概率论与数理统计基础知识

合集下载

概率论与数理统计-基础知识

概率论与数理统计-基础知识

P( B) P( Ai ) P( B | Ai )
i 1
n
并且要推测“原 因”时,一般使 用逆概公式。
贝叶斯公式: P( A j | B) P( Aj ) P( B | A j ) ( P( B) 0) n (逆概公式) P( Ai ) P( B | Ai )
i 1
对于事件A,B,若P(AB)=P(A)P(B)则称事件A ,B相互独立.
总结: X~ B(1,p) B(n,p) P() U(a,b) EX p np (a+b)/2
DX p(1-p) np(1-p)Biblioteka (a-b)2/12 2
方差的性质 1.设C是常数,则 D(C)=0. 2.设C是常数,则 D(CX)=C2D(X). 3.设X,Y为随机变量,则 D(XY)=D(X)+D(Y)2E[(X-EX)(Y - EY)] =D(X)+D(Y)2[E(XY)-E(X)E(Y) ]. 特别:(1)若Y为常数b,则 D(X+b)=D(X) (2)若X,Y相互独立,则 D(XY)=D(X)+D(Y). 推广:若X1,X2, … ,Xn 相互独立,则有 D(X1X2… Xn)=D(X1)+D(X2)+…+D(Xn)
3.泊松分布:P(X=k)=ke-/k!,(k=0,1,…),记作P()
分布函数 设 X 是一个随机变量,x 是任意实数,函数 F(x)= P(X≤x) 称为 X 的分布函数,也记作FX(x). 分布函数的性质
1. 0≤F(x)≤1; 3. F(x)是单调不减的;
2. F(-∞)=0,F(+∞)=1 ;
随机事件间的关系 1.包含:AB(B发生则A发生) 2.相等:A=B(B发生当且仅当A发生) 3.和(并)事件:AB(A、B至少发生一个) 4.积(交)事件:AB(A、B都发生) 5.差事件:A-B=A-AB=AB 6.互斥事件(互不相容):AB= 7.对立事件:AB=,AB=,此时A=B,B=A. 8.完备事件组:样本空间的一个划分。

