(精心整理)2007年高考数学试题(广东·理)含答案
2007年高考试题——数学理(广东卷)

绝密★启用前 试卷类型:B2007年普通高等学校招生全国统一考试(广东卷)数学(理科)本试卷共4页,21小题,满分150分。
考试用时l20分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
用2B 铅笔将试卷类型(B)填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点 涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色宁迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.作答选做题时,请先用2B 铅笔填涂选做题的题号(或题组号)对应的信息点,再作答。
漏涂、错涂、多涂的,答案无效。
5.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
参考公式:锥体的体积公式13V Sh =,其中S 是锥体的底面积,h 是锥体的高. 如果事件A 、B 互斥,那么()()()P A B P A P B +=+.如果事件A 、B 相互独立,那么()()()P A B P A P B =. 用最小二乘法求线性回归方程系数公式 1221ˆni ii nii x y nx ybxnx ==-⋅=-∑∑,ˆay bx =-. 一、选择题(本题8小题,每题5分,满分40分)1.已知函数()f x =的定义域为M ,g(x)=ln(1)x +的定义域为N ,则M ∩N=(A ){|1}x x >- (B ){|1}x x < (C ){|11}x x -<< (D )∅【解析】考查函数的定义域和集合的基本运算。
由解不等式1-x>0求得M=(-∞,1),由解不等式1+x>0求得N=(-1,+∞),因而M ⋂N=(-1,1),故选C 。
2007年高考数学卷(全国卷Ⅰ.理)含详解

2007年普通高等学校招生全国统一考试理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么其中R 表示球的半径 ()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是p ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径()(1)(012)k k n k n n P k C p p k n -=-=,,,…,一、选择题(1)α是第四象限角,5tan 12α=-,则sin α=( ) A .15 B .15- C .513 D .513-(2)设a 是实数,且1i1i 2a +++是实数,则a =( ) A .12 B .1 C .32D .2(3)已知向量(56)=-,a ,(65)=,b ,则a 与b ( ) A .垂直B .不垂直也不平行C .平行且同向D .平行且反向(4)已知双曲线的离心率为2,焦点是(40)-,,(40),,则双曲线方程为( ) A .221412x y -= B .221124x y -= C .221106x y -= D .221610x y -=(5)设a b ∈R ,,集合{}10b a b a b a ⎧⎫+=⎨⎬⎩⎭,,,,,则b a -=( ) A .1B .1-C .2D .2-(6)下面给出的四个点中,到直线10x y -+=的距离为2,且位于1010x y x y +-<⎧⎨-+>⎩,表示的平面区域内的点是( ) A .(11),B .(11)-,C .(11)--,D .(11)-,(7)如图,正四棱柱1111ABCD A B C D -中,12AA AB =,则异面直线1A B 与1AD 所成角的余弦值为( )A .15B .25C .35D .45(8)设1a >,函数()log a f x x =在区间[]2a a ,上的最大值与最小值之差为12,则a =( ) AB .2C.D .4(9)()f x ,()g x 是定义在R 上的函数,()()()h x f x g x =+,则“()f x ,()g x 均为偶函数”是“()h x 为偶函数”的( ) A .充要条件 B .充分而不必要的条件C .必要而不充分的条件D .既不充分也不必要的条件(10)21nx x ⎛⎫- ⎪⎝⎭的展开式中,常数项为15,则n =( )A .3B .4C .5D .6(11)抛物线24y x =的焦点为F ,准线为l ,经过F的直线与抛物线在x 轴上方的部分相交于点A ,AK l ⊥,垂足为K ,则AKF △的面积是( ) A .4B.C.D .8(12)函数22()cos 2cos 2xf x x =-的一个单调增区间是( ) A .233ππ⎛⎫ ⎪⎝⎭,B .62ππ⎛⎫ ⎪⎝⎭,C .03π⎛⎫ ⎪⎝⎭,D .66ππ⎛⎫- ⎪⎝⎭,第Ⅱ卷注意事项:AB1B1A1D1C CD1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共2页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.3.