,也相容C.若A,B,互不相容,且概率都大于零,则BA,也相互独立D.若A,B,相互独立,则BA,也相互独立4.设随机事件A与B相互独立且P(B)=0.5,P(A-B)=0.3,则P(B-A)=().A .0.1B .0.2 C.0.3D.0.42”的概率是().5.在区间(0,1)中随机的取两个数,则事件“两数之和大于3A .31B .97C .32D . 92 6. 设A 与B 为任意两个互不相容,且P (A )P (B )>0,则必有( ).A .)(1)(B P A P -= B .)()()(B P A P AB P =C .1)(=B A PD .1)(=AB P7. 设A 与B 为任意两个事件,则使P (A -C )=P (A )-P (C )成立的C 为( ).A .A C =B .B AC = C .))((B A B A C -=D .)()(A B B A C --=8. 将两封信随机地投入四个邮筒中,则未向前两个邮筒中投信的概率( ).A .2242B .2412C C C .24A 2!D .4!2! 9. 设A ,B 为随机事件,P (B )>0,()1P A B =,则必有( ).A .)()(A PB A P = B .B A ⊂C .)()(B P A P =D .)()(A P AB P =10. 设随机事件A 与B 互不相容,P (A )=0.4,P (B )=0.2,则()P A B = ( ).A .0.2B .0.4C .0D .0.511. 设P (A )>0,P (B )>0,则由A 与B 相互独立不能推出( ).A .)()()(B P A P B A P += B .()()P A B P A =C .()()P B A P B =D .)()()(B P A P B A P =12. A ,B 为任意两个事件,则下列叙述正确的是( ).A .)()()(B P A P AB P ≤ B .)()()(B P A P AB P ≥C .2)()()(B P A P AB P +≤D .2)()()(B P A P AB P +≥ 13. 事件A ,B 满足P (A )+P (B )>1,则A 与B 一定( ).A .不相互独立B .相互独立C .互不相容D .不互斥14. 设A ,B ,C 是3个随机事件,且A 与C 相互独立,B 与C 相互独立,则B A 与C相互独立的充要条件是( ).A .A 与B 相互独立 B .A 与B 互不相容C .AB 与C 相互独立D .AB 与C 互不相容15. 某人连续向一目标射击,每次命中目标的概率为43,他连续射击直到命中为止,则射击次数为3的概率是( ).A .343⎪⎭⎫ ⎝⎛B .41432⨯⎪⎭⎫ ⎝⎛C .43412⨯⎪⎭⎫ ⎝⎛D .4341223⨯⎪⎭⎫ ⎝⎛C 三、填空题(每题2分,共30分)1. 设Ω为随机试验的样本空间A ,为随机事件,且{}=05x x Ω≤≤,A={}12x x ≤≤,B={}02x x ≤≤,试求:=B A ,B -A= .2. 设两个相互独立的事件A 和B 都不发生的概率是91,A 发生B 不发生的概率与B 发生A 不发生的概率相等,则P (A ) = .3. 若111(),(),()432P A P B A P A B ===,则()P A B = . 4. 若()0.4,()0.3,()0.5P A P B P A B ===,则()P A B -= .5. 从10个整数0,1,2,…,9中任取4个不同的数字,此4个数字组成4位偶数的概率 .此4个数字组成4位奇数的概率 .6. 将3只球随机地放入4个杯子中去,则杯子中球的最大个数为3的概率 .杯子中球的最大个数为2的概率 .7. 一批产品共100件,次品率为10%,每次从中任取一件,取后不放回且连续3次,则第三次才取到合格品的概率为 .8. 某一3口之家,患某种传染病的概率有以下规律:P{孩子得病}=0.6,P{母亲得病/孩子得病}=0.5,P{父亲得病/母亲及孩子得病}=0.4则母亲及孩子得病而父亲未得病的概率.9.在一次考试中某班学生数学和外语的及格率都是0.7,且这两门课是否及格相互独立,现从该班任选一名学生,该生数学及外语只有一门及格的概率.10.已知10把钥匙中有3把能打开门,现任取两把,则能打开门的概率为.11.掷两颗骰子,则点数之和为偶数或小于5的概率.12.甲盒装有5只红球,4只白球;乙盒装有4红球,5只白球;先从甲盒中任取两球放入乙盒,然后从乙盒任取一球,则取到白球的概率.13.某种商品的商标为“MAXAM”,其中有两个字母脱落,有人捡起随意放回,则放回后仍为“MAXAM”的概率.14.已知男子有5%是色盲患者,女子有0.25%是色盲患者.今从男女人数相等的人群中随机挑选一人,恰好是色盲患者,则此人是男性的概率.15.某宾馆大楼有4部电梯,通过调查,知道在某时刻T,各电梯正在运行的概率均为0.75,则在此时刻至少有1台电梯在运行的概率.在此时刻恰好有一半电梯在运行的概率.四、计算题(40分)1.(2分)将15名新生随机地平均分配到3个班级中去,这15名新生中有3名是优等生,求(1)每个班级各分配到一名优等生的概率(2)3名优等生分配在同一班级的概率2.(8分)一学生接连参加同一课程的两次考试.第一次及格的概率为p,若第一次及p.格则第二次及格的概率也为p;若第一次不及格则第二次及格的概率为2(1) 若至少有一次及格则他能取得某种资格,求他取得该资格的概率.(2) 若已知他第二次及格了,求他第第一次及格的概率.解:设A i=“第i次及格”,i=1,2.3.(5分)甲乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率是多少?4.(7分)雨伞掉了,落在图书馆中的概率为%.0;落50,这种情况下找回的概率为80在教室里的概率为%20,这种30,这种情况下找回的概率为60.0;落在商场的概率为%情况找回的概率为05.0,求:(1)找回雨伞的概率;(2)雨伞被找回,求它掉在图书馆的概率.5.(10分)每箱产品有10件,其中次品从0到2是等可能的,开箱检验时,从中任取一件,如果检验为次品,则认为该箱产品为不合格而拒收.由于检验误差,一件正品被误判为次品的概率为2%,一件次品被误判为正品的概率为10%.求检验一箱产品能通过验收的概率.6.(5分)在100件产品有5件次品,从中连续取二件,每次取一件,取后不放回,试求:(1) 第一次取得次品后第二次取得正品的概率;(2) 第二次才取得正品的概率.7.(3分)已知电路如图所示,若A,B,C 损坏与否相互独立,且它们损坏的概率分布为0.3,0.2,0.1,求电路断电的概率五、证明题(10分)1. (5分)设A ,B 为两个随机事件,0()1P B <<,()()P A B P A B =,证明:A 与B 相互独立.2.(5分)设事件A ,B ,C 的概率都是21,且)()(C B A P ABC P =,证明:21)()()()(2-++=BC P AC P AB P ABC P .。

