《概率统计》试题及答案
概率统计基础知识试题和答案

第一章 概率统计基础知识第一节 概率基础知识一、单项选择题(每题的备选项中,只有1个最符合题意)ZL1A0001.已知5.0)(=A P ,6.0)(=B P ,8.0)(=⋃B A P ,可算得=)(AB P ( )。
A.0.2B.0.3C.0.4D.0.5ZL1A0002.已知已知3.0)(=A P ,7.0)(=B P ,9.0)(=⋃B A P ,则事件A 与B ( )。
A.互不兼容B.互为对立事件C.互为独立事件D.同时发生的概率大于0ZL1A0003.某种动物能活到20岁的概率为0.8,活到25岁的概率为0.4,如今已活到到20岁的这种动物至少能再活5年的概率是( )。
A. 0.3B. 0.4C. 0.5D. 0.6ZL1A0004.关于随机事件,下列说法正确的是( )。
A.随机事件的发生有偶然性与必然性之分,而没有大小之别B.随机事件发生的可能性虽有大小之别,但无法度量C.随机事件发生的可能性的大小与概率没有必然联系D.概率愈大,事件发生的可能性就愈大,相反也成立ZL1A0005.( )成为随机现象。
A.在一定条件下,总是出现相同结果的现象B.出现不同结果的现象C.在一定条件下,并不总是出现相同结果的现象D.不总是出现相同结果的现象ZL1A0006.关于样本空间,下列说法不正确的是( )。
A.“抛一枚硬币”的样本空间=Ω{正面,反面}B.“抛一粒骰子的点数”的样本空间=Ω{0,1,2,3,4,5,6}C.“一顾客在超市中购买商品件数”的样本空间=Ω{0,1,…}D.“一台电视机从开始使用到发生第一次故障的时间”的样本空间=Ω{0:≥t t } ZL1A0007.某企业总经理办公室由10人组成,现在从中选出正、副主任各一人(不兼职),将所有可能的选举结果构成样本空间,则其中包含的样本点共有( )个。
A. 4B.8C. 16D.90ZL1A0008.8件产品中有3件不合格品,每次从中随机抽取一只(取出后不放回),直到把不合格品都取出,将可能抽取的次数构成样本空间,则其中包含的样本点共有( )个。
九年级数学概率统计练习题及答案

九年级数学概率统计练习题及答案一、选择题1. 下列各项中,属于概率的是:A. 李明抽到红球的可能性是10%B. 今天下雨的可能性是80%C. 买彩票中奖的可能性是1/1000000D. 扔一次骰子掷出的点数是4的可能性是1/62. 某班级有30个学生,其中有18个男生和12个女生。
从班级中随机选取一个学生,男生和女生被选到的概率相等。
那么,被选到的学生是男生的概率是多少?A. 2/3B. 1/3C. 3/5D. 1/23. 一副扑克牌中有52张牌,其中红心牌有13张。
从扑克牌中随机抽一张牌,抽到红心牌的概率是多少?A. 1/4B. 1/2C. 1/13D. 1/52二、填空题1. 从数字1、2、3、4、5中任意抽取一个数,抽到奇数的概率是_________。
2. 一组数据:10、12、14、16、18中,大于15的数的概率是_________。
3. 一枚硬币抛掷,正面向上的概率是_________。
三、计算题1. 某班级有40个学生,其中有18个男生和22个女生。
从班级中随机选取两个学生,分别计算:a) 选出的两个学生都是男生的概率是多少?b) 选出的两个学生一个是男生一个是女生的概率是多少?2. 一副扑克牌中有52张牌,其中黑色牌有26张。
从扑克牌中随机抽取两张牌,并将它们放回,再抽取一张牌。
计算:a) 三次抽取都是黑色牌的概率是多少?b) 三次抽取中至少有一张黑色牌的概率是多少?四、解答题1. 一组数据:5、7、9、11、13,从中随机抽取一个数。
计算抽取奇数的概率。
答案解析:一、选择题1. D2. A3. A二、填空题1. 3/52. 3/53. 1/2三、计算题1.a) 18/40 × 17/39 = 9/20 × 17/39 = 153/780b) 18/40 × 22/39 + 22/40 × 18/39 = 396/780 = 2/5 2.a) 26/52 × 26/52 × 26/52 = 27/64b) 1 - (26/52 × 26/52 × 26/52) = 37/64四、解答题1. 3/5通过以上习题,希望能够帮助同学们加深对数学概率统计的理解和掌握。
《概率论与数理统计》习题及答案

概率论与数理统计 第一部份 习题第一章 概率论基本概念一、填空题1、设A ,B ,C 为3事件,则这3事件中恰有2个事件发生可表示为 。
2、设3.0)(,1.0)(=⋃=B A P A P ,且A 与B 互不相容,则=)(B P 。
3、口袋中有4只白球,2只红球,从中随机抽取3只,则取得2只白球,1只红球的概率为 。
4、某人射击的命中率为0.7,现独立地重复射击5次,则恰有2次命中的概率为 。
5、某市有50%的住户订晚报,有60%的住户订日报,有80%的住户订这两种报纸中的一种,则同时订这两种报纸的百分比为 。
6、设A ,B 为两事件,3.0)(,7.0)(==B A P A P ,则=)(B A P 。
7、同时抛掷3枚均匀硬币,恰有1个正面的概率为 。
8、设A ,B 为两事件,2.0)(,5.0)(=-=B A P A P ,则=)(AB P 。
9、10个球中只有1个为红球,不放回地取球,每次1个,则第5次才取得红球的概率为 。
10、将一骰子独立地抛掷2次,以X 和Y 分别表示先后掷出的点数,{}10=+=Y X A{}Y X B >=,则=)|(A B P 。
11、设B A ,是两事件,则B A ,的差事件为 。
12、设C B A ,,构成一完备事件组,且,7.0)(,5.0)(==B P A P 则=)(C P ,=)(AB P 。
13、设A 与B 为互不相容的两事件,,0)(>B P 则=)|(B A P 。
14、设A 与B 为相互独立的两事件,且4.0)(,7.0)(==B P A P ,则=)(AB P 。
15、设B A ,是两事件,,36.0)(,9.0)(==AB P A P 则=)(B A P 。
16、设B A ,是两个相互独立的事件,,4.0)(,2.0)(==B P A P 则=)(B A P 。
17、设B A ,是两事件,如果B A ⊃,且2.0)(,7.0)(==B P A P ,则=)|(B A P 。
概率统计试题及答案

概率统计试题及答案概率统计是数学中的一个重要分支,它在自然科学、社会科学、工程技术等多个领域都有着广泛的应用。
本文将提供一套概率统计的试题及答案,以供学习和复习之用。
