概率统计基础知识

合集下载

概率统计基础知识--简略版

概率统计基础知识--简略版

(a)A-B
(b)A-B( A B )
事件运算性质:
—— 交换律:A B B A ,A B B A —— 结合律 A B C A B C 运算相同:
A B C A B C
—— 分配律 A B C A B A C 运算不同:
事件H=“两次抽到的结果一致” ={(0,0), (1,1)} 若这批产品10000件中合格品与不合格品各占一半,且产品分布均匀随机,则 • P(A)=? • P(B)=? • P(C)=? • P(H)=? 若批产品总数10000件中不合格品有2000件,结果会怎样呢?
2016/4/16 中级概率1 19
在一个随机现象中有两个事件A与B,若 事件A与B没有相同的样本点,则称A与B互不 相容。
可推广到三个或更多个事件间的互不相容
—— 相等:A=B即AB且B A 两个随机事件A与B,若样本A与B含有相同的 样本点,则称事件A与B相等。
投掷骰子2次:A={(x,y):x + y =奇数} B={(x,y):x与y的奇偶性不同} 则: A=B= (1,2),(1,4),(1,6),(2.1),(2,3),(2,5) (3,2),(3,4),(3,6)…
2016/4/16
中级概率1
25
三、概率的性质及其运算法则 概率的性质:(可由概率的定义看出)
—— 性质1:对任意事件A,有0≤P(A)≤1;
—— 性质2: P ( A) 1 P ( A)
—— 性质3:若AB 则P(A-B)=P(A)-P(B)
三、概率的性质及其运算法则 概率的性质:(可由概率的定义看出) —— 性质4:P(A∪B)=P(A)+P(B)-P(AB)

初中概率与统计知识点整理

初中概率与统计知识点整理

初中概率与统计知识点整理概率与统计是数学中的一个重要分支,主要研究随机现象的规律性和数量关系。

初中阶段的概率与统计主要包括概率的基本概念、概率的计算方法、抽样调查、数据的整理与分析等内容。

下面将对初中概率与统计的知识点进行整理。

一、概率的基本概念1.随机事件:不确定性的事件称为随机事件,用大写字母A、B、C等表示。

2.样本空间:随机试验的所有可能结果组成的集合称为样本空间,用Ω表示。

3.事件的概率:事件A发生的可能性大小称为事件A的概率,用P(A)表示,0≤P(A)≤14.必然事件和不可能事件:概率为1的事件称为必然事件,概率为0的事件称为不可能事件。

5.互斥事件和对立事件:互斥事件指两个事件不可能同时发生,对立事件指两个事件至少有一个发生。

二、概率的计算方法1.古典概型:指每次试验结果只有有限种可能且各结果发生的概率相等的情况。

2.几何概率:指通过几何方法计算概率,如在长方形中随机取点计算概率。

3.组合方法:根据有放回或无放回以及是否考虑顺序进行组合的计算方法。

三、抽样调查1.抽样方法:包括简单随机抽样、系统抽样、分层抽样、整群抽样等。

3.抽样误差:由于采样方法、样本数量不足等导致的偏差称为抽样误差。

四、数据的整理与分析1.数据的度量:包括中心位置度量(如均值、中位数)、离散程度度量(如极差、方差)和分布形状度量(如偏度、峰度)等。

2.统计图表:包括直方图、饼图、折线图、箱线图等。

3.数据的描述性分析:通过数据的度量和统计图表,描述数据的特征和规律。

以上是初中概率与统计的主要知识点整理,希望对您的学习有所帮助。

在学习过程中,要注重理解概念,掌握计算方法,提高数据整理与分析的能力,培养科学思维和统计思维,不断强化应用能力,为今后的学习打下扎实的基础。

祝您学习进步!。

初中概率统计知识点总结

初中概率统计知识点总结

初中概率统计知识点总结概率统计是数学中的一个分支,是对现实生活中事件出现的可能性进行研究和计算的一门学科,也是统计学的一部分。

概率统计的应用非常广泛,从商业到科学领域都有应用。

初中阶段的概率统计主要介绍了概率的概念、概率计算和统计学的基础知识,下面我们来总结一下初中概率统计的主要知识点。

一、概率的基本概念1. 事件和样本空间事件是指在一次随机试验中可能发生的结果,通常记作A、B等。

样本空间是指随机试验的所有可能结果的集合,一般用Ω表示。

2. 概率的定义概率是指某一事件发生的可能性大小,通常用P(A)表示事件A的概率。

概率的取值范围是0到1,其中0表示事件A不可能发生,1表示事件A一定发生。

3. 等可能事件如果事件A和事件B在同一个样本空间中,且发生的可能性相同,称事件A和事件B是等可能事件,此时有P(A) = P(B) = 1/ n (n 是样本空间中的元素个数)。

