概率论试题和答案
概率论期末试题及答案

概率论期末试题及答案一、选择题(每题2分,共20分)1. 随机事件A的概率为P(A),则其对立事件的概率为:A. P(A) + 1B. 1 - P(A)C. P(A) - 1D. P(A) / 22. 某校有男女生比例为3:2,随机抽取1名学生,该学生是男生的概率为:A. 1/5B. 3/5C. 2/5D. 5/73. 抛一枚均匀硬币两次,至少出现一次正面的概率是:A. 1/2B. 1/4C. 3/4D. 5/84. 设随机变量X服从二项分布B(n, p),若n=15,p=0.4,则P(X=7)是:A. C^7_15 * 0.4^7 * 0.6^8B. C^7_15 * 0.6^7 * 0.4^8C. C^7_15 * 0.4^15D. C^8_15 * 0.4^7 * 0.6^85. 若随机变量Y服从泊松分布,λ=2,则P(Y=1)是:A. e^(-2) * 2B. e^(-2) * 2^2C. e^(-2) * 2^1D. e^(-2) * 2^06. 设随机变量Z服从标准正态分布,则P(Z ≤ 0)是:A. 0.5B. 0.25C. 0.75D. 0.337. 若两个事件A和B相互独立,P(A)=0.6,P(B)=0.7,则P(A∩B)是:A. 0.42B. 0.35C. 0.6D. 0.78. 随机变量X服从均匀分布U(0, 4),则E(X)是:A. 2B. 4C. 0D. 19. 设随机变量X和Y的协方差Cov(X, Y)=-2,则X和Y:A. 正相关B. 负相关C. 独立D. 不相关10. 若随机变量X服从指数分布,λ=0.5,则P(X > 1)是:A. e^(-0.5)B. e^(-1)C. 1 - e^(-0.5)D. 2 - e^(-1)二、填空题(每题3分,共30分)11. 若随机变量X服从参数为θ的概率分布,且P(X=θ)=0.3,P(X=2θ)=0.4,则P(X=3θ)=________。
概率论与数理统计期末考试试题及参考答案

概率论与数理统计期末考试试题及参考答案一、选择题(每题2分,共20分)1. 设A、B为两个事件,且P(A) = 0.5,P(B) = 0.6,则P(A∪B)等于()A. 0.1B. 0.3C. 0.5D. 0.7参考答案:D2. 设随机变量X的分布函数为F(x),若F(x)是严格单调增加的,则X的数学期望()A. 存在且大于0B. 存在且小于0C. 存在且等于0D. 不存在参考答案:A3. 设X~N(0,1),以下哪个结论是正确的()A. P(X<0) = 0.5B. P(X>0) = 0.5C. P(X=0) = 0.5D. P(X≠0) = 0.5参考答案:A4. 在伯努利试验中,每次试验成功的概率为p,失败的概率为1-p,则连续n次试验成功的概率为()A. p^nB. (1-p)^nC. npD. n(1-p)参考答案:A5. 设随机变量X~B(n,p),则X的二阶矩E(X^2)等于()A. np(1-p)B. npC. np^2D. n^2p^2参考答案:A二、填空题(每题3分,共15分)1. 设随机变量X~N(μ,σ^2),则X的数学期望E(X) = _______。
参考答案:μ2. 若随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),则X+Y的概率密度函数f(x) = _______。
参考答案:f(x) = (1/√(2πσ^2))exp(-x^2/(2σ^2))3. 设随机变量X、Y相互独立,且X~B(n,p),Y~B(m,p),则X+Y~_______。
参考答案:B(n+m,p)4. 设随机变量X、Y的协方差Cov(X,Y) = 0,则X、Y的相关系数ρ = _______。
参考答案:ρ = 05. 设随机变量X~χ^2(n),则X的期望E(X) = _______,方差Var(X) = _______。