一、选择题1. 概率论中,如果事件A和B是互斥的,那么P(A∪B)等于:A. P(A) + P(B)B. P(A) - P(B)C. P(A) / P(B)D. 1 - (1 - P(A))(1 - P(B))答案:A2. 以下哪项不是随机变量的典型性质?A. 可测性B. 有界性C. 随机性D. 独立性答案:D3. 标准正态分布的数学期望和方差分别是:A. 0和1B. 1和0C. 1和1D. 0和0答案:A4. 若随机变量X服从参数为λ的指数分布,其概率密度函数为f(x) = λe^(-λx), x > 0,则λ的值为:A. E(X)B. Var(X)C. E(X)^2D. 1 / Var(X)答案:D5. 在贝叶斯定理中,先验概率是指:A. 基于经验或以往数据得到的概率B. 基于主观判断得到的概率C. 事件实际发生的概率D. 事件未发生的概率答案:B二、填空题1. 事件的空间是指包含所有可能发生的事件的集合,其记作______。
答案:Ω2. 若随机变量X服从均匀分布U(a,b),则X在区间[a, b]上的概率密度函数是______。
答案:1 / (b - a)3. 两个事件A和B相互独立的必要不充分条件是P(A∩B) = ______。
答案:P(A)P(B)4. 若随机变量X服从正态分布N(μ, σ^2),则其概率密度函数为f(x) = (1 / (σ * √(2π))) * e^(- (x - μ)^2 / (2σ^2)),其中μ是______,σ^2是______。
答案:数学期望,方差5. 拉普拉斯定理表明,对于独立同分布的随机变量序列,当样本容量趋于无穷大时,样本均值的分布趋近于______分布。
答案:正态三、简答题1. 请简述条件概率的定义及其计算公式。
《概率统计》练习题及参考答案

习题一 (A )1.写出下列随机试验的样本空间: (1)一枚硬币连抛三次;(2)两枚骰子的点数和;(3)100粒种子的出苗数;(4)一只灯泡的寿命。
2. 记三事件为C B A ,,。
试表示下列事件:(1)C B A ,,都发生或都不发生;(2)C B A ,,中不多于一个发生;(3)C B A ,,中只有一个发生;(4)C B A ,,中至少有一个发生; (5)C B A ,,中不多于两个发生;(6)C B A ,,中恰有两个发生;(7)C B A ,,中至少有两个发生。
3.指出下列事件A 与B 之间的关系:(1)检查两件产品,事件A =“至少有一件合格品”,B =“两件都是合格品”; (2)设T 表示某电子管的寿命,事件A ={T >2000h },B ={T >2500h }。
4.请叙述下列事件的互逆事件:(1)A =“抛掷一枚骰子两次,点数之和大于7”; (2)B =“数学考试中全班至少有3名同学没通过”; (3)C =“射击三次,至少中一次”;(4)D =“加工四个零件,至少有两个合格品”。
5.从一批由47件正品,3件次品组成的产品中,任取一件产品,求取得正品的概率。
6.电话号码由7个数字组成,每个数字可以是9,,1,0 中的任一个,求:(1)电话号码由完全不相同的数字组成的概率;(2)电话号码中不含数字0和2的概率;(3)电话号码中4至少出现两次的概率。
7.从0,1,2,3这四个数字中任取三个进行排列,求“取得的三个数字排成的数是三位数且是偶数”的概率。
8.从一箱装有40个合格品,10个次品的苹果中任意抽取10个,试求:(1)所抽取的10个苹果中恰有2个次品的概率;(2)所抽取的10个苹果中没有次品的概率。
9.设A ,B 为任意二事件,且知4.0)()(==B p A p ,28.0)(=B A p ,求)(B A p ⋃;)(A B p 。
10.已知41)(=A p ,31)(=AB p ,21)(=B A p ,求)(B A p ⋃。
概率统计试题和答案

概率统计试题和答案题目答案的红色部分为更正部分,请同志们注意下统计与概率1.(2017课标1,理2)如图,正方形ABCD( B ) A.14B.π8C.12D.π42.(2017课标3,理3)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是( A )A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳3.(2017课标2,理13)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次, 表示抽到的二等品件数,则D X = 1.96 。
4.(2016年全国I 理14)5(2)x x +的展开式中,x 3的系数是 10 .(用数字填写答案)5.(2016年全国I 理14)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( B )(A )13 (B )12 (C )23 (D )345.(2016年全国2理10)从区间随机抽取个数,,…,,,,…,,构成n 个数对,,…,,其中两数的平方和小于1的数对共有个,则用随机模拟的方法得到的圆周率的近似值为( C )(A ) (B ) (C ) (D ) 6.(2016年全国3理4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。
图中A 点表示十月的平均最高气温约为150C ,B 点表示四月的平均最低气温约为[]0,12n 1x 2x nx 1y 2y n y ()11,x y ()22,x y (),n n x y m π4nm 2n m 4m n 2m n50C。
概率统计综合练习及答案

北京科技大学远程教育学院《概率统计》综合练习(一)参考答案随机事件及其概率一、填空1、A 、B 、C 是三个事件,用A 、B 、C 的运算表示A 、B 、C 中至少发生两个的事件 AC BC AB ,用文字叙述C AB C B A BC A 表示的事件 三个事件中恰好发生两个事件 。
2、A 是试验E 的一个事件,每次试验A 出现的概率为p=0.25,独立重复做试验E 四次, A 是否必定出现一次? 否3、A ⊆B ,P (A )=0.2,P (B )=0.6则 P (B -A ) = 0.4 ,P (A -B ) = 0 。
4、P (A )>0,P (B )>0,A 、B 相互独立与A 、B 互不相容能否同时成立? 否 。
5、事件A 、B 独立,则A 、B 独立 。
6、P (A ∪B ∪C )的计算公式为)()()()()()()(ABC P AC P BC P AB P C P B P A P +---++ 。
7、每次试验A 出现的概率为p ,独立重复做n 次试验,在n 次试验中,A 出现次数k 的可能取值为 0,1,3,…,n ,A 出现k 次的概率为 kn k k n q p C - 。
二、 以A ,B ,C 分别表示某城市居民订阅日报、晚报和体育报。