4. 互斥事件如果事件A和事件B不能同时发生,称事件A和事件B是互斥事件,此时有P(A∪B) = P(A) + P(B)。

5. 事件的对立事件如果事件A的对立事件发生的概率为1-P(A),称事件A的对立事件。

二、概率的计算1. 加法法则对于任意两事件A和B,有P(A∪B) = P(A) + P(B) - P(A∩B)。

2. 条件概率在事件B已经发生的条件下,事件A发生的概率,表示为P(A|B),有P(A|B) = P(A∩B) / P(B)。

3. 乘法法则对于两个事件A和B,有P(A∩B) = P(A) * P(B|A) = P(B) * P(A|B)。

4. 全概率公式对于事件B和事件A的任意一个划分,有P(A) = ΣP(Bi) * P(A|Bi)。

五、统计学的基础知识1. 数据的表示统计学中常用的数据表示有频数分布、频率分布、累积频数、累积频率等。

2. 平均数一组数据的平均数是指所有数据的和除以数据的个数,用来表示一组数据的中心倾向。

高考数学概率统计知识点总结(文理通用)

高考数学概率统计知识点总结(文理通用)

概率与统计知识点及专练(一)统计基础知识:1. 随机抽样:(1).简单随机抽样:设一个总体的个数为N ,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样.常用抽签法和随机数表法.(2).系统抽样:当总体中的个数较多时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取1个个体,得到所需要的样本,这种抽样叫做系统抽样(也称为机械抽样).(3).分层抽样:当已知总体由差异明显的几部分组成时,常将总体分成几部分,然后按照各部分所占的比进行抽样,这种抽样叫做分层抽样.2. 普通的众数、平均数、中位数及方差: (1).众数:一组数据中,出现次数最多的数(2).平均数:常规平均数:12nx x x x n ++⋅⋅⋅+=(3).中位数:从大到小或者从小到大排列,最中间或最中间两个数的平均数(4).方差:2222121[()()()]n s x x x x x x n =-+-+⋅⋅⋅+-(5).标准差:s3 .频率直方分布图中的频率:(1).频率 =小长方形面积:f S y d ==⨯距;频率=频数/总数; 频数=总数*频率(2).频率之和等于1:121n f f f ++⋅⋅⋅+=;即面积之和为1: 121n S S S ++⋅⋅⋅+=4. 频率直方分布图下的众数、平均数、中位数及方差: (1).众数:最高小矩形底边的中点(2).平均数:112233n n x x f x f x f x f =+++⋅⋅⋅+ 112233n n x x S x S x S x S =+++⋅⋅⋅+(3).中位数:从左到右或者从右到左累加,面积等于0.5时x 的值(4).方差:22221122()()()nn s x x f x x f x x f =-+-+⋅⋅⋅+-5.线性回归直线方程:(1).公式:ˆˆˆy bx a=+其中:1122211()()ˆ()n ni i i ii in ni ii ix x y y x y nxybx x x nx====---∑∑==--∑∑(展开)ˆˆa y bx=-(2).线性回归直线方程必过样本中心(,) x y(3).ˆ0:b>正相关;ˆ0:b<负相关(4).线性回归直线方程:ˆˆˆy bx a=+的斜率ˆb中,两个公式中分子、分母对应也相等;中间可以推导得到6. 回归分析:(1).残差:ˆˆi i ie y y=-(残差=真实值—预报值)分析:ˆie越小越好(2).残差平方和:2 1ˆ() ni iiy y =-∑分析:①意义:越小越好;②计算:222211221ˆˆˆˆ()()()() ni i n niy y y y y y y y =-=-+-+⋅⋅⋅+-∑(3).拟合度(相关指数):2 2121ˆ()1()ni iiniiy y Ry y==-∑=--∑分析:①.(]20,1R∈的常数;②.越大拟合度越高(4).相关系数:()()n ni i i ix x y y x y nx y r---⋅∑∑==分析:①.[1,1]r∈-的常数;②.0:r>正相关;0:r<负相关③.[0,0.25]r∈;相关性很弱;(0.25,0.75)r∈;相关性一般;[0.75,1]r∈;相关性很强7. 独立性检验:(1).2×2列联表(卡方图): (2).独立性检验公式①.22()()()()()n ad bc k a b c d a c b d -=++++②.上界P 对照表:(3).独立性检验步骤:①.计算观察值k :2()()()()()n ad bc k a b c d a c b d -=++++ ②.查找临界值0k :由犯错误概率P ,根据上表查找临界值0k③.下结论:0k k ≥即认为有P 的没把握、有1-P 以上的有把握认为两个量相关;0k k <:即认为没有1-P 以上的把握认为两个量是相关关系。