概率论与数理统计第一章测试题

概率论与数理统计第一章测试题

第一章 随机事件和概率一、选择题1. 设A, B, C 为任意三个事件, 则与A 一定互不相容的事件为(A )C B A ⋃⋃ (B )C A B A ⋃ (C ) ABC (D ))(C B A ⋃2.对于任意二事件A 和B, 与 不等价的是(A )B A ⊂ (B )A ⊂B (C )φ=B A (D )φ=B A3. 设 、 是任意两个事件, , , 则下列不等式中成立的是( ).A ()()P A P A B < .B ()()P A P A B ≤.C ()()P A P A B > .D ()()P A P A B ≥4. 设 , , , 则( ).A 事件A 与B 互不相容 .B 事件A 与B 相互独立.C 事件A 与B 相互对立 .D 事件A 与B 互不独立5. 设随机事件 与 互不相容, 且 , 则 与 中恰有一个发生的概率等于( ).A p q + .B p q pq +-.C ()()11p q -- .D ()()11p q q p -+-6. 对于任意两事件 与 , ( ).A ()()P A P B - .B ()()()P A P B P AB -+.C ()()P A P AB - .D ()()()P A P A P AB +- 7. 若 、 互斥, 且 , 则下列式子成立的是( ).A ()()P A B P A = .B ()0P B A >.C ()()()P AB P A P B = .D ()0P B A =8. 设 , 则下列结论中正确的是( ).A 事件A 、B 互不相容 .B 事件A 、B 互逆.C 事件A 、B 相互独立 .D A B ⊃9. 设 、 互不相容, , 则下列结论肯定正确的是( ).A A 与B 互不相容 .B ()0P B A >.C ()()()P AB P A P B = .D ()()P A B P A -=10. 设 、 、 为三个事件, 已知 , 则 ( ).A 0.3 .B 0.24 .C 0.5 .D 0.2111. 设A, B 是两个随机事件, 且0<P(A)<1, P(B)>0, , 则必有(A ))|()|(B A P B A P = (B ))|()|(B A P B A P ≠(C ))()()(B P A P AB P = (D ))()()(B P A P AB P ≠12. 随机事件A, B, 满足 和 , 则有(A )Ω=⋃B A (B )φ=AB (C ) 1)(=⋃B A P (D )0)(=-B A P13. 设随机事件A 与B 互不相容, , , 则下面结论一定成立的是(A )A, B 为对立事件 (B ) , 互不相容 (C ) A, B 不独立 (D )A, B 独立14.对于事件A 和B, 设 , P(B)>0, 则下列各式正确的是(A ))()|(B P A B P = (B ))()|(A P B A P = (C ) )()(B P B A P =+ (D ))()(A P B A P =+15. 设事件A 与B 同时发生时, 事件C 必发生, 则(A )1)()()(-+≤B P A P C P (B )1)()()(-+≥B P A P C P(C ) )()(AB P C P = (D ))()(B A P C P ⋃=16. 设A,B,C 是三个相互独立的随机事件, 且0<P(C)<1。