本卷共10题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在横线上.(13)从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有 种.(用数字作答) (14)函数()y f x =的图像与函数3log (0)y x x =>的图像关于直线y x =对称,则()f x = .(15)等比数列{}n a 的前n 项和为n S ,已知1S ,22S ,33S 成等差数列,则{}n a 的公比为 . (16)一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上.已知正三棱柱的底面边长为2,则该三角形的斜边长为 .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分10分) 设锐角三角形ABC 的内角A B C ,,的对边分别为a b c ,,,2sin a b A =. (Ⅰ)求B 的大小;(Ⅱ)求cos sin A C +的取值范围. (18)(本小题满分12分)某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元.η表示经销一件该商品的利润.(Ⅰ)求事件A :“购买该商品的3位顾客中,至少有1位采用1期付款”的概率()P A ; (Ⅱ)求η的分布列及期望E η.(19)(本小题满分12分)四棱锥S ABCD -中,底面ABCD为平行四边形,侧面SBC ⊥底面ABCD .已知45ABC =∠,2AB =,BC =SA SB =(Ⅰ)证明SA BC ⊥;(Ⅱ)求直线SD 与平面SAB 所成角的大小.(20)(本小题满分12分) 设函数()e e xxf x -=-.(Ⅰ)证明:()f x 的导数()2f x '≥;(Ⅱ)若对所有0x ≥都有()f x ax ≥,求a 的取值范围. (21)(本小题满分12分)已知椭圆22132x y +=的左、右焦点分别为1F ,2F .过1F 的直线交椭圆于B D ,两点,过2F 的直线交椭圆于A C ,两点,且AC BD ⊥,垂足为P .(Ⅰ)设P 点的坐标为00()x y ,,证明:2200132x y +<; (Ⅱ)求四边形ABCD 的面积的最小值.(22)(本小题满分12分)已知数列{}n a 中12a =,11)(2)n n a a +=+,123n =,,,…. (Ⅰ)求{}n a 的通项公式; (Ⅱ)若数列{}n b 中12b =,13423n n n b b b ++=+,123n =,,,…,43n n b a -<≤,123n =,,,….2007年普通高等学校招生全国统一考试 理科数学试题(必修+选修Ⅱ)参考答案一、选择题: (1)D (2)B (3)A (4)A (5)C (6)C (7)D (8)D (9)B(10)D (11)C (12)A二、填空题:(13)36(14)3()xx ∈R(15)13(16)三、解答题: (17)解:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1sin 2B =, 由ABC △为锐角三角形得π6B =. (Ⅱ)cos sin cos sin A C A A π⎛⎫+=+π-- ⎪6⎝⎭cos sin 6A A π⎛⎫=++ ⎪⎝⎭1cos cos 2A A A =++3A π⎛⎫=+ ⎪⎝⎭.由ABC △为锐角三角形知,22A B ππ->-,2263B ππππ-=-=. 2336A πππ<+<,所以1sin 232A π⎛⎫+<⎪⎝⎭.由此有232A π⎛⎫<+< ⎪⎝⎭所以,cos sin A C +的取值范围为32⎫⎪⎪⎝⎭,. (18)解:(Ⅰ)由A 表示事件“购买该商品的3位顾客中至少有1位采用1期付款”.知A 表示事件“购买该商品的3位顾客中无人采用1期付款”2()(10.4)0.216P A =-=,()1()10.2160.784P A P A =-=-=.(Ⅱ)η的可能取值为200元,250元,300元.(200)(1)0.4P P ηξ====,(250)(2)(3)0.20.20.4P P P ηξξ===+==+=,(300)1(200)(250)10.40.40.2P P P ηηη==-=-==--=.η的分布列为2000.42500.43000.2E η=⨯+⨯+⨯240=(元).(19)解法一:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥底面ABCD .