概率论与数理统计总复习知识点归纳

概率论与数理统计总复习知识点归纳

概率论与数理统计总复习知识点归纳1.概率论的基础概念-随机事件、样本空间和事件的关系。

-频率和概率的关系,概率的基本性质。

-古典概型和几何概型的概念。

-条件概率和乘法定理。

-全概率公式和贝叶斯公式。

-随机变量和概率分布函数的概念。

-离散型随机变量和连续型随机变量的定义、概率质量函数和概率密度函数的性质。

2.随机变量的数字特征-随机变量的数学期望、方差、标准差和切比雪夫不等式。

-协方差、相关系数和线性变换的数学期望和方差公式。

-两个随机变量的和、差、积的数学期望和方差公式。

3.大数定律和中心极限定理-大数定律的概念和三级强大数定律。

-中心极限定理的概念和中心极限定理的两种形式。

4.数理统计的基本概念和方法-总体、样本和抽样方法的概念。

-样本统计量和抽样分布的概念。

-点估计和区间估计的概念。

-假设检验的基本思想和步骤。

-正态总体的参数的假设检验和区间估计。

5.参数估计和假设检验的方法和推广-极大似然估计的原理和方法。

-矩估计的原理和方法。

-最小二乘估计的原理和方法。

-一般参数的假设检验和区间估计。

6.相关分析和回归分析-相关系数和线性相关的概念和性质。

-回归分析的一般原理。

-简单线性回归的估计和检验。

7.非参数统计方法-秩和检验和符号检验的基本思想和应用。

-秩相关系数的计算和检验。

8.分布拟合检验和贝叶斯统计-卡方拟合检验的原理和方法。

-正态总体参数的拟合优度检验。

-贝叶斯估计的基本思想和方法。

9.时间序列分析和质量控制-时间序列的基本性质和分析方法。

-时间序列预测的方法和模型。

-质量控制的基本概念和控制图的应用。

以上是概率论与数理统计总复习知识点的归纳,希望对你的复习有所帮助。

概率论与数理统计知识点总结(免费超详细版)80669

概率论与数理统计知识点总结(免费超详细版)80669

《概率论与数理统计》第一章 概率论的基本概念§2.样本空间、随机事件1.事件间的关系 B A ⊂则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生B }x x x { ∈∈=⋃或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ⋃发生B }x x x { ∈∈=⋂且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ⋂发生B }x x x { ∉∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生φ=⋂B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的且S =⋃B A φ=⋂B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件2.运算规则 交换律A B B A A B B A ⋂=⋂⋃=⋃结合律)()( )()(C B A C B A C B A C B A ⋂=⋂⋃⋃=⋃⋃ 分配律 )()B (C A A C B A ⋃⋂⋃=⋂⋃)( ))(()( C A B A C B A ⋂⋂=⋃⋂ 徳摩根律B A B A A B A ⋃=⋂⋂=⋃ B —§3.频率与概率定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件:(1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P(3)可列可加性:设n A A A ,,,21Λ是两两互不相容的事件,有∑===nk kn k kA P A P 11)()(Y (n 可以取∞)2.概率的一些重要性质: (i ) 0)(=φP(ii )若n A A A ,,,21Λ是两两互不相容的事件,则有∑===nk kn k kA P A P 11)()(Y (n 可以取∞)(iii )设A ,B 是两个事件若B A ⊂,则)()()(A P B P A B P -=-,)A ()B (P P ≥ (iv )对于任意事件A ,1)(≤A P(v ))(1)(A P A P -= (逆事件的概率)(vi )对于任意事件A ,B 有)()()()(AB P B P A P B A P -+=⋃§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同 若事件A包含k个基本事件,即}{}{}{2]1k i i i e e e A Y ΛY Y =,里个不同的数,则有中某,是,,k k n 2,1i i i ,21ΛΛ()中基本事件的总数包含的基本事件数S }{)(1j A n k e P A P kj i ===∑= §5.条件概率(1) 定义:设A,B 是两个事件,且0)(>A P ,称)()()|(A P AB P A B P =为事件A 发生的条件下事件B 发生的条件概率(2) 条件概率符合概率定义中的三个条件1。