试用A ,B ,C 表示 以下事件:(1)只订阅日报; (2)只订日报和晚报; (3)只订一种报; (4)正好订两种报; (5)至少订阅一种报; (6)不订阅任何报; (7)至多订阅一种报; (8)三种报纸都订阅; (9)三种报纸不全订阅。
解:(1)C B A ,(2)C AB ,(3)C B A C B A C B A ,(4)C B A BC A C AB , (5)C B A ,(6)C B A ,(7)C B A C B A C B A C B A ,(8)ABC , (9)C B A三、 从0,1,2,…,9中任意选出4个不同的数字,试求它们能组成一个4位偶 数的概率。
(完整版)《概率论与数理统计》习题及答案选择题

·151·《概率论与数理统计》习题及答案选 择 题单项选择题1.以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为( ). (A )“甲种产品滞销,乙种产品畅销”; (B )“甲、乙两种产品均畅销”; (C )“甲种产品滞销或乙种产品畅销”; (D )“甲种产品滞销”.解:设B =‘甲种产品畅销’,C =‘乙种产品滞销’,A BC = A BC B C ===‘甲种产品滞销或乙种产品畅销’. 选C.2.设,,A B C 是三个事件,在下列各式中,不成立的是( ).(A )()A B B A B -=;(B )()AB B A -=; (C )()A B AB ABAB -=;(D )()()()A B C A C B C -=--.解:()()()A B B AB B A B BB A B -=== ∴A 对. ()()A B B A B B AB BB AB A B A -====-≠ B 不对()()().AB AB A B B A ABAB -=--= C 对 ∴选B.同理D 也对.3.若当事件,A B 同时发生时,事件C 必发生,则( ). (A )()()()1P C P A P B ≤+-; (B )()()()1P C P A P B ≥+-; (C )()()P C P AB =; (D )()().P C P AB =解:()()()()()()()1AB C P C P AB P A P B P A B P A P B ⊂⇒≥=+-≥+-∴ 选B.4.设(),(),()P A a P B b P AB c ===,则()P AB 等于( ).(A )a b -; (B )c b -; (C )(1)a b -; (D )b a -. 解:()()()()()()()P AB P A B P A P AB a P A P B P AB c b =-=-=--+=-·152· ∴ 选B.5.设,A B 是两个事件,若()0P AB =,则( ).(A ),A B 互不相容; (B )AB 是不可能事件; (C )()0P A =或()0P B =; (D )AB 未必是不可能事件. 解:()0P AB AB =⇒=∅/. ∴ 选D.6.设事件,A B 满足AB =∅,则下列结论中肯定正确的是( ). (A ),A B 互不相容; (B ),A B 相容; (C )()()()P AB P A P B =; (D )()()P A B P A -=. 解:,A B 相容 ∴ A 不对. ,,A B B A AB ===Φ ∴ B 错. ()0AB P AB =Φ⇒=,而()()P A P B 不一定为0 ∴ C 错. ()()()()P A B P A P AB P A -=-=. ∴ 选D. 7.设0()1,(|)(|)1P B P A B P A B <<+=,则( ) (A ),A B 互不相容; (B ),A B 互为对立; (C ),A B 不独立; (D ),A B 相互独立.解:()()()()()1()1()()()1()()1()P AB P AB P AB P A B P AB P A B P B P B P B P B P B P B -=+=+=+-- ()(1())()(1()()())()(1())P AB P B P B P A P B P AB P B P B -+--+=-⇒22()()()()()()()P B P B P AB P B P A P B P B -=+--()()()P AB P A P B ∴= ∴ 选D. 8.下列命题中,正确的是( ). (A )若()0P A =,则A 是不可能事件; (B )若()()()P A B P A P B =+,则,A B 互不相容; (C )若()()1P AB P AB -=,则()()1P A P B +=;(D )()()()P A B P A P B -=-. 解:()()()()P AB P A P B P AB =+-()()()()1P A B P AB P A P B ⇒-=+=由()0P A A =⇒=Φ/, ∴ A 、B 错.只有当A B ⊃时()()()P A B P A P B -=-,否则不对. ∴ 选C.·153·9.设,A B 为两个事件,且B A ⊂,则下列各式中正确的是( ). (A )()()P AB P A =; (B )()()P AB P A =;(C )(|)()P B A P B =; (D )()()()P B A P B P A -=-. 解:()()B A AB A P A B P A ⊂⇒=⇒= ∴选A.10.设,A B 是两个事件,且()(|)P A P A B ≤;(A )()(|)P A P A B =; (B )()0P B >,则有( ) (C )()(|)P A P A B ≥; (D )前三者都不一定成立.解:()(|)()P AB P A B P B =要与()P A 比较,需加条件. ∴选D. 11.设120()1,()()0P B P A P A <<>且1212(|)(|)(|)P A A B P A B P A B =+,则下列等式成立的是( ). (A )1212(|)(|)(|)P A A B P A B P A B =+; (B )1212()()()P A B A B P A B P A B =+; (C )1212()(|)(|)P A A P A B P A B =+;(D )1122()()(|)()(|)P B P A P B A P A P B A =+. 解1:121212(|)(|)(|)(|)P A A B P A B P A B P A A B =+-12(|)(|)P A B P A B =+ 1212(|)0()0P A A B P A A B ⇒=⇒=12121212()()()()()()P A B A B P A B P A B P A A B P A B P A B =+-=+ ∴ 选B. 