高中数学统计与概率知识点

高中数学统计与概率知识点

高中数学统计与概率知识点一、统计学基础1. 数据收集- 普查与抽样调查- 数据的类型(定量数据与定性数据)2. 数据整理与展示- 频数分布表- 直方图- 饼图- 条形图3. 中心趋势的度量- 平均数(算术平均数)- 中位数- 众数4. 离散程度的度量- 极差- 四分位距- 方差与标准差5. 相关性分析- 相关系数- 散点图二、概率论基础1. 随机事件- 事件的定义- 必然事件与不可能事件- 互斥事件与独立事件2. 概率的计算- 单次试验的概率- 多次试验的概率- 条件概率- 贝叶斯定理3. 随机变量- 离散随机变量与连续随机变量 - 概率分布- 概率密度函数与概率分布函数4. 期望值与方差- 随机变量的期望值- 随机变量的方差5. 常见概率分布- 二项分布- 泊松分布- 正态分布三、统计与概率的应用1. 假设检验- 零假设与备择假设- 显著性水平- 第一类错误与第二类错误 - t检验与卡方检验2. 回归分析- 线性回归- 相关系数与决定系数3. 抽样与估计- 抽样误差- 置信区间- 最大似然估计四、综合练习题1. 选择题- 统计图表解读- 概率计算- 假设检验2. 填空题- 计算平均数、中位数、众数 - 计算方差、标准差- 概率分布的应用3. 解答题- 解释统计概念- 概率问题的求解- 应用统计方法解决实际问题五、附录1. 公式汇总- 统计学公式- 概率论公式2. 重要概念索引- 术语解释- 概念间的关系3. 参考资料- 推荐阅读书籍- 在线资源链接请根据需要对上述内容进行编辑和调整。