数学概率论与数理统计的基础知识

数学概率论与数理统计的基础知识

数学概率论与数理统计的基础知识概率论和数理统计是数学中的重要分支,它们研究了随机事件的发生规律以及通过对数据进行统计分析来了解事物的规律性。

本文将介绍数学概率论与数理统计的基础知识,帮助读者了解这两个领域的重要概念和方法。

一、概率论的基础知识1. 随机试验和样本空间随机试验是在相同条件下具有不确定性的实验,其结果不能事先预知。

样本空间是随机试验所有可能结果的集合。

2. 事件和概率事件是样本空间的子集,表示一些感兴趣的结果。

概率是事件发生的可能性大小的度量,介于0和1之间。

3. 古典概型古典概型是指具有有限样本空间且样本点等可能出现的随机试验。

在古典概型中,事件的概率可以通过样本点的数目来计算。

4. 条件概率条件概率是指事件B在另一个事件A已经发生的条件下发生的概率,表示为P(B|A)。

条件概率的计算可以使用“乘法规则”。

5. 独立事件事件A和B称为独立事件,如果事件A的发生不会对事件B的发生产生影响。

独立事件的概率计算可以使用“乘法规则”。

二、数理统计的基础知识1. 总体和样本总体是指研究对象的全体,而样本是从总体中选取的一部分个体。

统计学中,我们通常通过对样本的统计分析来推断总体的特征。

2. 随机变量和概率分布随机变量是取值具有随机性的变量,可以是离散的或连续的。

概率分布描述了随机变量各个取值的概率。

3. 参数和统计量参数是总体的特征指标,统计量是样本的特征指标。

通过样本统计量的计算,我们可以对总体参数进行估计。

4. 抽样分布和中心极限定理抽样分布是指统计量的分布,它反映了统计量的随机性。

中心极限定理表明,当样本容量足够大时,样本均值的抽样分布近似服从正态分布。

5. 置信区间和假设检验置信区间用于对总体参数进行估计,假设检验用于对总体参数的假设进行推断。

通过置信区间和假设检验,我们可以对统计结论进行推断和验证。

三、应用案例概率论和数理统计在各个领域都有广泛的应用。

例如,金融领域中的风险评估和投资决策,医学领域中的临床试验和流行病学研究,工程领域中的质量控制和可靠性分析等等。

概率论与数理统计知识点总结

概率论与数理统计知识点总结

概率论与数理统计知识点总结一、概率论知识点总结:1.随机事件:随机事件是指在一次试验中,可能发生也可能不发生的事件。

例如:掷硬币的结果、抽取扑克牌的花色等。

2.概率:概率是描述随机事件发生可能性大小的数值。

概率的取值范围是[0,1],表示事件发生的可能性大小,0表示不可能发生,1表示一定会发生。

3.古典概型:古典概型是指每种可能的结果发生的概率相等的情形。

例如:掷骰子的结果、抽取彩色球的颜色等。

4.随机变量:随机变量是用来描述试验结果的数值,它的取值是根据随机事件的结果确定的。

例如:掷骰子的点数、抽取扑克牌的点数等。

5.概率分布:随机变量的概率分布描述了每个取值发生的概率。

常见的概率分布有离散概率分布和连续概率分布,如二项分布、正态分布等。

6. 期望值:期望值是衡量随机变量取值的平均值。

对于离散型随机变量,期望值=E[X]=∑[xP(X=x)];对于连续型随机变量,期望值=E[X]=∫[x f(x)dx],其中f(x)为概率密度函数。

7. 方差:方差是衡量随机变量取值与期望值之间的偏离程度。

方差=Var(X)=E[(X-E[X])^2]。

8.独立性:两个随机事件或随机变量之间的独立性表示它们的发生与否或取值无关联。

独立性的判定通常通过联合概率、条件概率等来进行推导。

二、数理统计知识点总结:1.样本与总体:在统计学中,样本是指从总体中选取的具体观测数据。

总体是指要研究的对象的全部个体或事物的集合。

2.参数与统计量:参数是描述总体特征的数值,如总体均值、总体方差等。

统计量是根据样本计算得到的参数估计值,用来估计总体参数。

3.抽样方法:抽样方法是从总体中选取样本的方法,常见的抽样方法有简单随机抽样、系统抽样、整群抽样等。

4.统计分布:统计分布是指样本统计量的分布。

常见的统计分布有t分布、F分布、x^2分布等,其中t分布适用于小样本、F分布适用于方差比较、x^2分布适用于拟合优度检验等。

5.点估计与区间估计:点估计是以样本统计量为基础,估计总体参数的数值。

概率论与数理统计知识点总结(免费超详细版)

概率论与数理统计知识点总结(免费超详细版)

《概率论与数理统计》第一章概率论的基本概念§2.样本空间、随机事件1.事件间的关系 A B 则称事件 B 包含事件 A ,指事件 A 发生必然导致事件 B 发生A B {x x A或x B} 称为事件 A 与事件 B 的和事件,指当且仅当 A ,B 中至少有一个发生时,事件 A B 发生A B {x x A且x B} 称为事件 A 与事件 B 的积事件,指当A,B 同时发生时,事件A B 发生A—B {x x A且x B} 称为事件A 与事件 B 的差事件,指当且仅当 A 发生、B 不发生时,事件 A — B 发生A B ,则称事件 A 与B 是互不相容的,或互斥的,指事件 A 与事件 B 不能同时发生,基本事件是两两互不相容的A B S A B ,则称事件 A 与事件 B 互为逆事件,又称事件 A 与事件 B 互为且对立事件2.运算规则交换律 A B B A A B B A结合律(A B) C A (B C) ( A B)C A(B C)分配律 A (B C)(A B) ( A C)A (B C)(A B)( A C)—徳摩根律 A B A B A B A B§3.频率与概率定义在相同的条件下,进行了n 次试验,在这n 次试验中,事件 A 发生的次数n称为事件AA 发生的频数,比值n nA 称为事件 A 发生的频率概率:设E是随机试验,S 是它的样本空间,对于E 的每一事件A赋予一个实数,记为P(A),称为事件的概率1.概率P( A)满足下列条件:(1)非负性:对于每一个事件 A 0 P( A) 1(2)规范性:对于必然事件S P (S) 11(3)可列可加性:设A1, A2 , ,A是两两互不相容的事件,有nn nP A k ) P( A) ( (n可kk 1 k 1以取)2.概率的一些重要性质:(i )P( ) 0(ii )若A1, A2 , ,A是两两互不相容的事件,则有n Pn n( (n可以取)A k ) P( A )kk 1 k 1(iii )设A,B 是两个事件若 A B ,则P(B A) P( B) P( A) ,P( B) P(A) (iv)对于任意事件A,P(A) 1(v)P( A) 1 P(A) (逆事件的概率)(vi)对于任意事件A,B 有P(A B) P( A) P( B) P( A B)§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同若事件 A 包含k 个基本事件,即{e i } {e } {e }A ,里1 i i k] 2,k是,中某个不同的数,则有i1 i 2, ,i k 1,2 nP( A)j k1P { eij}knA包含的基本事件数S中基本事件的总数§5.条件概率(1)定义:设A,B 是两个事件,且P( A) 0 ,称P( A B)P(B | A) 为事件 A 发生的条P(A)件下事件 B 发生的条件概率(2)条件概率符合概率定义中的三个条件。