解2:由1212{|}(|)(|)P A A B P A B P A B =+ 得1212()()()()()P A B A B P A B P A B P B P B +=可见 1212()()()P A B A B P A B P A B =+∴ 选B.12.假设事件,A B 满足(|)1P B A =,则( ). (A )B 是必然事件; (B )()1P B =; (C )()0P A B -=; (D )A B ⊂.解:()(|)1()()()()0()P AB P B A P AB P A P A P AB P A ==⇒=⇒-=()0P A B ⇒-= ∴ 选C.13.设,A B 是两个事件,且,()0A B P B ⊂>,则下列选项必然成立的是( ).·154· (A )()(|)P A P A B <; (B )()(|)P A P A B ≤; (C )()(|)P A P A B >; (D )()(|)P A P A B ≥.解:()()(|)()()()A B P AB P A P A B P A P B P B ⊂====≥ ()()0()1A B P A P B P B ⊂⇒≤<< ∴选B (或者:,()()()(|)(|)A B P A P AB P B P A B P A B ⊂==≤)14.设12()0,,P B A A >互不相容,则下列各式中不一定正确的是( ). (A )12(|)0P A A B =; (B )1212(|)(|)(|)P A A B P A B P A B =+; (C )12(|)1P A A B =; (D )12(|)1P A A B =.解:1212()0P A A A A =⇐=Φ1212()(|)0()P A A B P A A B P B == A 对.121212(|)(|)(|)(|)P A A B P A B P A B P A A B =+-12(|)(|)P A B P A B =+ B 对. 121212(|)(|)1(|)P A A B P A A B P A A B ==-121(|)(|)1P A B P A B =--≠ C 错.121212(|)(|)1(|)101P A A B P A A B P A A B ==-=-= D 对.∴ 选C.15.设,,A B C 是三个相互独立的事件,且0()1P C <<,则在下列给定的四对事件中不相互独立的是( ). (A )A B 与C ; (B )AC 与C ;(C )A B -与C ; (D )AB 与C . 解:[()]()()()()(1())(1())()P AB C P ABC P A P B P C P A P B P C ===--[1(()()()())]()()()P A P B P A P B P C P A B P C =-+-= A 对.()[()]()()()()P ACC P AC C P AC CC P AC P C P AC ===+-()()()P C P AC P C =≠ AC ∴与C 不独立 ∴ 选B.16.设,,A B C 三个事件两两独立,则,,A B C 相互独立的充分必要条件是( ).(A )A 与BC 独立; (B )AB 与AC 独立;(C )AB 与AC 独立; (D )A B 与A C 独立.·155·解:,,A B C 两两独立, ∴若,,A B C 相互独立则必有()()()()()()P ABC P A P B P C P A P BC == ∴A 与BC 独立.反之,如A 与BC 独立则()()()()()()P ABC P A P BC P A P B P C == ∴选A. 17.设,,A B C 为三个事件且,A B 相互独立,则以下结论中不正确的是( ). (A )若()1P C =,则AC 与BC 也独立; (B )若()1P C =,则A C 与B 也独立; (C )若()1P C =,则A C -与A 也独立;(D )若C B ⊂,则A 与C 也独立. 解:()()(),()1P AB P A P B P C ==∴概率为1的事件与任何事件独立AC ∴与BC 也独立. A 对. [()][()]()P AC B P A C B P AB BC ==()()()()()P AB P BC P ABC P A C P B =+-= ∴B 对.[()]()()()()P A C A P ACA P AC P A P C -===()()P A P AC =∴ C 对 ∴ 选D (也可举反例).18.一种零件的加工由两道工序组成. 第一道工序的废品率为1p ,第二道工序的废品率为2p ,则该零件加工的成品率为( ). (A )121p p --; (B )121p p -; (C )12121p p p p --+; (D )12(1)(1).p p -+- 解:设A =成品零件,i A =第i 道工序为成品 1,2.i = 11()1P A p =- 22()1P A p =-1212()()()()P A P A A P A P A ==12(1)(1)p p =-- 12121p p p p =--+ ∴ 选C.19.设每次试验成功的概率为(01)p p <<,现进行独立重复试验,则直到第10次试验才取得第4次成功的概率为( ).(A )44610(1)C p p -; (B )3469(1)C p p -; (C )4459(1)C p p -; (D )3369(1).C p p -解:说明前9次取得了3次成功 ∴ 第10次才取得第4次成功的概率为33634699(1)(1)C p p p C p p -=-∴ 选B.20.设随机变量X 的概率分布为(),1,2,,0kP X k b k b λ===>,则·156· ( ).(A )λ为任意正实数; (B )1b λ=+;(C )11b λ=+; (D )11b λ=-. 解:111()111k kk k k b P X K b b b λλλλλλ∞∞∞=========--∑∑∑ ∴ 11bλ=+ 选C .21.设连续型随机变量X 的概率密度和分布函数分别为()f x 和()F x ,则下列各式正确的是( ).(A )0()1f x ≤≤; (B )()()P X x f x ==; (C )()()P X x F x ==; (D )()()P X x F x =≤. 解:()()()F x P X x P X x =≤≥= ∴ 选D. 22.