概率论复习题及答案
概率论期末试题及答案

概率论期末试题及答案一、选择题(每题2分,共20分)1. 随机事件A的概率为P(A),则其对立事件的概率为:A. P(A) + 1B. 1 - P(A)C. P(A) - 1D. P(A) / 22. 某校有男女生比例为3:2,随机抽取1名学生,该学生是男生的概率为:A. 1/5B. 3/5C. 2/5D. 5/73. 抛一枚均匀硬币两次,至少出现一次正面的概率是:A. 1/2B. 1/4C. 3/4D. 5/84. 设随机变量X服从二项分布B(n, p),若n=15,p=0.4,则P(X=7)是:A. C^7_15 * 0.4^7 * 0.6^8B. C^7_15 * 0.6^7 * 0.4^8C. C^7_15 * 0.4^15D. C^8_15 * 0.4^7 * 0.6^85. 若随机变量Y服从泊松分布,λ=2,则P(Y=1)是:A. e^(-2) * 2B. e^(-2) * 2^2C. e^(-2) * 2^1D. e^(-2) * 2^06. 设随机变量Z服从标准正态分布,则P(Z ≤ 0)是:A. 0.5B. 0.25C. 0.75D. 0.337. 若两个事件A和B相互独立,P(A)=0.6,P(B)=0.7,则P(A∩B)是:A. 0.42B. 0.35C. 0.6D. 0.78. 随机变量X服从均匀分布U(0, 4),则E(X)是:A. 2B. 4C. 0D. 19. 设随机变量X和Y的协方差Cov(X, Y)=-2,则X和Y:A. 正相关B. 负相关C. 独立D. 不相关10. 若随机变量X服从指数分布,λ=0.5,则P(X > 1)是:A. e^(-0.5)B. e^(-1)C. 1 - e^(-0.5)D. 2 - e^(-1)二、填空题(每题3分,共30分)11. 若随机变量X服从参数为θ的概率分布,且P(X=θ)=0.3,P(X=2θ)=0.4,则P(X=3θ)=________。
概率论与数理统计复习题带答案

6.设随机变量 的概率分布率如下表
1
2
3
求X的分布函数和 。
解:
7.设随机变量 的概率密度函数为 ,求 (1)常数c; (2) 。
解:(1)
(2)
第三章
一、填空题
1.设连续型随机变量 的概率密度分别为 ,且 与 相互独立,则 的概率密度 ( )。
2.已知 ,且 与 相互独立,则 ( )
二、计算题
A. B. 41 C. 21 D. 20
8. 是互相独立的随机变量, ,则 =( D )。
A. 9 B. 15 C. 21 D. 27
三、计算题
1.设二维随机变量的联合概率分布为
XY
0
1
1
0
2
0
求:(1)X与Y的边缘分布,(2)E(X),D(Y)。
X
-1 1 2
Y
-2 0 1
2.已知 ,求Z的期望与方差,求X与Z的相关系数。
9.甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为,乙击中敌机的概率为.求敌机被击中的概率为( );
10.若事件A与事件B互不相容,且P(A)=, P(B) = ,则P( )=( )
11.三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为,,,则这三台机器中最多有一台发生故障的概率为( )。
3.设(X,Y)服从分布
X Y
0
1
2
0
3/28
9/28
3/28
1
3/14
3/14
0
2
1/28
0
0
,试求cov(X,Y)及 。
4.设随机变量(X,Y)具有密度函数 ,其中区域G由曲线 围成,求cov(X,Y)及 。
概率论复习题答案

一、单项选择题1 已知随机变量X 在(1,5)之间服从均匀分布,则其在此区间的概率密度为( C ) A. B. C. D 42 已知二维随机变量(X ,Y )在(X>0,Y>0,X+Y<1)之间服从均匀分布,则其在此区间的概率密度为( B )A. 0B. 2C. D 13 已知二维随机变量(X ,Y )在(X>0,Y>0,X+Y<2)之间服从均匀分布,则其不在此区间的概率密度为( A )A. 0B. 2C. 1 D 44 已知P(A)= ,则)(A A P ⋃的值为( D )(A) (B) (C) 0 (D) 1 5 已知P(A)= ,则)(A A P 的值为( C ) (A) 1 (B) (C) 0 (D) Φ6.,,A B C 是任意事件,在下列各式中,成立的是( C ) A.A B =A ⋃B B. A ⋃B =ABC. A ⋃BC=(A ⋃B)(A ⋃C)D. (A ⋃B)(A ⋃B )=AB7 设随机变量X~N(3,16), 则P{X+1>5}为( B ) A. Φ B. 1 - Φ C. Φ(4 ) D. Φ(-4)8 设随机变量X~N(3,16), Y~N(2,1) ,且X 、Y 相互独立,则P{X+3Y<10}为( A ) A. Φ B. 1 - Φ C. Φ(0 ) D. Φ(1)9. 已知随机变量X 在区间(0,2)的密度函数为, 则其在此区间的分布函数为( C ) A.2x B. C. 2x D. x10 已知随机变量X 在区间(1,3)的密度函数为, 则x>3区间的分布函数为( B ) A.2x B. 1 C. 2x D. 011. 设离散型随机变量X 的分布律为 P{X=n}=!n e nλλ, n=0,1,2…… 则称随机变量X 服从( B )A. 参数为λ的指数分布B. 参数为λ的泊松分布C. 参数为λ的二项式分布D. 其它分布12. 设f (x )为连续型随机变量X 的密度函数,则f (x )值的范围必须( B )。