高中数学概率论测试题

高中数学概率论测试题

高中数学概率论测试题在高中数学的学习中,概率论是一个充满趣味和挑战的领域。

它不仅能帮助我们理解生活中的各种随机现象,还能培养我们的逻辑思维和数学应用能力。

接下来,让我们一起通过一些测试题来深入探索概率论的奇妙世界。

一、选择题1、从装有 2 个红球和 2 个黑球的口袋内任取 2 个球,那么互斥而不对立的两个事件是()A 至少有一个黑球与都是黑球B 至少有一个黑球与至少有一个红球C 恰有一个黑球与恰有两个黑球D 至少有一个黑球与都是红球答案:C解析:A 选项中,“至少有一个黑球”包含“都是黑球”,不是互斥事件;B 选项中,“至少有一个黑球”和“至少有一个红球”都包含“一个黑球一个红球”的情况,不是互斥事件;C 选项中,“恰有一个黑球”和“恰有两个黑球”不能同时发生,是互斥事件,且不是对立事件;D 选项中,“至少有一个黑球”与“都是红球”不能同时发生,是互斥事件,且是对立事件。

2、已知随机变量 X 服从正态分布 N(3,1),且P(2≤X≤4) = 06826,则 P(X > 4) =()A 01588B 01587C 01586D 01585答案:B解析:因为随机变量 X 服从正态分布 N(3,1),所以图象关于 x = 3对称。

P(2≤X≤4) = 06826,所以 P(X > 4) = 05 05×06826 = 01587 。

3、甲、乙两人独立地解同一问题,甲解决这个问题的概率是 p1,乙解决这个问题的概率是 p2,那么恰好有 1 人解决这个问题的概率是()A p1p2B p1(1 p2) + p2(1 p1)C 1 p1p2D 1 (1 p1)(1 p2)答案:B解析:恰好有1 人解决这个问题,分两种情况:甲解决,乙没解决,概率为 p1(1 p2);乙解决,甲没解决,概率为 p2(1 p1)。

所以恰好有 1 人解决这个问题的概率是 p1(1 p2) + p2(1 p1) 。

二、填空题1、从 1,2,3,4,5 这 5 个数字中,随机抽取 3 个数字组成一个三位数,其中奇数的个数为_____。

概率单元测试题及答案大全

概率单元测试题及答案大全

概率单元测试题及答案大全一、选择题1. 一个袋子里有3个红球和2个蓝球,随机取出一个球,下列哪个事件的概率最大?A. 取出红球B. 取出蓝球C. 取出白球D. 取出黑球答案:A2. 投掷一枚公正的硬币,出现正面的概率是多少?A. 0.2B. 0.5C. 0.8D. 1答案:B3. 如果事件A和事件B是互斥的,且P(A)=0.3,P(B)=0.4,那么P(A∪B)是多少?A. 0.1B. 0.3C. 0.7D. 无法确定答案:C二、填空题4. 一个骰子有6个面,每个面出现的概率是________。