下列函数可作为概率密度的是( ). (A )||(),x f x ex R -=∈; (B )21(),(1)f x x R x π=∈+; (C)22,0,()0,0;xx f x x -⎧≥=<⎩(D )1,||1,()0,|| 1.x f x x ≤⎧=⎨>⎩解:A :||0222x x x e dx e dx e dx +∞+∞+∞----∞===⎰⎰⎰∴ 错.B :211arctan []1(1)22dx x x πππππ+∞+∞-∞-∞==+=+⎰ 且 21()0(1)f x x R x π=≥∈+ ∴ 选B. 23.下列函数中,可作为某个随机变量的分布函数的是( ). (A )21()1F x x =+; (B )11()arctan 2F x x π=+; (C )1(1),0()2,0;x e x F x x -⎧->⎪=⎨⎪≤⎩·157·(D )()()x F x f t dt -∞=⎰,其中() 1.f t dt +∞-∞=⎰解:对A :0()1F x <≤,但()F x 不具有单调非减性且()0F +∞= ∴A 不是. 对B :arctan 22x ππ-≤≤∴ 0()1F x ≤≤.由arctan x 是单调非减的 ∴ ()F x 是单调非减的.11()()022F ππ-∞=+⋅-= 11()122F ππ+∞=+⋅=.()F x 具有右连续性. ∴ 选B.24.设12,X X 是随机变量,其分布函数分别为12(),()F x F x ,为使12()()()F x aF x bF x =-是某一随机变量的分布函数,在下列给定的各组数值中应取( ).(A )32,55a b ==-; (B )22,33a b ==; (C )13,22a b =-=; (D )13,22a b ==.解:12()()()0F aF bF -∞=-∞--∞=,()1F a b +∞=-=,只有A 满足∴ 选A25.设随机变量X 的概率密度为()f x ,且()(),()f x f x F x -=是X 的分布函数,则对任意实数a 有( ). (A )0()1()a F a f x dx -=-⎰;(B )01()()2a F a f x dx -=-⎰;(C )()()F a F a -=;(D )()2()1F a F a -=-. 解:()()()()a a a F a f x dx f du f u du μ-+∞-∞+∞-==--=⎰⎰⎰()()a f x dx f x +∞-∞-∞=-⎰⎰001(()())a dx f x dx f x dx -∞=-+⎰⎰00111()()22a a f x dx f x dx =--=-⎰⎰由()2()1f x dx f x dx +∞+∞-∞==⎰⎰001()()2f x dx f x dx +∞-∞⇒==⎰⎰∴ 选B.26.设随机变量2~(1,2)X N ,其分布函数和概率密度分别为()F x 和·158· ()f x ,则对任意实数x ,下列结论中成立的是( ).(A )()1()F x F x =--; (B )()()f x f x =-; (C )(1)1(1)F x F x -=-+; (D )11122x x F F -+⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭. 解:2~(1,2)()X N f x ∴以1x =为对称轴对称.(1)(1)P X x P X x ∴>+=≤-即 (1)1(1)1(1)F x P X x F x -=-≤+=-+ ∴ 选C.27.设22~(,4),~(,5)X N Y N μμ,设1(4)P X p μ≤-=,2(5)P Y p μ≥+=,则( ).(A )对任意实数μ有12p p =; (B )12p p <;(C )12p p >; (D )只对μ的个别值才有12.p p =解:14(4)(1)1(1)4p P X μμμ--⎛⎫=≤-=Φ=Φ-=-Φ⎪⎝⎭25(5)1(5)11(1)5p P Y P Y μμμμ+-⎛⎫=≥+=-<+=-Φ=-Φ ⎪⎝⎭∴ 12p p = ∴ 选A (or 利用对称性)28.设2~(,)X N μσ,则随着σ的增大,概率(||)P X μσ-<的值( ).(A )单调增大; (B )单调减少; (C )保持不变; (D )增减不定.解:1)1(2)1()1()(|)(|-Φ=-Φ-Φ=+<<-=<-σμσμσμX P X P ∴ 不随σ变 ∴ 选C.29.设随机变量X 的分布函数为)(x F X ,则35-=X Y 的分布函数 )(y F Y 为( ).(A ))35(-y F X ; (B )3)(5-y F X ; (C )⎪⎭⎫⎝⎛+53y F X ; (D ).3)(51+y F X解:))3(51()35()()(+≤=≤-=≤=y X P y X P y Y P y F Y ⎪⎭⎫⎝⎛+=53y F X ∴ 选C.·159·30.设X 的概率密度为)1(1)(2x x f +=π,则X Y 2=的概率密度为( ). (A ))41(12y +π; (B )2)4(1y +π;(C ))4(22y +π; (D ))1(22y +π.解:⎪⎭⎫⎝⎛=≤=≤=≤=2)2()2()()(y F y X P y X P y Y P y F X Y∴ )4(2)41(121221)(22y y y f y f X Y +=+⋅=⎪⎭⎫ ⎝⎛=ππ ∴ 选C. 31.设随机变量X 与Y 相互独立,其概率分布分别为212111P X - 212111PY -则下列式子正确的是( ).(A )Y X =; (B )0)(==Y X P ;(C )21)(==Y X P ; (D )1)(==Y X P . 解:A 显然不对. )1,1()1,1()(==+-=-===Y X P Y X P Y X P2121212121)1()1()1()1(=⋅+⋅===+-=-==Y P X P Y P X P ∴ 选C.32.设)1,1(~),1,0(~N Y N X ,且X 与Y 相互独立,则( ).(A )21)0(=≤+Y X P ; (B )21)1(=≤+Y X P ; (C )21)0(=≤-Y X P ; (D )21)1(=≤-Y X P .解:)1,1(~)1,0(~N Y N X 且独立 ∴ )2,1(~N Y X +21)0()1()1(=Φ=>+=≤+Y X P Y X P ∴ 选B. 33.设随机变量2,1,412141101~=⎪⎪⎭⎫⎝⎛-i X i且满足1)0(21==X X P ,则==)(21X X P ( ).·160· (A )0; (B )1/4; (C )1/2; (D )1. 解:(2121P∴ )0()1()(212121==+-====X X P X X P X X P )1(21==+X X P0000=++= ∴ 选A.34.设随机变量X 取非负整数值,)1()(≥==n a n X P n ,且1=EX ,则a 的值为( ).