因为SA SB =,所以AO BO =,又45ABC =∠,故AOB △为等腰直角三角形,AO BO ⊥,由三垂线定理,得SA BC ⊥.(Ⅱ)由(Ⅰ)知SA BC ⊥,依题设AD BC∥, 故SA AD ⊥,由AD BC ==SA =AO =1SO =,SD =.SAB △的面积211122S AB SA ⎛=-= ⎝连结DB ,得DAB △的面积21sin13522S AB AD == 设D 到平面SAB 的距离为h ,由于D SAB S ABD V V --=,得121133h S SO S =, 解得h =A设SD 与平面SAB 所成角为α,则sin h SD α===所以,直线SD 与平面SBC所成的我为arcsin11. 解法二:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥平面ABCD .因为SA SB =,所以AO BO =.又45ABC =∠,AOB △为等腰直角三角形,AO OB ⊥. 如图,以O 为坐标原点,OA 为x0)A ,,(0B ,(0C -,,(001)S ,,,(2,(0CB =,0SA CB =,所以SA BC ⊥.(Ⅱ)取AB 中点E ,022E ⎛⎫ ⎪ ⎪⎝⎭,,连结SE ,取SE 中点G ,连结OG ,1442G ⎛⎫⎪ ⎪⎝⎭,,. 12OG ⎫=⎪⎪⎝⎭,,1SE ⎫=⎪⎪⎝⎭,(AB =. 0SE OG =,0AB OG =,OG 与平面SAB 内两条相交直线SE ,AB 垂直.所以OG ⊥平面SAB ,OG 与DS 的夹角记为α,SD 与平面SAB 所成的角记为β,则α与β互余.D ,(DS =.22cos 11OG DS OG DSα==sin β=,所以,直线SD 与平面SAB 所成的角为arcsin 11. (20)解:(Ⅰ)()f x 的导数()e e xxf x -'=+.由于e e 2x -x +=≥,故()2f x '≥. (当且仅当0x =时,等号成立). (Ⅱ)令()()g x f x ax =-,则()()e e x x g x f x a a -''=-=+-,(ⅰ)若2a ≤,当0x >时,()e e 20xxg x a a -'=+->-≥,故()g x 在(0)+,∞上为增函数,所以,0x ≥时,()(0)g x g ≥,即()f x ax ≥.(ⅱ)若2a >,方程()0g x '=的正根为1ln x =,此时,若1(0)x x ∈,,则()0g x '<,故()g x 在该区间为减函数.所以,1(0)x x ∈,时,()(0)0g x g <=,即()f x ax <,与题设()f x ax ≥相矛盾. 综上,满足条件的a 的取值范围是(]2-∞,. (21)证明:(Ⅰ)椭圆的半焦距1c ==,由AC BD ⊥知点P 在以线段12F F 为直径的圆上,故22001x y +=,所以,222200021132222y x y x ++=<≤. (Ⅱ)(ⅰ)当BD 的斜率k 存在且0k ≠时,BD 的方程为(1)y k x =+,代入椭圆方程22132x y +=,并化简得2222(32)6360k x k x k +++-=. 设11()B x y ,,22()D x y ,,则2122632k x x k +=-+,21223632k x x k -=+2221222121)(1)()432k BD x x k x x x x k +⎡=-=++-=⎣+;因为AC 与BC 相交于点P ,且AC 的斜率为1k-,所以,2211132k AC k⎫+⎪⎝⎭==⨯+ 四边形ABCD 的面积222222222124(1)(1)962(32)(23)25(32)(23)2k k S BD AC k k k k +24+===++⎡⎤+++⎢⎥⎣⎦≥. 当21k =时,上式取等号.(ⅱ)当BD 的斜率0k =或斜率不存在时,四边形ABCD的面积4S =.综上,四边形ABCD 的面积的最小值为9625. (22)解:(Ⅰ)由题设:11)(2)n n a a +=+1)(1)(2n a =+1)(n a =11)(n n a a+=.所以,数列{n a 是首项为21的等比数列,1)n n a =,即n a的通项公式为1)1nn a ⎤=+⎦,123n =,,,…. (Ⅱ)用数学归纳法证明.(ⅰ)当1n =2<,112b a ==,所以11b a <≤,结论成立.(ⅱ)假设当n k =43k k b a -<≤, 也即430k k b a -<. 