参考答案:E(X) = n,Var(X) = 2n三、计算题(每题10分,共40分)1. 设随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),求X+Y的概率密度函数f(x)。
概率论与数理统计期末考试试题(答案)

概率论与数理统计开/闭卷闭卷A/B 卷 A课程编号 2219002801—2219002811课程名称 概率论与数理统计学分 3基本题6小题,每小题5分,满分30分。
在每小题给出的四个选项中,只有一把所选项前的字母填在题后的括号内)(每道选择题选对满分,选错分)。
事件表达式A B 的意思是 ( ) ) 事件A 与事件B 同时发生 (B ) 事件A 发生但事件B 不发生) 事件B 发生但事件A 不发生 (D) 事件A 与事件B 至少有一件发生D ,根据A B 的定义可知。
假设事件A 与事件B 互为对立,则事件A B ( )) 是不可能事件 (B ) 是可能事件 C) 发生的概率为1 (D) 是必然事件 :选A,这是因为对立事件的积事件是不可能事件。
已知随机变量X ,Y 相互独立,且都服从标准正态分布,则X 2+Y 2服从 ( ) A) 自由度为1的χ2分布 (B ) 自由度为2的χ2分布 ) 自由度为1的F 分布 (D) 自由度为2的F 分布选B ,因为n 个相互独立的服从标准正态分布的随机变量的平方和服从自由度为n 的2分布.已知随机变量X ,Y 相互独立,X ~N (2,4),Y ~N (-2,1), 则( ) X +Y ~P (4) (B ) X +Y ~U (2,4) (C) X +Y ~N (0,5) (D ) +Y ~N (0,3)C ,因为相互独立的正态变量相加仍然服从正态分布,而E (X +Y )=E (X )+E (Y )D (X +Y )=D (X )+D (Y )=4+1=5, 所以有X +Y ~N (0,5)。
样本(X 1,X 2,X 3)取自总体X ,E (X )=μ, D (X )=σ2, 则有( ) A) X 1+X 2+X 3是μ的无偏估计(B )1233X X X ++是μ的无偏估计) 22X 是σ2的无偏估计(D ) 21233X X X ++⎛⎫ ⎪⎝⎭是σ2的无偏估计:选B ,因为样本均值是总体期望的无偏估计,其它三项都不成立。
2024年概率论与数理统计试卷参考答案与评分标准

2023─2024学年第二学期《概率论与数理统计》课程考试试卷(A 卷)参考答案与评分标准一、填空题(每空3分,共30分)1.在显著性检验中,若要使犯两类错误的概率同时变小,则只有增加样本容量.2.设随机变量X 具有数学期望()E X μ=与方差2()D X σ=,则有切比雪夫不等式{}2P X μσ-≥≤14.3.设X 为连续型随机变量,a 为实常数,则概率{}P X a ==0.4.设X 的分布律为,{}1,2,k k P X x p k === ,2Y X =,若1nkk k xp ∞=∑绝对收敛(n为正整数),则()E Y =21kk k xp ∞=∑.5.某学生的书桌上放着7本书,其中有3本概率书,现随机取2本书,则取到的全是概率书的概率为17.6.设X 服从参数为λ的poisson 分布,则(2)E X =2λ.7.设(2,3)Y N ,则数学期望2()E Y =7.8.(,)X Y 为二维随机变量,概率密度为(,)f x y ,X 与Y 的协方差(,)Cov X Y 的积分表达式为(())(())(,)d d x E x y E y f x y x y +∞+∞-∞-∞--⎰⎰.9.设X 为总体N (3,4)中抽取的样本14,,X X 的均值,则{}15P X ≤≤=2(2)1Φ-.(计算结果用标准正态分布的分布函数()x Φ表示)10.