(A )253+; (B )253-; (C )253±; (D )5/1.解:∑∑∑∑∞=∞=∞===-∞='-='====1111)1()(1n n n aX n aX nn n nX a X a naa naEX2)1(11a ax x a a X -='⎪⎭⎫⎝⎛-==∴ 253,013,)1(22±==+--=a a a a a ,但1<a . ∴ 253-=a . ∴ 选B. 35.设连续型随机变量X 的分布函数为⎪⎩⎪⎨⎧<≥-=,1,0,1,11)(4x x x x F则X 的数学期望为( ).(A )2; (B )0; (C )4/3; (D )8/3.解:⎪⎩⎪⎨⎧<≥=-114)(5x x xx f3541114144(3dx EX x dx x x x ∞∞∞-=⋅==⨯-⎰⎰34= ∴ 选C.36.已知44.1,4.2),,(~==DX EX p n B X ,则二项分布的参数为( ). (A )6.0,4==p n ; (B )4.0,6==p n ; (C )3.0,8==p n ; (D )1.0,24==p n .解:4.06.04.244.144.14.2=⇒=÷=⇒⎭⎬⎫====p q npq DX np EX 6=n∴ 选B.37.已知离散型随机变量X 的可能值为1,0,1321==-=x x x ,且89.0,1.0==DX EX ,则对应于321,,x x x 的概率321,,p p p 为( ).(A )5.0,1.0,4.0321===p p p ;(B )1230.1,0.1,0.5p p p ===; (C )4.0,1.0,5.0321===p p p ;(D )1230.4,0.5,0.5.p p p ===⎪⎭⎪⎬⎫+==+=⇒-=+-==312222319.0)1.0(89.0)(1.0p p EX EX EX DX p p EX 1230.40.10.5p p p ⎧=⎪⇒=⎨⎪=⎩ ∴ 选A.38.设)1,1(~),1,2(~-N Y N X ,且Y X ,独立,记623--=Y X Z ,则~Z __________.(A ))1,2(N ; (B ))1,1(N ; (C ))13,2(N ; (D ))5,1(N . 解:)1,1(~)1,2(~-N Y N X 且独立∴ 2)623(=--=Y X E EZ .949413DZ DX DY =+=+=.又独立正态变量的线性组合仍为正态变量,∴ ~(2,13)Z N ∴ 选C.39.设6)(),1,2(~),9,2(~=XY E N Y N X ,则)(Y X D -之值为( ).(A )14; (B )6; (C )12; (D )4. 解:),cov(2)(Y X DY DX Y X D -+=-, 246),cov(=-=-=EXEY EXY Y X 62219)(=⨯-+=-Y X D . ∴ 选B.40.设随机变量X 的方差存在,则( ).(A )22)(EX EX =; (B )22)(EX EX ≥; (C )22)(EX EX >; (D )22)(EX EX ≤.解:0)(22≥-=EX EX DX ∴ 22)(EX EX ≥. ∴ 选D. 41.设321,,X X X 相互独立,且均服从参数为λ的泊松分布,令)(31321X X X Y ++=,则2Y 的数学期望为( ).(A )λ31; (B )2λ; (C )231λλ+; (D )λλ+231.解:321X X X 独立)(~λP )3(~)(321λP X X X ++∴λ3)()(321321=++=++X X X D X X X E3)(91)](31[321321λ=++=++X X X D X X X D 2222)(λ-=-=EY EY EY∴ 322λλ+=EY ∴选C.42.设Y X ,的方差存在,且EXEY EXY =,则( ).(A )DXDY XY D =)(; (B )DY DX Y X D +=+)(;(C )X 与Y 独立; (D )X 与Y 不独立. 解:),cov(2)(Y X DY DX Y X D ++=+DY DX EXEY EXY DY DX +=-++=)(2 ∴选B.43.若随机变量Y X ,满足)()(Y X D Y X D -=+,且0>DXDY ,则必有( ).(A )Y X ,独立; (B )Y X ,不相关; (C )0=DY ; (D )0)(=XY D .解:Y X P Y X Y X D Y X D ,00),cov()()(⇒=⇒=⇒-=+不相关. ∴ 选B.44.设Y X ,的方差存在,且不等于0,则DY DX Y X D +=+)(是YX ,( ).(A )不相关的充分条件,但不是必要条件; (B )独立的必要条件,但不是充分条件; (C )不相关的必要条件,但不是充分条件; (D )独立的充分必要条件.解:由()cov(,)00D X Y DX DY X Y X ρ+=+⇔=⇔=⇔与Y 不相关 ∴ DY DX Y X D +=+)(是不相关的充要条件. A 、C 不对. 由独立DY DX Y X D +=+⇒)(,反之不成立 ∴ 选B.45.设Y X ,的相关系数1=XY ρ,则( )(A )X 与Y 相互独立; (B )X 与Y 必不相关; (C )存在常数b a ,使1)(=+=b aX Y P ; (D )存在常数b a ,使1)(2=+=b aX Y P . 解:⇔=1||XY ρ存在b a ,使1)(=+=b aX Y P ∴ 选C.46.如果存在常数)0(,≠a b a ,使1)(=+=b aX Y P ,且+∞<<DX 0,那么Y X ,的相关系数ρ为( ).(A )1; (B )–1; (C )||1ρ=; (D )||1ρ<. 解:aDX X X a b aX X Y X ==+====),cov(),cov(),cov(1以概率 DX a DY 21以概率==== ||||),cov(1a a DX a aDX DYDX Y X XY=====⋅=以概率ρ||1ρ∴=,以概率1成立. ∴ 选C.47.设二维离散型随机变量),(Y X 的分布律为则( ).(A )Y X ,不独立; (B )Y X ,独立; (C )Y X ,不相关; (D )Y X ,独立且相关.解:1.0)0,0(===Y X P)2.01.0)(25.005.01.0()0()0(+++===Y P X P 12.03.04.0=⨯= )0()0()0,0(==≠==Y P X P Y X P ∴ X 与Y 不独立. ∴ 选A.48.设X 为连续型随机变量,方差存在,则对任意常数C 和0>ε,必有( ).