概率论考试题以及解析汇总

.试题一一、选择题(每题有且仅有一个正确答案,每题2分,共20分) 1、已知P(A)=0.7, P(B)=0.8,则下列判断正确的是( )。
A. A,B 互不相容B. A,B 相互独立C.A ⊂BD. A,B 相容 2、将一颗塞子抛掷两次,用X 表示两次点数之和,则X =3的概率为( )A. 1/2B. 1/12C. 1/18D. 1/93、某人进行射击,设射击的命中率为0.2,独立射击100次,则至少击中9次的概率为( )A.919910098.02.0CB.i i i i C-=∑100100910098.02.0C.ii i i C-=∑1001001010098.02.0 D.i i i i C-=∑-100910098.02.014、设)3,2,1(39)(=-=i i X E i ,则)()31253(321=++X X X EA. 0B. 25.5C. 26.5D. 95、设样本521,,,X X X 来自N (0,1),常数c 为以下何值时,统计量25242321XX X X X c +++⋅服从t 分布。
( )A. 0B. 1C. 26D. -16、设X ~)3,14(N ,则其概率密度为( )A.6)14(261--x e πB.32)14(261--x eπC.6)14(2321--x eπD.23)14(261--x eπ7、321,,X X X 为总体),(2σμN 的样本, 下列哪一项是μ的无偏估计()A.3212110351X X X ++ B. 321416131X X X ++ C. 3211252131X X X ++ D. 321613131X X X ++ 8 、设离散型随机变量X 的分布列为X123.PC 1/4 1/8则常数C 为( )(A )0 (B )3/8 (C )5/8 (D )-3/89 、设随机变量X ~N(4,25), X1、X2、X3…Xn 是来自总体X 的一个样本,则样本均值X近似的服从( )(A ) N (4,25) (B )N (4,25/n ) (C ) N (0,1) (D )N (0,25/n ) 10、对正态总体的数学期望进行假设检验,如果在显著水平a=0.05下,拒绝假设00μμ=:H ,则在显著水平a=0.01下,( )A. 必接受0HB. 可能接受,也可能拒绝0HC. 必拒绝0HD. 不接受,也不拒绝0H 二、填空题(每空1.5分,共15分)1、A, B, C 为任意三个事件,则A ,B ,C 至少有一个事件发生表示为:_________;2、甲乙两人各自去破译密码,设它们各自能破译的概率为0.8,0.6,则密码能被破译的概率为_________;3、已知分布函数F(x)= A + Barctgx )(+∞<<-∞x ,则A =___,B =____;4、随机变量X 的分布律为k C k XP )31()(==,k =1,2,3, 则C=_______;5、设X ~b (n,p )。
概率复习题-答案

<概率论>试题一、填空题1.设A、B、C是三个随机事件。
试用A、B、C分别表示事件1)A、B、C 至少有一个发生2)A、B、C 中恰有一个发生3)A、B、C不多于一个发生2.设A、B为随机事件,,,。
则=3.若事件A和事件B相互独立, ,则4. 将C,C,E,E,I,N,S等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE的概率为5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为6.设离散型随机变量分布律为则A=______________7. 已知随机变量X的密度为,且,则________ ________8. 设~,且,则_________9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为,则该射手的命中率为_________10.若随机变量在(1,6)上服从均匀分布,则方程x2+x+1=0有实根的概率是11.设,,则12.用()的联合分布函数F(x,y)表示13.用()的联合分布函数F(x,y)表示14.设平面区域D由y = x , y = 0 和x = 2 所围成,二维随机变量(x,y)在区域D上服从均匀分布,则(x,y)关于X的边缘概率密度在x = 1 处的值为。