这篇文章是为了提供一个关于高中数学统计与概率的知识点概览,适用于教育目的。

每个部分都包含了关键的子标题和简短的描述,以便于理解和使用。

中考数学统计与概率基础知识

中考数学统计与概率基础知识

中考数学统计与概率基础知识概率与统计是数学中的一个重要分支,也是中考数学中的一项重要内容。

通过学习概率与统计的基础知识,我们能够更好地理解和应用数学在实际生活中的意义。

本文将从概率与统计的概念、统计数据的描述与分析以及概率的计算等方面介绍中考数学中的基础知识。

一、概率与统计的概念1. 概率的定义概率是指某一事件发生的可能性大小。

概率的取值范围为0-1,其中0表示不可能发生,1表示必然发生。

一般情况下,概率用一个介于0和1之间的实数表示。

2. 统计的定义统计是指通过收集、整理和分析数据,以了解和描述一定现象或现象的规律性。

统计可以帮助我们从大量的数据中提取有用的信息,为决策提供依据。

二、统计数据的描述与分析1. 数据的收集在进行统计分析之前,首先需要进行数据的收集。

数据的收集可以通过实地调查、问卷调查、实验观测等方式进行。

收集到的数据应具有代表性,以确保统计结果准确可靠。

2. 数据的整理收集到的数据需要进行整理,包括数据的录入、分类、排序等。

通过数据的整理,可以更好地进行后续的统计分析。

3. 数据的分析数据的分析包括描述性统计和推论性统计两个方面。

描述性统计主要是对数据的基本特征进行描述,包括频数、众数、中位数、均值等。

推论性统计则是通过样本数据的分析来推断总体的特征。

三、概率的计算1. 随机事件随机事件是在一定的条件下可能发生也可能不发生的事件。

在计算概率时,首先要确定随机事件的样本空间和样本点,并根据事件发生的可能性来计算概率。

2. 概率的计算方法概率的计算主要通过以下两种方法进行:频率法和几何法。

频率法是指通过大量实验或观测数据来计算概率。

几何法是指通过对几何模型进行分析和推理来计算概率。

四、概率与统计的应用1. 随机抽样随机抽样是统计中常用的一种方法,通过从总体中随机选择一部分个体作为样本,来推断总体的特征。

使用随机抽样的方法可以减小误差,提高结果的可靠性。

2. 概率统计模型概率统计模型是利用统计学原理和概率理论来描述和分析一定现象的数学模型。

概率与统计的基础知识

概率与统计的基础知识

概率与统计的基础知识统计学是一门研究如何收集、整理、分析、解释和呈现数据的学科。

概率是统计学的基础,它被用来描述和分析在不同情况下事件发生的可能性。

本文将介绍概率与统计的基础知识,包括概率的定义、概率的计算方法、统计的概念以及统计的应用。

一、概率的定义概率是描述事件发生可能性的数值,它介于0到1之间。

0表示事件不可能发生,1表示事件一定发生。

根据概率的定义,我们可以得出以下公式:P(A) = n(A) / n(S)其中,P(A)表示事件A发生的概率,n(A)表示事件A包含的有利结果的数量,n(S)表示样本空间中可能结果的总数。

二、概率的计算方法1. 经典概率经典概率又称为古典概率,适用于样本空间中所有可能结果都是等可能发生的情况。

在这种情况下,事件A发生的概率可以通过以下公式计算:P(A) = n(A) / n(S)2. 相对频率概率相对频率概率是通过实验的结果来估计概率的方法。

通过多次实验,统计事件A发生的次数,然后将次数除以总实验次数,即可得到相对频率概率。

3. 主观概率主观概率是个体主观判断下对事件发生概率的估计。

它是依据经验、直觉和专业知识来进行的估计。

三、统计的概念统计是利用数据进行推断、决策和预测的过程。

在统计学中,数据被分为两种类型:定性数据和定量数据。

1. 定性数据定性数据是用于描述某种特征或属性的数据。

它通常用文字或符号进行表示,如性别、颜色、态度等。

2. 定量数据定量数据是用于表示数量或度量的数据。

它通常用数字进行表示,如身高、体重、温度等。

统计中的两个重要概念是总体和样本。

总体是指研究对象的全体,而样本是指从总体中随机选取的一部分。

四、统计的应用统计学在各个领域都有广泛的应用,以下是几个常见的应用领域:1. 生物统计学生物统计学是将统计学应用于生物学研究的领域。

它可以帮助研究人员分析生物实验数据、评估药物疗效以及研究遗传变异等。

2. 经济统计学经济统计学是将统计学应用于经济学研究的领域。

概率统计 第一章 概率论的基础知识

概率统计   第一章 概率论的基础知识

7 (1) P( A B) P( A) P( B) P( AB) 10 3 (2) P( A B) 1 P( A B) 10 2 (3) P( A B) P( A) P( AB) 5
条件概率
已知事件A发生的条件下,事件B发生 的概率称为A条件下B的条件概率,记 作P(B|A)
27! 3! 9! 9! 9! 50 P( A) N (S ) 203
7 10 10 3 C 27 C 20 C10 18 P( B) N (S ) 203
4、 随机取数问题
例4:从1,2,3,4,5诸数中,任取3个排成自左向右的次序, 求: (1)
A1 “所得三位数是偶数”的概率? (2) A2 “所得三位数不小于200”的概率?

任何事件均对应着样本空间的某个子集.
称事件A发生当且仅当试验的结果是子集A中的元素
例1
定义
E4: 掷一颗骰子,考察可能出现的点数。 S4={1,2,3,4,5,6}; A=“掷出偶数点” B=“掷出大于4的点 ” ={2,4,6} ={5,6} C=“掷出奇数点”={1,3,5}
样本空间的子集称为随机事件。

n n1 nm 2 ! nm 1 !n n1 nm 1 !
n! n1!....nm !
种取法.
1、抽球问题
例1:设盒中有3个白球,2个红球,现从盒中 任抽2个球,求取到一红一白的概率。
解:设事件A为取到一红一白
N (S ) C