(A )εε/||)|(|C X E C X P -=≥-; (B )εε/||)|(|C X E C X P -≥≥-; (C )εε/||)|(|C X E C X P -≤≥-; (D )2/)|(|εεDX C X P ≤≥-. 解:||||||(||)()()X C X C X C P X C f x dx f x dx εεεε-≥-≥--≥=≤⎰⎰||1()||X C f x dx E X C εε+∞-∞-≤=-⎰∴ 选C.49.设随机变量X 的方差为25,则根据切比雪夫不等式,有)10|(|<-EX X P ( ).(A )25.0≤; (B )75.0≤; (C )75.0≥; (D )25.0≥. 解:75.0431002511)10|(|2==-=-≥<-εDXEX X P ∴ 选C.50.设 ,,21X X 为独立随机变量序列,且i X 服从参数为λ的泊松分布,,2,1=i ,则( ).(A ))(lim 1x x n n X P n i i n Φ=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤-∑=∞→λλ;(B )当n 充分大时,∑=ni iX1近似服从标准正态分布; (C )当n 充分大时,∑=ni iX1近似服从),(λλn n N ;(D )当n 充分大时,)()(1x x XP ni iΦ≈≤∑=.解:由独立同分布中心极限定理∑∞→=⇒nn i iX1近似服从),(λλn n N∴ 选C51.设 ,,21X X 为独立随机变量序列,且均服从参数为λ的指数分布,则( ).(A ))(/lim 21x x n n X P n i i n Φ=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤-∑=∞→λλ; (B ))(lim 1x x n n X P n i i n Φ=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤-∑=∞→λ;(C ))(/11lim 21x x X P n i i n Φ=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤-∑=∞→λλ; (D )).(lim 1x x n n X P n i i n Φ=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤-∑=∞→λ解:λ1=i EX 21λ=i DX λnX E n i =⎪⎭⎫ ⎝⎛∑1 21λn X D n i =⎪⎭⎫ ⎝⎛∑由中心极限定理⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤-∑∞→x n nX P n i n 21lim λλ⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤-=∑∞→x n n X P n i n 1lim λ)(x Φ=. ∴ 选B.52.设4321,,,X X X X 是总体),(2σμN 的样本,μ已知,2σ未知,则不是统计量的是( ).(A )415X X +; (B )41ii Xμ=-∑;(C )σ-1X ; (D )∑=412i iX.统计量是不依赖于任何未知参数的连续函数. ∴ 选C.53.设总体n X X X p B X ,,,),,1(~21 为来自X 的样本,则=⎪⎭⎫ ⎝⎛=n k X P ( ).(A )p ; (B )p -1;(C )k n k k n p p C --)1(; (D )k n k k n p p C --)1(.解:n X X X 21相互独立且均服从),1(p B 故 ∑=ni ip n B X1),(~即 ),(~p n B X n 则()()(1)k k n k n k P X P nX k C p p n-====- ∴ 选C.54.设n X X X ,,,21 是总体)1,0(N 的样本,X 和S 分别为样本的均值和样本标准差,则( ).(A ))1(~/-n t S X ; (B ))1,0(~N X ;(C ))1(~)1(22--n S n χ; (D ))1(~-n t X n .解:∑==ni i X n X 11 0=X E ,)1,0(~112n N X n n n X D ∴== B 错 )1(~)1(222--n S n χσ )1(~)1(1)1(2222--=-∴n S n S n χ)1(~-n t n SX . ∴ A 错.∴ 选C.55.设n X X X ,,,21 是总体),(2σμN 的样本,X 是样本均值,记=21S∑∑∑===--=-=--n i n i n i i i i X n S X X n S X X n 1112232222)(11,)(1,)(11μ,∑=-=n i i X n S 1224)(1μ,则服从自由度为1-n 的t 分布的随机变量是( ).(A )1/1--=n S X T μ; (B )1/2--=n S X T μ;(C )nS X T /3μ-=; (D )n S X T /4μ-=解:)1(~)(2212--∑=n X Xni iχσ)1,0(~N n X σμ-)1(~1)(1122----=∑=n t n X XnX T ni iσσμ)1(~11/)(222---=--=n t n S X n nS n X T μμ ∴ 选B.56.设621,,,X X X 是来自),(2σμN 的样本,2S 为其样本方差,则2DS 的值为( ).(A )431σ; (B )451σ; (C )452σ; (D ).522σ 解:2126,,,~(,),6X X X N n μσ= ∴)5(~5222χσS由2χ分布性质:1052522=⨯=⎪⎪⎭⎫ ⎝⎛σS D即442522510σσ==DS ∴ 选C.57.设总体X 的数学期望为n X X X ,,,,21 μ是来自X 的样本,则下列结论中正确的是( ).(A )1X 是μ的无偏估计量; (B )1X 是μ的极大似然估计量; (C )1X 是μ的一致(相合)估计量; (D )1X 不是μ的估计量. 解:11EX EX X μ==∴是μ的无偏估计量.∴ 选A.58.设n X X X ,,,21 是总体X 的样本,2,σμ==DX EX ,X 是样本均值,2S 是样本方差,则( ).(A )2~,X N n σμ⎛⎫ ⎪⎝⎭; (B )2S 与X 独立;(C ))1(~)1(222--n S n χσ; (D )2S 是2σ的无偏估计量. 解:已知总体X 不是正态总体 ∴(A )(B )(C )都不对.∴ 选D.59.设n X X X ,,,21 是总体),0(2σN 的样本,则( )可以作为2σ的无偏估计量.