答案:1/65. 如果一个事件的概率为0,那么这个事件是________。

答案:不可能事件6. 一个事件的概率为1,表示这个事件是________。

答案:必然事件三、计算题7. 一个袋子里有5个白球和5个黑球,随机取出2个球,求取出的2个球都是白球的概率。

答案:首先计算取出第一个白球的概率为5/10,然后计算在取出第一个白球后,再取出第二个白球的概率为4/9。

所以,两个都是白球的概率为(5/10) * (4/9) = 2/9。

8. 一个班级有30个学生,其中15个男生和15个女生。

随机选择3个学生,求至少有1个女生的概率。

答案:首先计算没有女生的概率,即选择3个男生的概率为(15/30) * (14/29) * (13/28)。

然后用1减去这个概率,得到至少有1个女生的概率为1 - [(15/30) * (14/29) * (13/28)]。

四、简答题9. 什么是条件概率?请给出一个例子。

答案:条件概率是指在某个事件已经发生的条件下,另一个事件发生的概率。

例如,如果我们知道一个班级中有50%的学生是左撇子,那么在随机选择一个学生是左撇子的条件下,这个学生是数学专业的学生的概率。

10. 请解释什么是独立事件,并给出一个例子。

答案:独立事件是指一个事件的发生不影响另一个事件发生的概率。

例如,投掷一枚公正的硬币两次,第一次的结果不会影响第二次的结果。

概率论第一、二章测试题答案

概率论第一、二章测试题答案

概率论第一、二章测试题(答案)一、选择题1.选B 。

因为A 与B 相互独立,故A 与B 也相互独立。

根据独立的定义(P(AB)=P(A)P(B)),所以有P(A B )=P(A)P(B )。

2.选B 。

因为P (A B )= P (A )- P (AB )⇒ P (AB )= P (A )-P (A B )=0.6-0.2=0.43.选A 。

因为P (AB )=P (A )P (B ),根据两个随机事件的相互独立的定义可知A 正确。

4 选B .A.P (A )=1-P (B )(正确) B.P (AB )=P (A )P (B )(因为互为逆事件,故AB=φ,又P (A )>0,P (B )>0;则P (AB )=0≠ P (A )P (B ),所以是错误的)C.P 1)(=AB (正确)(因为AB=φ)D.P (A ∪B )=1(正确)5.选B 。

与正态分布的概率密度公式f (x)=222)(21σμσπ--x e 相比较,可得4,12=-=σμ6.选C 。

因为根据正态分布的线性组合(Y=aX+b )也为正态分布,且服从N (22,σμa b a +), 现X~N (1,4),Y=2X+1,可知1,2,4,12====b a σμ。

代入N (22,σμa b a +)即可。

7.选A 。

用对立事件求解。

设A={3次独立重复试验中至少成功一次},则A ={3次独立重复试验中没有一次成功},在一次试验中成功的概率为p ,则不成功的概率为1-p 。

故P (A )=1- P (A )=3)1(1p --。

8.选D 。

由分布函数的定义,F (3)=P { X 3≤ }= P { X=0 }+ P { X=1 }+ P { X=2 }+ P { X=3 }=19.选C 。

因为P{|X-μ|<σ}= P{1<-σμX }=1)1(2-Φ为常数。

10.选C 。

因为一维随机变量的均匀分布的概率实际上是长度,但是一定要计算落入随机变量X 所在区间的长度 。

大学概率论习题及答案

大学概率论习题及答案

《经济应用数学三(概率论)》综合测试题(二)一、单项选择题1.设A,B为两随机事件,且,则下列式子正确的是()。

A.B.C.D.2.从装有2只红球,2只白球的袋中任取两球,记:A=“取到2只白球”则=()。

A.取到2只红球B.取到1只红球C.没有取到白球D.至少取到1只红球3.事件A,B相互独立,且()。

A.0.46B.0.42C.0.56D.0.144.下列函数为正态分布密度的是()。

A.B.C.D.5.设随机变量服从, 其分布密度函数为, 则()。

A.0B.1C.D.6.设随机变量的密度函数为,则。

A.0B.C.1D.7.设随机变量X的可能取值为, 随机变量Y的可能取值为,如果, 则随机变量X 与Y ()。

A.一定不相关B.一定独立C.一定不独立D.不一定独立8.若二维随机变量的联合概率密度为,则系数()。

A.B.C.1D.9.对随机变量来说,如果,则可断定不服从()。

A.二项分布B.指数分布C.泊松分布D.正态分布10.设服从参数为的指数分布,则()。

A.B.C.D.二、填空题1.若事件A与B互斥,P(A)=0.6,P(A∪B)=0.8,则2.随机变量X服从区间 [1,4]上的均匀分布,则P { 0<X<3} = __________。