随机变量2(0,)X N σ ,n X X X ,,,21 为总体X 的一个样本,221()(1)ni i Y k X χ==∑ ,则常数k =21n σ.A 卷第1页共4页二、概率论试题(45分)1、(8分)题略解:用A B C 、、,分别表示三人译出该份密码,所求概率为P A B C ()(2分)由概率公式P A B C P ABC P A P B P C ()=1-()=1-()()()(4分)1-1-1-p q r =1-()()()(2分)2、(8分)设随机变量()1,()2,()3,()4,0.5XY E X D X E Y D Y ρ=====,求数学期望()E X Y +与方差(23)D X Y -.解:(1)()E X Y +=E X E Y ()+()=1+3=4(3分)(2)(23)4()9()12ov(,)D X Y D X D Y C X Y -=+-(3分)8361244XY ρ=+--(2分)3、(8分)某种电器元件的寿命服从均值为100h 的指数分布,现随机地取16只,它们的寿命i T 相互独立,记161ii T T ==∑,用中心极限定理计算{1920}P T ≥的近似值(计算结果用标准正态分布的分布函数()x Φ表示).解:i i ET D T E T D T 2()=100,()=100,()=1600,()=160000(3分){1920}0.8}1P T P ≥=≈-Φ(0.8)(5分)(4分)4、(10分)设随机变量X 具有概率密度11()0x x f x ⎧-≤≤=⎨⎩,,其它,21Y X =+.(1)求Y 的概率密度()Y f y ;(2)求概率312P Y ⎧⎫-<<⎨⎩⎭.解:(1)12Y Y y F y y F y ≤>时()=0,时()=1(1分)A 卷第2页共4页212,{}{1}()d Y y F y P Y y P X y f x x<≤≤=+≤=()=(2分)02d 1x x y ==-(2分)概率密度函数2()=Y Y y f y F y ≤⎧'⎨⎩1,1<()=0,其它(2分)(2)3102Y YP Y F F ⎧⎫-<<=-=⎨⎬⎩⎭311()-(-1)=222.(3分)5、(11分)设随机变量(,)X Y 具有概率分布如下,且{}1103P X Y X +===.XY-101013p114q112(1)求常数,p q ;(2)求X 与Y 的协方差(,)Cov X Y ,并问X 与Y 是否独立?解:(1)1111134123p q p q ++++=+=,即(2分)由{}{}{}{}{}101011010033P X Y X P Y X pP X Y X P X P X p +====+========+,,(2分)可得16p q ==(1分)X 01Y -11P1212P7121614(2)EX 1()=2,E Y 1()=-3,E XY 1()=-6(3分),-Cov X Y E XY E X E Y ()=()()()=0(2分)由..ij i j P P P ≠可知X 与Y 不独立(1分)三、数理统计试题(25分)1、(8分)题略.A 卷第3页共4页证明:222(1)(0,1),(1)X n S N n χσ-- ,22(1)X n S σ-相互独立(4分)2(1)Xt n - ,即(1)X t n - (4分)2、(10分)题略解:似然函数2221()(,)2n i i x L μμσσ=⎧⎫-=-⎨⎬⎩⎭∑2221()ln ln(2)ln() 222ni i x n n L μπσσ=-=---∑(4分)由2222411()ln ln 0,022n ni i i i x x L L nμμμσσσσ==--∂∂===-+=∂∂∑∑可得221111ˆˆ,()n n i i i i x x n n μσμ====-∑∑为2,μσ的最大似然估计(2分)由221ˆˆ(),()n nE E μμσσ-==可知11ˆni i x n μ==∑为μ的无偏估计量,2211ˆ()ni i x n σμ==-∑为2σ的有偏估计量(4分)3、(7分)题略解:01: 4.55: 4.55H H μμ=≠(2分)检验统计量x z =,拒绝域0.025 1.96z z ≥=(2分)而0.185 1.960.036z ==>(1分)因而拒绝域0H ,即不认为总体的均值仍为4.55(2分)A 卷第4页共4页。