15.已知,则=16.设,且与相互独立,则17.设的概率密度为,则=18.设随机变量X1,X2,X3相互独立,其中X1在[0,6]上服从均匀分布,X2服从正态分布N(0,22),X3服从参数为=3的泊松分布,记Y=X1-2X2+3X3,则D(Y)=19.设,则20.设是独立同分布的随机变量序列,且均值为,方差为,那么当充分大时,近似有~或~。
特别是,当同为正态分布时,对于任意的,都精确有~或~.21.设是独立同分布的随机变量序列,且,那么依概率收敛于.22.设是来自正态总体的样本,令则当时~。
23.设容量n = 10 的样本的观察值为(8,7,6,9,8,7,5,9,6),则样本均值= ,样本方差=24.设X1,X2,…X n为来自正态总体的一个简单随机样本,则样本均值服从二、选择题1. 设A,B为两随机事件,且,则下列式子正确的是(A)P (A+B) = P (A);(B)(C)(D)2. 以A表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件为(A)“甲种产品滞销,乙种产品畅销”;(B)“甲、乙两种产品均畅销”(C)“甲种产品滞销”;(D)“甲种产品滞销或乙种产品畅销”。
概率论试题及答案

概率论试题及答案一、选择题1. 一个袋子里有5个红球和3个蓝球,随机抽取一个球,抽到红球的概率是:- A. 1/2- B. 3/8- C. 5/8- D. 1/82. 如果事件A和事件B是互斥的,且P(A) = 0.4,P(B) = 0.3,那么P(A∪B)等于:- A. 0.7- B. 0.6- C. 0.4- D. 0.33. 抛掷一枚硬币两次,出现正面向上的概率是:- A. 1/4- B. 1/2- C. 3/4- D. 1二、填空题1. 概率论中,事件的全概率公式是 P(A) = ________,其中∑表示对所有互斥事件B_i的和。
2. 如果事件A和事件B是独立事件,那么P(A∩B) = ________。
三、计算题1. 一个工厂有3台机器,每台机器在一小时内发生故障的概率是0.01。
求在一小时内至少有一台机器发生故障的概率。
2. 一个班级有50名学生,其中30名男生和20名女生。
如果随机选择一名学生,这名学生是男生的概率是0.6。
求这个班级中男生和女生的人数。
四、解答题1. 解释什么是条件概率,并给出计算条件概率的公式。
2. 一个袋子里有10个球,其中7个是红球,3个是蓝球。
如果从袋子中随机取出一个球,观察其颜色后放回,再取出一个球。
求第二次取出的球是蓝球的概率。
答案一、选择题1. C. 5/82. B. 0.63. B. 1/2二、填空题1. P(A) = ∑P(A∩B_i)2. P(A)P(B)三、计算题1. 首先计算没有机器发生故障的概率,即每台机器都不发生故障的概率,为(1-0.01)^3。
至少有一台机器发生故障的概率为1减去没有机器发生故障的概率,即1 - (1-0.01)^3。
2. 设男生人数为x,女生人数为y。
根据题意,x/(x+y) = 0.6,且x+y=50。
解得x=30,y=20。
四、解答题1. 条件概率是指在已知某个事件已经发生的情况下,另一个事件发生的概率。
计算条件概率的公式是P(A|B) = P(A∩B)/P(B),其中P(A|B)表示在事件B发生的条件下事件A发生的概率。
(完整版)概率论与数理统计复习题带答案讲解

;第一章 一、填空题1. 若事件A ⊃B 且P (A )=0.5, P(B) =0.2 , 则 P(A -B)=( 0.3 )。
2. 甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.7,乙击中敌机的概率为0.8.求敌机被击中的概率为( 0.94 )。
3. 设A、B、C为三个事件,则事件A,B,C中不少于二个发生可表示为(AB AC BC ++ )。
4. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.9,0.8,0.7,则这三台机器中至少有一台发生故障的概率为( 0.496 )。
5. 某人进行射击,每次命中的概率为0.6 独立射击4次,则击中二次的概率为( 0.3456 )。
6. 设A、B、C为三个事件,则事件A,B与C都不发生可表示为( ABC )。
7. 设A、B、C为三个事件,则事件A,B,C中不多于一个发生可表示为( ABAC BC I I ); 8. 若事件A 与事件B 相互独立,且P (A )=0.5, P(B) =0.2 , 则 P(A|B)=( 0.5 ); 9. 甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.6,乙击中敌机的概率为0.5.求敌机被击中的概率为( 0.8 ); 10. 若事件A 与事件B 互不相容,且P (A )=0.5, P(B) =0.2 , 则 P(B A -)=( 0.5 ) 11. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.8,0.8,0.7,则这三台机器中最多有一台发生故障的概率为( 0.864 )。