当1n k =+时,13423k k k b b b ++-=+(3(423k k b b -+-=+(3023k k b b -=>+,又1323k b <=-+所以1(323k k k b b b +-=+2(3(k b <-4431)(k a -≤41k a +=也就是说,当1n k =+时,结论成立.43n n b a -<≤,123n =,,,….2007年普通高等学校招生全国统一考试理 科 数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么其中R 表示球的半径 ()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是p ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径()(1)(012)k kn k n n P k C p p k n -=-=,,,…,一、选择题(1)α是第四象限角,5tan 12α=-,则sin α=( ) A .15B .15-C .513D .513-(2)设a 是实数,且1i1i 2a +++是实数,则a =( ) A .12B .1C .32D .2【解析】1i (1)1i 111i 22222a a i a a i +-++-+=+=++,∵1i1i 2a +++是实数,∴102a -=,解得a =1.选B .(3)已知向量(56)=-,a ,(65)=,b ,则a 与b ( ) A .垂直B .不垂直也不平行C .平行且同向D .平行且反向【解析】由a ·b =0,得a 与b 垂直,选A .(4)已知双曲线的离心率为2,焦点是(40)-,,(4,0),则双曲线方程为( )A .221412x y -=B .221124x y -=C .221106x y -=D .221610x y -=【解析】由2ca=及焦点是(40)-,,(4,0),得4c =,2a =,24a =,∴22212b c a =-=,∴双曲线方程为221412x y -=.故选A .(5)设a b ∈R ,,集合{}1{0}b a b a b a+=,,,,,则b a -=( )A .1B .-1C .2D .-2【解析】由{}1{0}b a b a b a+=,,,,知0a b +=或0a =.若0a =则ba无意义,故只有0a b +=,1b =(若1ba=,这与0a b +=矛盾),∴1a =-,2b a -=.故选C .(6)下面给出的四个点中,到直线10x y -+=,且位于1010x y x y +-<⎧⎨-+>⎩,表示的平面区域内的点是( )A .(11),B .(11)-,C .(11)--,D .(11)-,【解析】逐一检查,选C .(7)如图,正四棱柱1111ABCD A B C D -中,12AA AB =,则异面直线1A B 与1AD 所成角的余弦值为( D )A .15B .25C .35D .45111||||5AD A B =1A 所成角的余弦值为45,选D .(8)设1a >,函数()log a f x x =在区间[]2a a ,上的最大值与最小值之差为12,则a =( )(9)()f x ,()g x 是定义在R 上的函数,()()()h x f x g x =+,则“()f x ,()g x 均为偶函数”是“()h x 为偶函数”的( )A .充要条件B .充分而不必要的条件C .必要而不充分的条件D .既不充分也不必要的条件【解析】若“()f x ,()g x 均为偶函数”则()()f x f x -=,()()g x g x -=当然有()()h x h x -=;反之则未必,故选B .(10)21()n x x-的展开式中,常数项为15,则n =( )A 1D 1 C 1B 1AD CBA (综合法)(坐标法)A 1C 1 B 1AD CB第(7)题D 1A .3B .4C .5D .6【解析】21()n x x-的展开式的通项公式为(22)()(23)1r n rr r n r r n n T C x x C x---+==,若常数项为15,令23015rnn r C -=⎧⎪⎨=⎪⎩,64n r =⎧⎨=⎩,选D . (11)抛物线24y x =的焦点为F ,准线为l ,经过F x 轴上方的部分相交于点A ,AK l ⊥,垂足为K ,则AKF △的面积是( C)(12)函数22()cos 2cos 2xf x x =-的一个单调增区间是( ) A .2()33ππ,B .()62ππ,C .(0)3π,D .()66ππ-,()0x >,则第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共2页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.3.本卷共10题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在横线上.(13)从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有 36 种.(用数字作答) 【解析】填36.从班委会5名成员中选出3名,共35A 种;其中甲、乙之一担任文娱委员的1224A A 种,则不同的选法共有35A -1224A A =36种.(14)函数()y f x =的图像与函数3log (0)y x x =>的图像关于直线y x =对称,则()f x = .【解析】()f x =3()xx ∈R .(15)等比数列{}n a 的前n 项和为n S ,已知1S ,22S ,33S 成等差数列,则{}n a 的公比AC1A A 0(16)题。