概率复习题-答案

<概率论>试题一、填空题1.设A、B、C是三个随机事件。
试用A、B、C分别表示事件1)A、B、C 至少有一个发生2)A、B、C 中恰有一个发生3)A、B、C不多于一个发生2.设A、B为随机事件,,,。
则=3.若事件A和事件B相互独立, ,则4. 将C,C,E,E,I,N,S等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE的概率为5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为6.设离散型随机变量分布律为则A=______________7. 已知随机变量X的密度为,且,则________ ________8. 设~,且,则_________9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为,则该射手的命中率为_________10.若随机变量在(1,6)上服从均匀分布,则方程x2+x+1=0有实根的概率是11.设,,则12.用()的联合分布函数F(x,y)表示13.用()的联合分布函数F(x,y)表示14.设平面区域D由y = x , y = 0 和x = 2 所围成,二维随机变量(x,y)在区域D上服从均匀分布,则(x,y)关于X的边缘概率密度在x = 1 处的值为。
15.已知,则=16.设,且与相互独立,则17.设的概率密度为,则=18.设随机变量X1,X2,X3相互独立,其中X1在[0,6]上服从均匀分布,X2服从正态分布N(0,22),X3服从参数为=3的泊松分布,记Y=X1-2X2+3X3,则D(Y)=19.设,则20.设是独立同分布的随机变量序列,且均值为,方差为,那么当充分大时,近似有~或~。
特别是,当同为正态分布时,对于任意的,都精确有~或~.21.设是独立同分布的随机变量序列,且,那么依概率收敛于.22.设是来自正态总体的样本,令则当时~。
23.设容量n = 10 的样本的观察值为(8,7,6,9,8,7,5,9,6),则样本均值= ,样本方差=24.设X1,X2,…X n为来自正态总体的一个简单随机样本,则样本均值服从二、选择题1. 设A,B为两随机事件,且,则下列式子正确的是(A)P (A+B) = P (A);(B)(C)(D)2. 以A表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件为(A)“甲种产品滞销,乙种产品畅销”;(B)“甲、乙两种产品均畅销”(C)“甲种产品滞销”;(D)“甲种产品滞销或乙种产品畅销”。
概率论基础试题及答案

概率论基础试题及答案一、单项选择题(每题2分,共10分)1. 随机变量X服从标准正态分布,P(X≤0)的值为:A. 0.5B. 0.3C. 0.7D. 0.9答案:A2. 已知随机变量X服从二项分布B(n, p),若n=10,p=0.3,则P(X=3)的值为:A. 0.0573B. 0.05734C. 0.05735D. 0.0574答案:A3. 若随机变量X与Y相互独立,则P(X>Y)的值为:A. P(X)P(Y)B. P(X) - P(X≤Y)C. 1 - P(X≤Y)D. 1 - P(X)P(Y)答案:C4. 随机变量X服从泊松分布,其期望值为λ,若λ=5,则P(X=3)的值为:A. 0.175467B. 0.175468C. 0.175469D. 0.17547答案:A5. 随机变量X服从均匀分布U(a, b),其概率密度函数为:A. f(x) = 1/(b-a), a≤x≤bB. f(x) = 1/(a-b), a≤x≤bC. f(x) = 1/(a+b), a≤x≤bD. f(x) = 1/(a-b), b≤x≤a答案:A二、填空题(每题3分,共15分)1. 若随机变量X服从正态分布N(μ, σ^2),则其概率密度函数为f(x) = __________,其中μ为均值,σ^2为方差。