2 5
N ( A) C C
一般地,设A、B是S中的两个事件,则
P( AB) P( B | A) P( A)
称为事件A发生的条件下事件B发生的条件概率
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
i
,离散分布 ,连续分布
Var( x) [ x E ( x)]2 f ( x)dx
a
b
如:
X
P
0
0.95
1
0.05
E ( x) 0.05
Var( x) (0 0.5)2 0.95 (1 0.5)2 0.05 0.25
均值、方差的性质
(1)E(aX b) aE( X ) b (2)Var(aX b) a 2Var( X ) (3)E( X1 X 2 ) E( X1 ) E( X 2 ) (4)Var( X1 X 2 ) Var( X1 ) Var( X 2 )
x ~ N (, ) n
2
第三节 统计基础知识
1 2 3 4
总体与样本 直方图
统计量
抽样分布
1.总体与样本
总体与个体
总体:研究对象的全体; 个体:构成总体的每个单位;
例如 某饮料生产企业用自动罐装机罐装饮料,每罐标准含量为 500ml,为保证产品的稳定性,需要每隔一定时间检查每罐饮料的
含量情况。
1 , 当x [a, b]时; f ( x) b a 其他情况, 0, 则称随机变量 X 服从均匀分布,记为:X ~ U (a, b)
2 a b ( b a ) 其均值、方差分别为: E ( X ) , Var( X ) 2 12
均匀分布密度函数曲线
指数分布
概率的统计定义
如果进行N次重复试验,事件A发生的次数为n,我们将频率n /N 看作是事件A的概率。 【如】: 1.刮发票的中奖密封时,大多得到“谢谢”。如果你刮了150张 发票,只有3张中奖,你会认为,你的中奖概率大约是3/150=0.02 ;
3.概率的性质及其运算法则
性质
0 P( A) 1 ;
第一章 概率统计基础知识
北京理工大学珠海学院 吴浩然
第一章 概率统计基础知识
1 2 3 4 5 概率基础知识 随机变量及其分布 统计基础知识 参数估计 假设检验
第一节 概率基础知识
1
事件与概率
2
概率的古典定义与统计定义
3
概率的性质及其运算法则
1.事件与概率
确定性现象 在一定条件下必然会发生的现象。 【如】:水100ºC沸腾。 随机现象 在一定条件下,并不总是出现相同结果的现象。 【如】:
(1)掷一枚硬币,出现正面或反面?
(2)一批产品中,不合格品的数量; (3)机械加工中出现的误差;
样本空间 随机现象一切可能结果(样本点)构成的全体,称为样本空 间 。 【如】: (1)掷一枚硬币。
={ 正面,反面 };
(2)一批产品中,不合格品的数量。
={ 0,1,2,3, … };
随机事件 随机现象的某些样本点构成的集合,称为事件,用大写英文字 母A、B、„、表示。表示。 【如】: (1)掷一颗骰子,出现奇数点。
E( x) xi pi
i
,离散分布 ,连续分布
E ( x) xf ( x)dx
a
b
如:
X
P
0
0.95
1
0.05
E ( x) xi pi 0 0.95 1 0.05 0.05
i
方差
方差用来表示分布的离散程度,用Var ( x)表示。其中
Var( x) [ xi E ( x)]2 pi
如果随机变量 X 的密度函数为:
f ( x) exp(x),
则称随机变量 X 服从指数分布,记为: X ~ E ( )
其均值、方差分别为:
E( X )
1