2007年高考理科数学试题及参考答案(湖北卷)

2007 年普通高等学校招生全国统一考试(湖北卷)数学(理工农医类)试题参考答案选择题:本题考查基础知识和基本运算。
每小题5分,满分50分。
1.B2.A3.B4.D5.C6.B7.A8.D9.C 10.A二、填空题:本题考查基础知识和基本运算。
每小题5分,满分25分。
11.6;12.(2,1)(或满足a=2b的任一组非零实数对(a,b))13.- 14. 15. ;0.6三、解答题:本大题共6小题,共75分。
16.本小题主要考查平面向量数量积的计算,解三角形、三角公式、三角函数的性质等基本知识,考查推理和运算能力。
解:(Ⅰ)设△ABC中角A,B,C的对边分别为a,b,c,则由.(Ⅱ) =即当.17.本小题主要考查频率分布直方图、概率、期望等概念和用样本频率估计总体分布的统计方法,考查运用概率统计知识解决实际问题的能力.分组频数频率4 0.04 25 0.25 30 0.30 29 0.29 10 0.10 2 0.02 合计100 1.00 (Ⅱ)纤度落在中的概率约为0.30+0.29+0.10=0.69,纤度小于1.40的概率约为0.04+0.25+ ×0.30=0.44. (Ⅲ)总体数据的期望约为1.32×0.04+1.36×0.25+1.40×0.30+1.44×0.29+1.48×0.10+1.52×0.02=1.4088.18.本小题主要考查线面关系、直线与平面成角的有关知识,考查空间想象能力和推理运算能力以及应用向量知识解决数学问题的能力.解法1:(Ⅰ)是等腰三角形,又D是AB的中点,又(Ⅱ)过点C在平面VD内作CH⊥VD于H,则由(Ⅰ)知CH⊥平面V AB.连接BH,于是∠CBH就是直线BC与平面V AB所成的角在Rt△CHD 中,设,即直线BC与平面V AB所成角的取值范围为(0,).解法2:(Ⅰ)以CA、CB、CV所在的直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系,则C(0,0,0),A(a,0,0),B(0,a,0),D( ),从而同理=即又(Ⅱ)设直线BC与平面V AB所成的角为φ,平面V AB的一个法向量为n=(x,y,z)则由n·19.本小题主要考查直线、圆和抛物线等平面解析几何的基础知识,考查综合运用数学知识进行推理运算的能力和解决问题的能力.解法1:(Ⅰ)依题意,点N的坐标为N(0,-p),可设A(x1,y1),B(x2,y2),直线AB的方程为y=kx+p,与x2=2py 联立得消去y得x2-2pkx-2p2=0.由韦达定理得x1+x2=2pk,x1x2=-2p2.于是=(Ⅱ)假设满足条件的直线l存在,其方程为y=a,AC的中点为径的圆相交于点P、Q,PQ的中点为H,则= 令,得为定值,故满足条件的直线l存在,其方程为,即抛物线的通径所在的直线.解法2:(Ⅰ)前同解法1,再由弦长公式得=又由点到直线的距离公式得.从而,得可取于是.即直线BC与平面V AB所成角的取值范围为(0,).解法:(Ⅰ)以点D为原点,以DC、DB所在的直线分别为x轴、y轴,建立如衅所示的空间直角坐标系,则D(0,0,0),A(0,- ),于是∴平面V AB⊥平面VCD.(Ⅱ)设直线BC与平面V AB 所成的角为,平面V AB的一个法向量为则由得可取厂是又0 即直线BC与平面V AB所成角的取值范围为(0,)解法4:以CA、CB、CV所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系,则C(0,0,0),A(a,0,0),B(0,a,0),D( ),设V(0,0,t)(t>0).(Ⅰ) 即又(Ⅱ)设直线BC与平面V AB所成的角为设n(x,y,z)是平面VAB的一个非零法向量,则取z=a,得x=y=t,可取于是即直线BC与平面V AB所成角的取值范围为(0,).综合(i)(ii)知,对一切正整数m,不等式都成立.(Ⅱ)证:当n≥6,m ≤n 时,由(Ⅰ)得于是( Ⅲ) 解:由(Ⅱ)知,当n≥6时,故只需要讨论n=1,2,3,4,5的情形;当n=1时,3≠ 4 ,等式不成立;当n=2时,32+42=52,等式成立;当n=3时,33+43+53=63,等式成立;当n=4时,34+44+54+64为偶数,而74为奇数,故34+44+54+64≠74,等式不成立;当n=5时,同n=4的情形可分析出,等式不成立.综上,所求的n只有n=2,3.解法2:(Ⅰ)证:当x=0或m=1时,原不等式中等号显然成立,下用数学归纳法证明:当x>-1,且x≠0时,m≥2,(1+x)m>1+mx.