答案:1/(σ√(2π)) * e^(-(x-μ)^2/(2σ^2))2. 已知随机变量X服从指数分布,其概率密度函数为f(x) = λe^(-λx),其中x≥0,则其期望值为E(X) = __________。
答案:1/λ3. 若随机变量X与Y相互独立,且P(X) = 0.6,P(Y) = 0.4,则P(X∩Y) = __________。
答案:0.244. 随机变量X服从二项分布B(n, p),若n=5,p=0.2,则P(X≥3) = __________。
答案:0.031255. 随机变量X服从几何分布,其概率质量函数为P(X=k) = (1-p)^(k-1)p,其中k=1,2,3,...,则其方差Var(X) = __________。
概率论试题及答案

概率论试题及答案一、选择题1. 一个袋子里有5个红球和3个蓝球,随机抽取一个球,抽到红球的概率是:- A. 1/2- B. 3/8- C. 5/8- D. 1/82. 如果事件A和事件B是互斥的,且P(A) = 0.4,P(B) = 0.3,那么P(A∪B)等于:- A. 0.7- B. 0.6- C. 0.4- D. 0.33. 抛掷一枚硬币两次,出现正面向上的概率是:- A. 1/4- B. 1/2- C. 3/4- D. 1二、填空题1. 概率论中,事件的全概率公式是 P(A) = ________,其中∑表示对所有互斥事件B_i的和。
2. 如果事件A和事件B是独立事件,那么P(A∩B) = ________。
三、计算题1. 一个工厂有3台机器,每台机器在一小时内发生故障的概率是0.01。
求在一小时内至少有一台机器发生故障的概率。
2. 一个班级有50名学生,其中30名男生和20名女生。
如果随机选择一名学生,这名学生是男生的概率是0.6。
求这个班级中男生和女生的人数。
四、解答题1. 解释什么是条件概率,并给出计算条件概率的公式。
2. 一个袋子里有10个球,其中7个是红球,3个是蓝球。
如果从袋子中随机取出一个球,观察其颜色后放回,再取出一个球。
求第二次取出的球是蓝球的概率。
答案一、选择题1. C. 5/82. B. 0.63. B. 1/2二、填空题1. P(A) = ∑P(A∩B_i)2. P(A)P(B)三、计算题1. 首先计算没有机器发生故障的概率,即每台机器都不发生故障的概率,为(1-0.01)^3。
至少有一台机器发生故障的概率为1减去没有机器发生故障的概率,即1 - (1-0.01)^3。
2. 设男生人数为x,女生人数为y。
根据题意,x/(x+y) = 0.6,且x+y=50。
解得x=30,y=20。
四、解答题1. 条件概率是指在已知某个事件已经发生的情况下,另一个事件发生的概率。
计算条件概率的公式是P(A|B) = P(A∩B)/P(B),其中P(A|B)表示在事件B发生的条件下事件A发生的概率。
概率测试题及答案

概率测试题及答案一、选择题1. 一个骰子掷出6点的概率是:A. 1/3B. 1/6C. 1/2D. 1答案:B2. 抛一枚硬币,正面朝上和反面朝上的概率相等,这个概率是:A. 1/2B. 1/3C. 1/4D. 2/3答案:A3. 如果一个事件的发生不影响另一个事件的发生,这两个事件被称为:A. 互斥事件B. 独立事件C. 必然事件D. 不可能事件答案:B二、填空题1. 概率的基本性质是:概率的值介于________和1之间。
答案:02. 如果事件A和事件B是互斥的,那么P(A∪B) = P(A) + P(B) -P(A∩B),其中P(A∩B) = ________。
答案:0三、简答题1. 什么是条件概率?请给出条件概率的公式。
答案:条件概率是指在已知某个事件发生的条件下,另一个事件发生的概率。
条件概率的公式为P(A|B) = P(A∩B) / P(B),其中P(B)≠ 0。
四、计算题1. 一个袋子里有5个红球和3个蓝球,随机抽取一个球,求抽到红球的概率。