(A )∑=n i i X n 121; (B )∑=-n i i X n 1211; (C )∑=n i i X n 11; (D )∑=-ni i X n 111. 解:2222)(,0σ==-==i i i i i EX EX EX DX EX22121)1(σσ=⋅=∑n nX n E n i∴ 选A.60.设总体X 服从区间],[θθ-上均匀分布)0(>θ,n x x ,,1 为样本,则θ的极大似然估计为( )(A )},,max {1n x x ; (B )},,min{1n x x (C )|}|,|,max {|1n x x (D )|}|,|,min{|1n x x解:1[,]()20x f x θθθ⎧∈-⎪=⎨⎪⎩其它似然正数∏==ni i n x f x x L 11),();,,(θθ 1,||1,2,,(2)0,i nx i n θθ⎧≤=⎪=⎨⎪⎩其它此处似然函数作为θ函数不连续 不能解似然方程求解θ极大似然估计∴ )(θL 在)(n X =θ处取得极大值 |}|,|,max{|ˆ1nn X X X ==θ ∴ 选C.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
西南石油大学《概率论与数理统计》考试题及答案
一、填空题(每小题3分,共30分)
1、“事件,,A B C 中至少有一个不发生”这一事件可以表示为 .
2、设()0.7,()0.3P A P AB ==,则()P A B =________________.
3、袋中有6个白球,5个红球,从中任取3个,恰好抽到2个红球的概率 .
4、设随机变量X 的分布律为(),(1,2,,8),8
a P X k k ===则a =_________. 5、设随机变量X 在(2,8)内服从均匀分布,则(24)P X -≤<= . 6、设随机变量X 的分布律为,则2Y X =的分布律是 .
2101
1811515515
k X
p -- 7、设随机变量X 服从参数为λ的泊松分布,且已知,X X E 1)]2)(1[(=-- 则=λ .
8、设129,,,X X X 是来自正态总体(2,9)N -的样本,X 是样本均植,则X 服从的分布是
.
二、(本题12分)甲乙两家企业生产同一种产品.甲企业生产的60件产品中有12件是次品,乙
企业生产的50件产品中有10件次品.两家企业生产的产品混合在一起存放,现从中任取
1件进行检验.求:
(1)求取出的产品为次品的概率;
(2)若取出的一件产品为次品,问这件产品是乙企业生产的概率.
三、(本题12分)设随机变量X 的概率密度为 ,03()2,342
0,
kx x x f x x ≤<⎧⎪⎪=-≤≤⎨⎪⎪⎩其它 (1)确定常数k ; (2)求X 的分布函数()F x ; (3)求
712P X ⎧⎫<≤⎨⎬⎩
⎭. 四、(本题12分)设二维随机向量(,)X Y 的联合分布律为
\012
10.10.20.1
2
0.10.2
Y X a 试求: (1) a 的值; (2)X 与Y 的边缘分布律; (3)X 与Y 是否独立?为什么?
五、(本题12分) 设随机变量X 的概率密度为 (),01,2,12,0,.x x f x x x ≤<⎧⎪=-≤≤⎨⎪⎩
其他 求()(),E X D X
一、填空题(每小题3分,共30分)
1、ABC 或A B C
2、0.6
3、2156311C C C 或411或0.3636
4、1
5、13
6、
20
141
31555
k X p 7、1 8、(2,1)N - 二、解 设12,A A 分别表示取出的产品为甲企业和乙企业生产,B 表示取出的零件为次品,则
由已知有
1212606505121101(),(),(|),(|)1101111011605505
P A P A P B A P B A ======== .................. 2分 (1)由全概率公式得 112261511()()(|)
()(|)1151155P B P A P B A P A P B A =+=⨯+⨯= ............................................ 7分 (2)由贝叶斯公式得
22251()()5115()1()11
5
P A P B A P A B P B ⨯=== ................................................................................. 12分 三、(本题12分)
解 (1)由概率密度的性质知
340391()21224x f x dx kxdx dx k +∞-∞⎛⎫=+-=+= ⎪⎝⎭⎰⎰⎰ 故16
k =. ..................................................................................................................................................... 3分 (2)当0x ≤时,()()0x
F x f t dt -∞==⎰;
当03x <<时, 2011()()612
x x
F x f t dt tdt x -∞===⎰⎰; 当34x ≤<时, 320311()()223624x x t F x f t dt tdt dt x x -∞⎛⎫==+-=-+- ⎪⎝
⎭⎰⎰⎰; 当4x ≥时, 34031()()2162x t F x f t dt tdt dt -∞⎛⎫==+-= ⎪⎝
⎭⎰⎰⎰; 故X 的分布函数为
220,01,0312()123,3441,4x x x F x x x x x ≤⎧⎪⎪<<⎪=⎨⎪-+-≤<⎪⎪≥⎩
.......................................................................................... 9分 (3) 77151411(1)22161248P X F F ⎧⎫⎛⎫<≤=-=-=⎨⎬ ⎪⎩⎭⎝⎭ ....................................................................... 12分 四、
解 (1)由分布律的性质知
01.0.20.10.10.
a +++++= 故0.3a = .................................................................................................................................................... 4分。