3.设随机变量的概率分布为,则__________。

4.设二维随机变量(X,Y)的联合分布律为:则a=________,b=________。

5.设服从正态分布,则D(-2X+1)= ________三、计算题1.设某产品的合格率为80% 。

检验员在检验时合格品被认为合格的概率为97%,次品被认为合格的概率为2%。

(1)求任取一产品被检验员检验合格的概率;(2)若一产品通过了检验,求该产品确为合格品的概率。

2.设打一次电话所用时间X(分钟)服从参数为的指数分布,如果某人刚好在你前面走进公用电话亭,求你等待时间在10分钟到20分钟之间的概率。

3.已知随机向量的联合概率分布为(1)求的边缘分布;(2)判断与是否独立;4.设系统由100个相互独立的部件组成, 运行期间每个部件损坏的概率为0.1, 至少有85个部件是完好时系统才能正常工作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、某型号火炮的命中率为0.8, 现有一架敌机即将入侵, 如果欲以 99.9 % 的概率击中它,则需配备此型号火炮多少 门?
2、已知 P(A) 1 , P(B | A) 1 , P( A | B) 1 ,
4
3
2
求: P( A B)
3、从装有10个白球和6个黑球的袋中取出一球,不知是什么颜色 且没有放回,然后再次从袋中随机取两个球,结果均为白球, 问首次取出的是白球的概率是多少?
2 0.1 0.2 b
2、 已知 ( X, Y ) 服从圆域 x2 + y2 r2 上的均匀分布,
分别求出 f (x, y), f X (x), fY X ( y x).
3、已知
fY X ( y
x)

2y
1

x
2
,
0,
x y 1
4x(1 x2 ),
,f X (x)
1、在区间(-1, 2)上随机取一个数 X,试写出 X 的概率密
度函数,并求出 P( X 0) 的值。
2、设随机变量X 的分布律为
X -2 P 1/3
-1
0
1
1/3 1/4 1/12
求:随机变量 X 1 的分布函数
3、设在一次概率考试中,学生的成绩服从N(75,225), 满分为100分,共有200名学生参加考试。求这次考试中 不及格(小于60分)的人数,以及70到80的人数。
其他

0,
求 P(X Y 1), P Y 0.5, P(Y 2 | X 1)
32
0 x1 其他
1、已知 X 的 概率密度为
Ax2 Bx, f (x)
0,
0 x 1, 其它
其中 A ,B 是常数,且 E (X ) = 0.5.
求(1) A ,B的值 (2)设 Y = X 2, 求 E (Y ),D (Y )
2、X~N (0 , 2), Y~U (0, 2), Z~b(10, 0.4),
其中X 与Y相互独立
求:E( X 3Y ), D( X 3Y ),
E[( X Y )2 ], E(Z 2 2Z 4)
3、设( X , Y )~N (1, 1, 4, 4, 0.5), Z X Y , 求: XZ
4、写出切比雪夫不等式的定理内容
常工作相互独立, 求在使用的最初 1500 小时只有一个 损坏的概率.
1、(X,Y)的联合分布律为
已知:P(Y 1 | X 1) 0.5
求:(1)a,b 的值
XY
1
-1 0.1
0 a
1 0.2
(2)X, Y 的边缘分布律
(3) P( X 1 | Y 1)
(4)判断X,Y是否相互独立
4.某学生寝室有6名学生,问: (1)6人的生日都在星期天的概率为多少? (2)6人的生日都不在星期天的概率为多少? (3)6人的生日不都在星期天的概率为多少?
5、如图所示电路中,开关 a、b、c、d 打开或关闭的 概率均为1/2,且相互独立 求(1)灯亮的概率。
(2)已见灯亮,开关a与b 同时关闭的概率。
4、某1升溶液中平均含有1000个颗粒。问:1毫升该溶液中 有3个颗粒的概率?
5、已知某型号电子管的使用寿命 X 的概率密度为
(1) 求常数 c
f
(x)

c

x
2
,
0,
x 1000 其他

(2) 计算 P( X 1700 1500 X 2000) (3) 已知一设备装有 3 个这样的电子管, 每个电子管能否正
相关文档
最新文档