答案:抽到红球的概率为P(红球) = 5/(5+3) = 5/8。
2. 有3个独立事件A、B、C,它们各自发生的概率分别为P(A) = 0.3,P(B) = 0.4,P(C) = 0.5。
求事件A和事件B同时发生的概率。
答案:事件A和事件B同时发生的概率为P(A∩B) = P(A) × P(B) = 0.3 × 0.4 = 0.12。
五、论述题1. 论述什么是大数定律,并给出一个实际生活中的例子。
答案:大数定律是概率论中的一个概念,它指出随着试验次数的增加,事件发生的相对频率趋近于其概率。
例如,在抛硬币的实验中,随着抛硬币次数的增加,正面朝上的频率会趋近于1/2,即硬币正面朝上的概率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
试卷一一、填空(每小题2分,共10分)1.设是三个随机事件,则至少发生两个可表示为______________________。
2. 掷一颗骰子,表示“出现奇数点”,表示“点数不大于3”,则表示______________________。
3.已知互斥的两个事件满足,则___________。
4.设为两个随机事件,,,则___________。
5.设是三个随机事件,,,、,则至少发生一个的概率为___________。
二、单项选择(每小题的四个选项中只有一个是正确答案,请将正确答案的番号填在括号内。
每小题2分,共20分)1. 从装有2只红球,2只白球的袋中任取两球,记“取到2只白球”,则()。
(A) 取到2只红球(B) 取到1只白球(C) 没有取到白球(D) 至少取到1只红球2.对掷一枚硬币的试验, “出现正面”称为()。
(A) 随机事件(B) 必然事件(C) 不可能事件(D) 样本空间3. 设A、B为随机事件,则()。
(A) A (B) B(C) AB (D) φ4. 设和是任意两个概率不为零的互斥事件,则下列结论中肯定正确的是()。
(A) 与互斥(B) 与不互斥(C) (D)5. 设为两随机事件,且,则下列式子正确的是()。
(A) (B)(C) (D)6. 设相互独立,则()。
(A) (B)(C) (D)7.设是三个随机事件,且有,则()。
(A) 0.1 (B) 0.6(C) 0.8 (D) 0.78. 进行一系列独立的试验,每次试验成功的概率为p,则在成功2次之前已经失败3次的概率为()。
(A) p2(1–p)3(B) 4 p (1–p)3(C) 5 p2(1–p)3 (D) 4 p2(1–p)39. 设A、B为两随机事件,且,则下列式子正确的是()。
(A) (B)(C) (D)10. 设事件A与B同时发生时,事件C一定发生,则()。
(A) P(A B) = P (C) (B) P (A) + P (B) –P (C) ≤ 1(C) P (A) + P (B) –P (C) ≥ 1 (D) P (A) + P (B) ≤P (C)三、计算与应用题(每小题8分,共64分)1. 袋中装有5个白球,3个黑球。
从中一次任取两个。
求取到的两个球颜色不同的概率。
2. 10把钥匙有3把能把门锁打开。
今任取两把。
求能打开门的概率。
3. 一间宿舍住有6位同学,求他们中有4个人的生日在同一个月份概率。
4. 50个产品中有46个合格品与4个次品,从中一次抽取3个,求至少取到一个次品的概率。
5. 加工某种零件,需经过三道工序,假定第一、二、三道工序的次品率分别为0.2,0.1,0.1,并且任何一道工序是否出次品与其它各道工序无关。
求该种零件的次品率。
6. 已知某品的合格率为0.95,而合格品中的一级品率为0.65。
求该产品的一级品率。
7. 一箱产品共100件,其中次品个数从0到2是等可能的。
开箱检验时,从中随机抽取10件,如果发现有次品,则认为该箱产品不合要求而拒收。
若已知该箱产品已通过验收,求其中确实没有次品的概率。
8. 某厂的产品,按甲工艺加工,按乙工艺加工,两种工艺加工出来的产品的合格率分别为0.8与0.9。