12. 若事件A ⊃B 且P (A )=0.5, P(B) =0.2 , 则 P(B A )=( 0.3 ); 13. 若事件A 与事件B 互不相容,且P (A )=0.5, P(B) =0.2 , 则 P(B A )=( 0.5 ) 14. A、B为两互斥事件,则A B =U ( S )15. A、B、C表示三个事件,则A、B、C恰有一个发生可表示为( ABC ABC ABC ++ )16. 若()0.4P A =,()0.2P B =,()P AB =0.1则(|)P AB A B =U ( 0.2 ) 17. A、B为两互斥事件,则AB =( S )18. 保险箱的号码锁定若由四位数字组成,则一次就能打开保险箱的概率为(110000)。
(完整)概率复习题及答案

〈概率论〉试题一、填空题1.设A、B、C是三个随机事件。
试用A、B、C分别表示事件1)A、B、C 至少有一个发生2)A、B、C 中恰有一个发生3)A、B、C不多于一个发生2.设A、B为随机事件,,,.则=3.若事件A和事件B相互独立, ,则4。
将C,C,E,E,I,N,S等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE的概率为5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0。
5,现已知目标被命中,则它是甲射中的概率为6.设离散型随机变量分布律为则A=______________7。
已知随机变量X的密度为,且,则________________8。
设~,且,则_________9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为,则该射手的命中率为_________ 10。
若随机变量在(1,6)上服从均匀分布,则方程x2+x+1=0有实根的概率是11.设,,则12。
用()的联合分布函数F(x,y)表示13。
用()的联合分布函数F(x,y)表示14.设平面区域D由y = x , y = 0 和x = 2 所围成,二维随机变量(x,y)在区域D上服从均匀分布,则(x,y)关于X的边缘概率密度在x = 1 处的值为。
15。
已知,则=16.设,且与相互独立,则17。
设的概率密度为,则=18。
设随机变量X1,X2,X3相互独立,其中X1在[0,6]上服从均匀分布,X2服从正态分布N(0,22),X3服从参数为=3的泊松分布,记Y=X1-2X2+3X3,则D(Y)=19。
设,则20.设是独立同分布的随机变量序列,且均值为,方差为,那么当充分大时,近似有~ 或~。
特别是,当同为正态分布时,对于任意的,都精确有~ 或~.21.设是独立同分布的随机变量序列,且,那么依概率收敛于。
22.设是来自正态总体的样本,令则当时~。
23。
设容量n = 10 的样本的观察值为(8,7,6,9,8,7,5,9,6),则样本均值= ,样本方差=24。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复习提纲(一)随机事件和概率(1)理解随机事件、基本事件和样本空间的概念,掌握事件之间的关系与运算。
(2)了解概率的定义,掌握概率的基本性质和应用这些性质进行概率计算。
(3)理解条件概率的概念,掌握概率的加法公式、乘法公式、全概率公式、Bayes 公式,以及应用这些公式进行概率计算。
(4)理解事件的独立性概念,掌握应用事件独立性进行概率计算。
(5)掌握Bernoulli 概型及其计算。
(二)随机变量及其概率分布(1)理解随机变量的概念。
(2)理解随机变量分布函数)}{)((x X P x F ≤=的概念及性质,理解离散型随机变量的分布律及其性质,理解连续型随机变量的概率密度及其性质,会应用概率分布计算有关事件的概率。
(3)掌握二项分布、Poisson 分布、正态分布、均匀分布和指数分布。
(4)会求简单随机变量函数的概率分布。
(三)二维随机变量及其概率分布(1)了解二维随机变量的概念。
(2)了解二维随机变量的联合分布函数及其性质,了解二维离散型随机变量的联合分布律及其性质,并会用它们计算有关事件的概率。
(3)了解二维随机变量分边缘分布和条件分布,并会计算边缘分布。
(4)理解随机变量独立性的概念,掌握应用随机变量的独立性进行概率计算。
(5)会求两个随机变量之和的分布,计算多个独立随机变量最大值、最小值的分布。
(6)理解二维均匀分布和二维正态分布。
(四)随机变量的数字特征(1)理解数学期望和方差的概念,掌握它们的性质与计算。
(2)掌握6种常用分布的数学期望和方差。