概率论与数理统计基础知识

概率论与数理统计基础知识
一、个体、母体与子样 在统计分析中,构成研究对象的每一个最基本的单位称为个体。
进行统计分析,通常是从母体中随机地选择一部分样品,称为子样(又称样本)。用它来代 表母体进行观察、研究、检验、分析,取得数据后加以整理,得出结论
例如,我们可将一个编号水泥看成是母体,每一包水泥看成是个体,通过随机取样(连续取 样或从20个以上不同部位取样),所取出的12kg检验样品可称为子样,通过检验分析,即可 判断该编号水泥(母体)的质量状况。
实例2 随机变量 X 为“测量某零件尺寸时的测量 误差”.
则 X 的取值范围为 (a, b) .
定义
设 E 是随机试验, 它的样本空间是 S {e}. 如 果对于每一个 e S , 有一个实数 X (e) 与之对应, 这样就得到一个定义在 S 上的单值实值函数 X (e), 称 X (e) 为随机变量.
如果事件A发生必然导致事件B发生,即A的每个样本点都是B的样本点,则称 B包含A,记作 A B .从事件的集合表示看,事件B包含事件A就是样本空间的 子集B包含子集A 等对,任记何为事A件=AB,,总即有,AA与 B含有如相果同A 的 B样本,点同时B A ,则称事件A和事件B相
事件的互斥
如果事件A和B不可能同时发生,即A与B没有公共样本点,则称A与B是互斥 的(Mutually Exclusive)或互不相容的,换句话说,两个事件A与B互斥就是 样本空间两个子集A与B不相交
四、数据统计特征数
算术平均值 我们从总体抽了一个样本(子样),得到一批数据X1、X2、X3……Xn在处理这批数据时,经常
用算术平均值X来代表这个总体的平均水平。统计中称这个算术平均值为“样平均值”。 中位数 把数据按大小顺序排列,排在正中间的一个数即为中位数。当数据的个数n为奇数时,中位数就

概率论与数理统计基础知识

概率论与数理统计基础知识

从集合的角度看

B
A

事件是由某些样本点所构成的一个集合.一个事件发 生,当且仅当属于该事件的样本点之一出现.由此可 见,样本空间Ω作为一个事件是必然事件,空集Ø作 为一个事件是不可能事件,仅含一个样本点的事件称 为基本事件.
2. 几点说明
⑴ 随机事件可简称为事件, 并以大写英文字母
A, B, C,
基本事件 实例
由一个样本点组成的单点集.
“出现1点”, “出现2点”, … , “出现6点”.
必然事件 随机试验中必然会出现的结果. 实例 上述试验中 “点数不大于6” 就是必然事件. 不可能事件 随机试验中不可能出现的结果. 实例 上述试验中 “点数大于6” 就是不可能事件. 必然事件的对立面是不可能事件,不可能事 件的对立面是必然事件,它们互称为对立事件.
说明 1. 随机试验简称为试验, 是一个广泛的术语.它包 括各种各样的科学实验, 也包括对客观事物进行的 “调查”、“观察”或 “测量” 等. 2. 随机试验通常用 E 来表示. 实例 “抛掷一枚硬币,观 察正面,反面出现的情况”.
分析 (1) 试验可以在相同的条件下重复地进行; (2) 试验的所有可能结果: 字面、花面; (3) 进行一次试验之前不能 确定哪一个结果会出现. 故为随机试验.
将下列事件均表示为样本空间的子集. (1) 试验 E2 中(将一枚硬币连抛三次,考虑正反 面出现的情况),随机事件: A=“至少出现一个正面” B=“三 次出现同一面” C=“恰好出现一次正面” (2) 试验 E6 中(在一批灯泡中任取一只,测试其 寿命),D=“灯泡寿命不超过1000小时”
(1)由S2= {HHH, HHT, HTH, THH,HTT,THT, TTH,TTT}; 故: A={HHH, HHT, HTH, THH,HTT,THT, TTH}; B={HHH,TTT} C={HTT,THT,TTH} (2) D={x: x<1000(小时)}。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