现从该厂的产品中有放回地取5件来检验,求其中最多有一件次品的概率。
四、证明题(共6分)设,。
证明试卷一参考答案一、填空1. 或2. 出现的点数恰为53.与互斥则4. 0.6故5.至少发生一个,即为又由得故二、单项选择1.2. A3. A利用集合的运算性质可得.4.与互斥故5.故6.相互独立7.且则8.9. B10. B故P (A) + P (B) –P (C) ≤ 1三、计算与应用题1. 解:设表示“取到的两球颜色不同”,则而样本点总数故2. 解:设表示“能把门锁打开”,则,而故3. 解:设表示“有4个人的生日在同一月份”,则而样本点总数为故4. 解:设表示“至少取到一个次品”,因其较复杂,考虑逆事件=“没有取到次品”则包含的样本点数为。
而样本点总数为故5. 解:设“任取一个零件为次品”由题意要求,但较复杂,考虑逆事件“任取一个零件为正品”,表示通过三道工序都合格,则于是6. 解:设表示“产品是一极品”,表示“产品是合格品”显然,则于是即该产品的一级品率为7. 解:设“箱中有件次品”,由题设,有,又设“该箱产品通过验收”,由全概率公式,有于是8. 解:依题意,该厂产品的合格率为,于是,次品率为设表示“有放回取5件,最多取到一件次品”则四、证明题证明,,由概率的性质知则又且故试卷二一、填空(每小题2分,共10分)1. 若随机变量的概率分布为,,则__________。
2. 设随机变量,且,则__________。
3. 设随机变量,则__________。
4. 设随机变量,则__________。
5. 若随机变量的概率分布为则__________。
二、单项选择(每题的四个选项中只有一个是正确答案,请将正确答案的番号填在括号内。
每小题2分,共20分)1. 设与分别是两个随机变量的分布函数,为使是某一随机变量的分布函数,在下列给定的各组数值中应取()。
(A) (B)(C) (D)2. 设随机变量的概率密度为,则()。
(A) (B)(C) (D)3.下列函数为随机变量分布密度的是( )。
(A) (B)(C) (D)4.下列函数为随机变量分布密度的是( )。
(A) (B)(C) (D)5. 设随机变量的概率密度为,,则的概率密度为()。
(A) (B)(C) (D)6. 设服从二项分布,则()。
(A) (B)(C) (D)7. 设,则()。
(A) (B)(C) (D)8.设随机变量的分布密度为, 则()。
(A) 2 (B) 1(C) 1/2 (D) 49.对随机变量来说,如果,则可断定不服从()。
(A) 二项分布(B) 指数分布(C) 正态分布(D) 泊松分布10.设为服从正态分布的随机变量,则 ( )。
(A) 9 (B) 6(C) 4 (D) -3三、计算与应用题(每小题8分,共64分)1. 盒内有12个乒乓球,其中9个是新球,3个是旧球。
采取不放回抽取,每次取一个,直到取到新球为止。
求抽取次数的概率分布。
2. 车间中有6名工人在各自独立的工作,已知每个人在1小时内有12分钟需用小吊车。
求(1)在同一时刻需用小吊车人数的最可能值是多少?(2)若车间中仅有2台小吊车,则因小吊车不够而耽误工作的概率是多少?3. 某种电子元件的寿命是随机变量,其概率密度为求(1)常数;(2)若将3个这种元件串联在一条线路上,试计算该线路使用150小时后仍能正常工作的概率。
4. 某种电池的寿命(单位:小时)是一个随机变量,且。
求(1)这样的电池寿命在250小时以上的概率;(2),使电池寿命在内的概率不小于0.9。
5. 设随机变量。
求概率密度。
6. 若随机变量服从泊松分布,即,且知。
求。
7. 设随机变量的概率密度为。
求和。
8. 一汽车沿一街道行使,需要通过三个均没有红绿灯信号灯的路口,每个信号灯为红或绿与其他信号灯为红或绿相互独立,求红或绿两种信号灯显示的时间相等。
以表示该汽车未遇红灯而连续通过的路口数。
求(1)的概率分布;(2)。
四、证明题(共6分)设随机变量服从参数为2的指数分布。