(3)会计算随机变量函数的数学期望。
(4)了解矩、协方差和相关系数的概念和性质,并会计算。
(五)大数定律和中心极限定理(1)了解Chebyshev 不等式。
(2)了解Chebyshev 大数定律和Benoulli 大数定律。
(3)了解独立同分布场合的中心极限定理和De Moivre-Laplace 中心极限定理的应用条件和结论,并会用相关定理近似计算有关随机事件的概率。
复习题一、填空题1、设试验E 的样本空间为S ,A 和B 是两个事件,且6.0)(,5.0)(==B P A P ,(1)如果S B A =Y ,则=)(AB P ____________; (2)如果A 与B 相互独立,则=)(AB P _________。
0.1 , 0.32、将n 个球随机地放入n 个盒子中(盒子的容积没有限制),则每个盒子恰有一个球的概率为_______________; n 个球落在同一盒子内的概率为______________。
n n n !, 11-n n 3、设)(~λπX ,已知2}0{-==e X P 。
则=≥}2{X P ___________; =)(2X E ________。
23-1-e ,64、设随机变量序列10021,,,X X X Λ相互独立,且期望均为1,方差均为2,根据Chebyshev 不等式,≥⎭⎬⎫⎩⎨⎧<-411X P __________; 根据中心极限定理,≈⎭⎬⎫⎩⎨⎧<-411X P __________。
5034,1-4252⎪⎪⎭⎫ ⎝⎛Φ 5、一口袋中有10个球,其中有3个黑球,现无放回地从中取两次球,每次取一个,则第二次取到黑球的概率为________; 在已知第一次取到黑球的条件下,第二次又取到黑球的概率为_____________。
103, 92 6、设事件B A ,和C 的概率为41)()()(===C P B P A P ,而0)()(==BC P AC P ,81)(=AB P ,那么三个事件都不发生的概率为__________, 最多一个事件发生的概率为__________。
83, 817、如果一个罐中有4个红球,6个黑球,从中任意选取两个球,如果发现取到的两个球中有一个是红球,那么另一个也是红球的概率为_______。
518、如果随机变量X 服从]1,1[-上的均匀分布,则随机变量)0(≠+=c d cX Y 的均值为_________,方差为___________。
d ,231c9、设随机变量X 与Y 相互独立,且都服从相同的指数分布,密度函数为⎩⎨⎧≤>=-000)(x x e x f x,那么Y X Z +=的密度函数)(z f Z =______________。
⎩⎨⎧<>=-000)(z z ze z f zZ10、若5.0)|(,4.0)(,2.0)(===A B P B P A P ,则)(B A P -=_______,=)|(B A P ______。
0.1 , 0.2511、如果)(~λπX ,且5.0}0{==X P ,那么=λ________,}1|0{≤=X X P =_______。
2ln , 2ln 11+ 12、设随机变量序列Λ,,21X X 相互独立同分布,且期望均为1,方差为2,利用Chebyshev不等式估计≥⎭⎬⎫⎩⎨⎧≤≤∑=120801001i i X P __________, 为使9.01.0111≥⎭⎬⎫⎩⎨⎧≤-∑=n i i X n P ,利用中心极限定理,估计n 至少需要达到_________。
21, 542 13、有两个相互独立的子系统A 和B ,其正常工作的概率分别为A p 和B p ,则B A ,构成的串联系统正常工作的概率为_________;而B A ,构成的并联系统正常工作的概率为_________。
B A p p , )1)(1(1B A p p ---)14、如果Y X ,相互独立,且都服从),1(p b ,那么~Y X +______,~),min(Y X _________。
),2(p b , ),1(2p b15、若)1,0(~U X ,对于0>θ, ~)12(-X θ________________。
),(θθ-U16、有两个随机事件A 和B ,已知6.0)(,3.0)(==B P A P ,如果B A ,互不相容,则)(B A P -=_________; 如果B A ,相互独立,则)(B A P -=____________。
0.3 , 0.1217、设连续型随机变量X 的概率密度函数与分布函数分别为)(x f 和)(x F ,则它们的相互关系为: =)(x F ____________; 在)(x f 的连续点处有=)(x f _____________。
⎰∞-xdu u f )(, )('x F18、 如果)(~),(~21λλe Y e X ,且相互独立,则=)|(|y x f Y X __________, ~),min(Y X __________。