条件概率P(A|B)也是概率,具有概率所具 有的一切性质。
College of Science, Hohai University
Stochastic Processes
8. 完备事件组 事件组A1,A2, · ,An (n可为),称为样 · · 本空间的一个划分(或完备事件组),若满足:
(1) Ai ;
(P.1) P(A)0; (non-negative非负性) (P.2) P( )=1;(normed规范性) (P.3) 若 Ai Aj=, i j , 则
P ( Ai ) P ( Ai ) (-additivity可加性)
i 1 i 1


即: 概率是一个规范的、可数可加的测度。 或概率是一个定义在-代数 F上的非负的、可数 可加的、规范的实值集函数。
College of Science, Hohai University
Stochastic Processes
6. 概率的性质 (1) P()=0; (2) 有限可加性: 设A1,A2, · An , 是n个两两互不相容的事件, · · 即Ai Aj= ,(ij ), i , j=1, 2, ·, n ,则有 · · P( A1 A2 · An)=P(A1)+P(A2)+·+P(An ); · · · · (3) 单调不减性: 若事件B A, 则P(B)≥P(A) , 且 P(B-A)=P(B)-P(A);
Stochastic Processes
例 设有来自三个专业的各10名、15名和25名 学生填报学习《工程随机过程》的申请表,其 中女生的申请表分别为3份、7份和5份。现随 机地取一个专业的申请表,从中先后抽出两份。 (1)求先抽到的一份是女生申请表的概率; (2)已知后抽到的一份是男生申请表,求先 抽到的一份是女生申请表的概率。
College of Science, Hohai University Stochastic Processes
4. 事件域(域、代数) 记为一个集合,F为={}的一些子集构 成的集合,若F满足 (F.1) F; (F.2)若AF, 则 AF; (F.3)若可列个AmF, m=1,2,, 则 则称F是中的一个代数或域。
P ( Ai ) P ( Ai )
i 1 i 1

P ( Ai ) P ( Ai ) (Bool不等式)
i 1 i 1
College of Science, Hohai University Stochastic Processes
1 i j k n n n
i 1 i 1 n n
P ( Aj | B)
P ( Aj ) P ( B | Aj ) P ( B)

P ( Aj ) P ( B | Aj )
贝叶斯公式或逆概率公式
P( A )P( B | A )
i 1 i i
n
,
( j 1,...,n)
College of Science, Hohai University
3. 随机事件(事件) 试验E的样本空间的子集称为E的随机事件, 简称事件,记为A、B等。 即试验E的部分试验结果组成的集合为随机事件。 在每次试验中,当且仅当这一子集中的一个样 本点出现时,称这一事件发生。 基本事件: 由一个样本点构成的单点集。 必然事件: 在每次试验中总是发生的事件。 比如样本空间。 不可能事件: 在每次试验中都不发生的事件。 比如空集。
College of Science, Hohai University Stochastic Processes
随机变量及其分布
1. 随机变量的概念 设随机试验 E 的样本空间是 ,若对每个 ,有定义在 上的一个实数 X( ) 与之对 应,称这样一个定义在 上的单值实函数 X = X( )为随机变量(Random Variable),简记为 r.v. X。随机变量一般用英文大写字母X、Y、Z等表 示 ,也可用希腊字母、、等表示。
第一章
预备知识
College of Science, Hohai University
Stochastic Processes
概率空间 1. 随机试验(试验)
(1)可在相同条件下重复进行; (2)试验结果不止一个,但能确定所有的可能结果; (3)一次试验之前无法确定具体是哪种结果出现。 具有上述三个特点的试验称为随机试验,记为E。
College of Science, Hohai University
Stochastic Processes
10. 全概率公式与Bayes公式 设A1, ·, An是的一个划分,且 P(Ai )> 0, · · (i=1,·,n),则对任何事件B,有 · ·
P ( B )= P ( BAi ) P ( Ai ) P ( B | Ai ) 全概率公式
College of Science, Hohai University
Stochastic Processes
劝学格言
养不教,父之过;教不严,师之惰。 子不学,非所宜;幼不学,老何为。 玉不啄,不成器;人不学,不知义。 …… 蚕吐丝,蜂酿蜜;人不学,不如物。
——《三字经》
College of Science, Hohai University
m 1
A