证明:在区间上,服从均匀分布。
试卷二参考答案一、填空1. 6由概率分布的性质有即,得。
2.,则3. 0.54.5. 0.25由题设,可设即0 10.5 0.5则二、单项选择1. ()由分布函数的性质,知则,经验证只有满足,选2. ()由概率密度的性质,有3. ()由概率密度的性质,有4. ()由密度函数的性质,有5. ()是单减函数,其反函数为,求导数得由公式,的密度为6. ()由已知服从二项分布,则又由方差的性质知,7. ()于是8. (A) 由正态分布密度的定义,有9. (D)∴如果时,只能选择泊松分布.10. (D)∵X为服从正态分布N (-1, 2), EX = -1∴E(2X - 1) = -3三、计算与应用题1. 解:设为抽取的次数只有个旧球,所以的可能取值为:由古典概型,有则1 2 3 42. 解:设表示同一时刻需用小吊车的人数,则是一随机变量,由题意有,,于是(1)的最可能值为,即概率达到最大的(2)3. 解:(1)由可得(2)串联线路正常工作的充要条件是每个元件都能正常工作,而这里三个元件的工作是相互独立的,因此,若用表示“线路正常工作”,则而故4. 解:(1)(查正态分布表)(2)由题意即查表得。
5. 解:对应的函数单调增加,其反函数为,求导数得,又由题设知故由公式知:6. 解:,则而由题设知即可得故查泊松分布表得,7. 解:由数学期望的定义知,而故8. 解:(1)的可能取值为且由题意,可得即0 1 2 3四、证明题证明:由已知则又由得连续,单调,存在反函数且当时,则故即试卷三一、填空(请将正确答案直接填在横线上。
每小题 2分,共10分)1. 设二维随机变量的联合分布律为,则__________,__________.2. 设随机变量和相互独立,其概率分布分别为,则__________.3. 若随机变量与相互独立,且,,则服从__________分布.4. 已知与相互独立同分布,且则__________.5. 设随机变量的数学期望为、方差,则由切比雪夫不等式有__________.二、单项选择(在每题的四个选项中只有一个是正确答案,请将正确答案的番号填在括号内。
每小题2分,共20分)1. 若二维随机变量的联合概率密度为,则系数().(A) (B)(C) (D)2. 设两个相互独立的随机变量和分别服从正态分布和,则下列结论正确的是().(A) (B)(C) (D)3. 设随机向量(X , Y)的联合分布密度为, 则().(A) (X , Y) 服从指数分布(B) X与Y不独立(C) X与Y相互独立(D) cov(X , Y) ≠04. 设随机变量相互独立且都服从区间[0,1]上的均匀分布,则下列随机变量中服从均匀分布的有().(A) (B)(C) (D)5. 设随机变量与随机变量相互独立且同分布, 且, 则下列各式中成立的是().(A) (B) (C) (D)6.设随机变量的期望与方差都存在, 则下列各式中成立的是().(A) (B)(C) (D)7. 若随机变量是的线性函数,且随机变量存在数学期望与方差,则与的相关系数().(A) (B) (C) (D)8. 设是二维随机变量,则随机变量与不相关的充要条件是().(A)(B)(C)(D)9. 设是个相互独立同分布的随机变量,,则对于,有().(A) (B)(C) (D)10. 设,为独立同分布随机变量序列,且X i( i = 1,2,…)服从参数为λ的指数分布,正态分布N ( 0, 1 ) 的密度函数为, 则().三、计算与应用题(每小题8分,共64分)1. 将2个球随机地放入3个盒子,设表示第一个盒子内放入的球数,表示有球的盒子个数.求二维随机变量的联合概率分布.2. 设二维随机变量的联合概率密度为(1)确定的值;(2)求.3. 设的联合密度为(1)求边缘密度和;(2)判断与是否相互独立.4. 设的联合密度为求的概率密度.5. 设,,且与相互独立.求(1)的联合概率密度;(2);(3).6. 设的联合概率密度为求及.7. 对敌人阵地进行100次炮击。