, Var ( X )
1
2
(0,0) 指数分布的密度函数曲线
中心极限定理
不论总体服从何种分布,只要样本容量足够大,样 本均值 x 的分布都大致服从正态分布:
(1)标准差不变,不同的均值,正态分布曲线的形状相同,位 置不同;均值不变,不同的标准差,正态分布曲线的位置相同,形 状不同; (2) X ~ N ( , 2 ) X ~ N (0,1) (3) (u) P(U u)
其它连续分布
均匀分布
如果随机变量 X 的密度函数为:
泊松分布
如果随机变量 X 取 x的概率为: x
P( X x) x! e , x 0,1,2,...
则称随机变量 X 服从泊松分布,记为:X ~ P( )
其均值、方差分别为: E ( X ) 、 Var( X ) 应用 1.在一定时间内,操作系统发生的故障数;
2.概率的古典定义与统计定义
概率的古典定义
利用等可能事件, P(A)=k / n,其中k 为事件A的样本点数目,
n为 的样本点数目。
【如】: 1.如果一个骰子是公平的 ,那么掷一次骰子会以等可能(概率 1/6,6种可能之一)得到1至6点的中的每一个点。 2.抛一个公平的硬币,则以等可能(概率1/2)出现正面或反面。
总体:某一批饮料; 个体:该批中每一罐饮料;
样本
从总体中抽取部分个体所组成的集合。 如: 某饮料生产企业用自动罐装机罐装橙汁饮料,每罐标准含量为 500ml,为保证产品的稳定性,需要每隔一定时间检查每罐饮料的 含量情况。现抽得10罐,测得其含量为(单位:ml) 495, 510, 498, 503, 492, 502, 505, 512, 497, 506。 样本: 10罐饮料的含量。
X
P
0
0.95
1
0.05
连续型随机变量的分布
定义
随机变量 X 如果能够在一区间内取任何值,则该变量称为在此 区间内是连续的,其分布称为连续型概率分布,用密度函数 f ( x) 表示。
逐渐增加矩形条数目的直方图和一个形状类似的密度曲线。
3.随机变量分布的均值、方差
均值
均值用来表示分布的中心位置,用 E ( x) 表示。其中
直方图:1.用于表示连续性变量的频数(频率)分布; 2.横轴表示分组,纵轴表示频数或频率。
户 数 比 重 (%)
25 20 15 10 5
结论:收入较少的家庭 占据多数,而收入较高 的家庭则占少数。

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 →
2.直方图
频数(频率)表
2007年某地区农村居民家庭纯收入数据 按纯收入分组(元) 500以下 500~1000 1000~1500 1500~2000 2000~2500 2500~3000 3000~3500 3500~4000 4000~4500 4500~5000 5000以上 户数比重(%) 2.28 12.45 20.35 19.52 14.93 10.35 6.56 4.13 2.68 1.81 4.94
P( A) 1 P( A) ;
A B P( A) P( B) ; A B P( B A) P( B) P( A) ;
P( A B) P( A) P( B) P( A B) ;
条件概率及概率的乘法法则
条件概率
在事件B已发生的条件下,事件A发生的概率,称为事件A在给 定B下的条件概率,记作P(A|B)。 其中:P(A|B)=
P( A B) P( B)
例如 掷一颗骰子,事件A表示点数为3,事件B表示点数为6,则 P(A|B)表示第一次骰子的点数为6,第二次点数为3的概率。
独立性和独立事件的概率
定义
如果事件A和事件B有如下关系:
P( A B) P( A) P( B)
则称事件A和事件B相互独立。 例如 如果你有一个固定电话和一个手机,假定固定电话出毛病的概 率为0.01,而手机出问题的概率为0.05,那么,两个电话同时出毛
2. 一平方米玻璃上气泡的个数;
常见的连续分布
正态分布
如果随机变量 X 的密度函数为:
f ( x) (x )2 exp( ), 2 2 2 1
则称随机变量 X 服从正态分布(normal distribution),记为:
X ~ N ( , 2 )
正态分布的曲线及性质
正态分布曲线
离散型随机变量的分布
定义
如果随机变量X只取有限个或可列个可能值,而且以确定的概 率取这些不同的值,则称X为离散型随机变量。 一般列成概率分布表: X P 性质 1. 2. x1 p1 x2 p2
„ „
xk

pk

pi 0
p
k 1
n
k
例如
一批产品的废品率为5%,从中任意抽取一个进行检验,用随 机变量描述废品出现的情况。 解: 用X =1表示产品为废品, X =0表示产品为合格品。 则:
描述样本集中位置的统计量
(1)样本均值: 设样本数据为:x1 ,x2 ,… ,xn ,样本均值的计算公式为:
x x xn x 1 2 n
x
i 1
n
i
n
(2)中位数:样本数据排序后,处于中间位置上的值,用Me表 示;
(3)众数:样本数据中出现次数最多的值,用Mod表示;
描述样本分散程度的统计量
病的概率是多少呢?
第二节 随机变量及其分布1 2 3 4随机变量 Nhomakorabea机变量的分布
随机变量分布的均值、方差
常用分布及中心极限定理
1.随机变量
随机变量
表示随机现象各种结果的变量,一般大写英文字母X、Y、Z表 示。
例如 抛一枚硬币, X表示正面出现的次数,它是随机变量,可取0或 1两个值。
2.随机变量的分布
A ={ 1,3,5 };
事件之间的关系及运算
事件的包含
若事件A发生必然导致事件B发生,则称事件B包含事件A,记 作 A B 。用图形表示为:
相关文档
最新文档