m
F;
若是样本空间时,则称F为中的一个事件域。
College of Science, Hohai University
Stochastic Processes
事件域的性质:
(1)F; (2)若可列个AmF, m=1,2,, 则 (3)若AmF, m=1,2,,n, 则
5. 概率的定义 (, F ) 是个可测空间,在F上定义了一个实 值集函数 () ,满足A, A1, ·, An, · F有 · · · · (1) (A)0; (非负性) (2) 若 Ai Aj=, i j , 则
( Ai ) ( Ai ) (-可加性或可列可加性)
r .v . X : R
College of Science, Hohai University
Stochastic Processes
2. 分布函数的概念 设X随机变量, 对任意实数x, 事件{X x}的概 率P {X x}称为随机变量X的分布函数。记为 F(x), 即 F(x)=P {X x}。 F:R[0, 1] (1) 单调不减性: 若x1< x2, 则F(x1) F(x2); (2) 非负规范性: 对任意实数 x,0 F(x) 1,且
Stochastic Processes
青青园中葵,朝露待日晞, 阳春布德泽,万物生光辉, 常恐秋节至,焜黄华叶衰。 百川东到海,何时复西归? 少壮不努力,老大徒伤悲!
——《汉乐府· 长歌行》(节选)
College of Science, Hohai University
Stochastic Processes
工程随机过程
Stochastic Processes in Engineering
College of Science, Hohai University
Stochastic Processes
课程约定
考试方式:闭卷或半开卷考试 计分方式: 平时成绩占30%(包括平时作业, 各章小结, 课堂出勤及课堂学习等情况) 期末考试成绩占70% 作业不得用纸片信纸之类,必须使用作业本 (两本交替使用), 作业每两周集中交一次
i 1 i 1


称 ()为可列可加测度。 -代数 F上的可数可加测度 P 若满足 P()=1 , 则称 P 为概率测度或概率。
Stochastic Processes
College of Science, Hohai University
( , F ) 是个可测空间,概率是定义在F上的 一个实值集函数 P(),若满足A, A1,·, An, ·F · · · ·
College of Science, Hohai University
Stochastic Processes
11. 事件的独立性 A与B相互独立 P(AB)=P(A)P(B) 以下命题等价: - 1. A、B相互独立;2. A、B相互独立; - - - 3. A、B相互独立;4. A、B相互独立。 设A1, A2, ·, An是n个事件, 如果对任意k (1 k · · n), 任意的1i1i2·ikn, 具有等式 · · P( Ai1 Ai2 Aik ) P( Ai1 )P( Ai2 )P( Aik ) 则称n个事件A1,A2,·,An相互独立。 · · 若将其中任意m(1mn)个事件相应地换成它们 的对立事件,所得的n个事件仍然相互独立。
2. 样本空间
随机试验E的所有可能试验结果组成的集合 称为样本空间,记为。 样本点: 组成样本空间的元素,即随机试验E 的每个可能结果,记为。 样本点又叫基本事件, 所以={}。
College of Science, Hohai University Stochastic Processes
P ( Ai A j Ak ) ( 1)n1 P ( Ai )
i 1
1 i j n
P ( Ai A j )
n
7. 条件概率 若( , F, P )为概率空间,B F,且 P(B)> 0,则对任意的 A F,称
P ( AB ) P( A | B) P( B) 为在已知事件B发生的条件下,事件A发生的 条件概率。
College of Science, Hohai University Stochastic Processes
一个三元有序组 (, F, P ) ,其中 (1) 为 的点集; (2) F为 的子集构成的 -代数的集类; (3) P 为定义在 F上的概率,
相关文档
最新文档