)(x f X , )(21λλ+e19、设),(~p n b X ,)(~p Y π,且相互独立,则=-)(Y X E _________,=-)(Y n X D _____________。
p np -, )2(p np -20、一袋中有5个小球,它们是2个白球和3个黑球,从中随机取两个球,则取到一黑一白的概率为__________,如果已知其中一个是白球,则另一个是黑球的概率为___________。
53,76 21、若)1(~πX ,则=≥}1{X P ____________; =≥=}1|1{X X P ____________。
1-1-e , 11-e 22、 设),(Y X 的联合分布函数为),(y x F ,如果X 与Y 相互独立,那么 =+∞+∞),(),(y F x F ___________; =)|(|y x F Y X ________________。
),(y x F , ),(+∞x F23、设随机变量序列Λ,,21X X 相互独立,且对于每个i X ,i i X E μ=)(,2)(σ=i X D ,则 =⎪⎭⎫ ⎝⎛-∑=n i i i X n E 12)(1μ_________; 0>∀ε,=⎭⎬⎫⎩⎨⎧<-∑=∞→εμn i i i n X n P 1)(1lim _________。
2σ,122、 设),(Y X 的联合分布函数为),(y x F ,Y X ,的边缘分布函数分别为)(x F X ,)(y F Y ,则=-∞),(x F _________, ),(+∞x F =________。
0, )(x F X23、如果随机变量X 的概率密度函数为x x Ce 22+-,),(+∞-∞∈x ,则 =C _________, =≥)}({X E X P _________。
πe 1,21二、选择题1、设事件B A ,满足 1)(0<<A P ,1)(0<<B P ,)|()|(B A P B A P =,则(A )1)()(=+B P A P (B ))()()(B P A P B A P +=Y(C ) )()()(B P A P AB P = (D )0)(=AB PC2、对于0)(),(>B P A P ,如果)|()|(A B P B A P =,则( )(A) B A = (B) )()(B P A P = (C) B A ,相互独立 (D) B A ,互不相容B3、设)(x F 为随机变量X 的分布函数,则 =≥}{a X P ( )(A) )(1a F - (B) )()(--a F a F (C) )(1--a F (D) )()(-∞-F a FC4、设)(x F 为随机变量X 的分布函数,则 ()()F a F a --=( )(A) '()F a (B) ()F a - (C) {}P X a ≤ (D) {}P X a =D5、如果Y X ,相互独立,且都服从),1(p b ,则{}),m ax (),m in(Y X Y X P <=( )(A) 2p (B) 1 (C) )1(2p p - (D) 2)1(p -C6、如果n X X X ,,,21Λ相互独立,且均服从指数分布,则下列哪个随机变量仍然服从指数分布( )(A)∑=n i i X 1 (B) ∏=n i i X 1 (C) )(max 1i n i X ≤≤ (D) )(min 1i ni X ≤≤ D 7、将n 个相互独立且可靠性均为p 的元件并联起来组成系统S ,则系统的可靠性为( )(A) n p (B) n p )1(1-- (C) n p -1 (D) np )1(- 8、设)(x f 与)(x F 分别为随机变量X 的密度函数和分布函数,则下列关系成立的是( )(A) )(')(x f x F = (B) 0)()('=+x f x F(C) ⎰∞-=xdu u F x f )()( (D) ⎰∞-=x du u f x F )()(D9、已知1)()(==Y D X D ,21-=XY ρ,则=-+)2,(Y X Y X Cov ( )(A) 21- (B) 23 (C) 21 (D) 2510、对任意两个独立且发生概率均大于零的事件A 和B ,不正确的是( )(A )A 与B 一定独立 (B )A 与B 一定独立(C) A 与B 一定独立 (D) A 与B 一定互不相容D11、 随机变量X 的概率密度和分布函数分别为()f x 和()F x ,则一定有( )(A ) 0()1f x ≤≤ (B) 0()1F x ≤≤(C) {}()P X x f x == (D) {}()P X x F x ==B12、 对任意事件A 和B ,若()0P B >,则( )(A )(|)(|)1P A B P A B += (B) (|)(|)1P A B P A B +=(C) (|)(|)1P A B P A B += (D) 以上结论都不一定成立A13、设随机变量X 与Y 独立,且都服从参数为p 的0-1分布。