(i)当m=2时,左边=1+2x+x2,右边=1+2x,因为x ≠0,所以x2>0,即左边>右边,不等式①成立;(ii)假设当m=k(k≥2)时,不等式①成立,即(1+x)k>1+kx,则当m=k+1时,因为x>-1,所以1+x>0.又因为x≠0,k≥2,所以kx2>0.于是在不等式(1+x)k>1+kx两边同乘以1+x得(1+x)k·(1+x)>(1+kx)(1+x)=1+(k+1)x+kx2>1+(k+1)x,所以(1+x)k+1>1+(k+1)x,即当m=k+1时,不等式①也成立.综上所述,所证不等式成立.(Ⅱ)证:当而由(Ⅰ),(Ⅲ)解:假设存在正整数成立,即有()+ =1.②又由(Ⅱ)可得()+ + 与②式矛盾,故当n≥6时,不存在满足该等式的正整数n.下同解法1,(Ⅱ)假设满足条件的直线t存在,其方程为y=a,则以AC为直径的圆的方程为将直线方程y=a代入得设直线l与以AC为直径的圆的交点为P(x2,y2),Q(x4,y4),则有令为定值,故满足条件的直线l 存在,其方程为.即抛物线的通径所在的直线.20. 本小题主要考查函数、不等式和导数的应用等知识,考查综合运用数学。
07-13年广东高考数学理科三角函数真题(含答案)

3.若函数21()sin (),()2f x x x R f x =-∈则是( )A.最小正周期为2π的奇函数 B.最小正周期为π的奇函数C.最小正周期为π2的偶函数D.最小正周期为π的偶函数16.(本小题满分12分)已知△ABC 顶点的直角坐标分别为)0,()0,0()4,3(c C B A 、、. (1)若5=c ,求sin ∠A 的值;(2)若∠A 是钝角,求c 的取值范围.2008年广东高考理科卷12.已知函数()(sin cos )sin f x x x x =-,x ∈R ,则()f x 的最小正周期是.16. 已知函数()sin()(00π)f x A x A ϕϕ=+><<,,x ∈R 的最大值是1,其图像经过点π132M ⎛⎫⎪⎝⎭,. (1)求()f x 的解析式;(2)已知π02αβ⎛⎫∈ ⎪⎝⎭,,,且3()5f α=,12()13f β=,求()f αβ-的值.16.(本小题满分12分)已知向量(sin ,2)(1,cos )a b θθ=-=与互相垂直,其中(0,)2πθ∈.(1)求sin cos θθ和的值;(2)若sin()2πθϕϕ-=<<,求cos ϕ的值.2010年广东高考理科卷11.已知a,b,c 分别是△ABC 的三个内角A,B,C 所对的边,若a=1,b=, A+C=2B,则sinC= .16、(本小题满分14分)已知函数()sin(3)(0,(,),0f x A x A x ϕϕπ=+>∈-∞+∞<<在12x π=时取得最大值4.(1) 求()f x 的最小正周期; (2) 求()f x 的解析式; (3) 若f (23α +12π)=125,求sin α.16.(本小题满分12分)已知函数1()2sin(),.36f x x x R π=-∈(1)求5()4f π的值;(2)设106,0,,(3),(32),22135f a f ππαββπ⎡⎤∈+=+=⎢⎥⎣⎦求cos()αβ+的值.2012年广东高考理科卷16.(本小题满分12分)已知函数()2cos 6f x x πω⎛⎫=+ ⎪⎝⎭,(其中ω>0,x ∈R )的最小正周期为10π。
2007年高考数学广东卷(理科)-带答案

2007 年高考数学广东卷(理科)参考公式:如果事件A 、B 互斥,那么球的表面积公式P (A +B )=P (A )+P (B ) S =4πR 2如果事件A 、B 相互独立,那么其中R 表示球的半径 P (A ·B )=P (A )·P (B )球的体积公式 如果事件A 在一次试验中发生的概率是P .334R V π=那么n 次独立重复试验中恰好发生k 次的概其中R 表示球的半径率k n kk n n P P C k P --=)1()(第 I 卷 (选择题 共40分)一.选择题:本大题共8小题,每小题5分,共40分. 1.设集合{|1A x =-≤x ≤2},B={x |0≤x ≤4},则A ∩B=A .[0,2]B .[1,2]C .[0,4]D .[1,4] 2.已知=+-=+ni m i n m ni im是虚数单位,则是实数,,,其中11 A .1+2i B . 1–2i C .2+i D .2–i 3.已知0<a <1,log log 0a a m n <<,则A .1<n <mB . 1<m <nC .m <n <1D .n <m <1 4.若α是第二象限的角,且2sin 3α=,则=αcosA .13 B . 13- C . D . 5.等差数列{}n a 中,12010=S ,那么29a a +的值是 A . 12 B . 24 C .16 D . 486.三棱锥D —ABC 的三个侧面分别与底面全等,且AB =AC =3,BC =2,则二面角A —BC —D 的大小为A . 300B . 450C .600D .900 7. 已知变量a ,b 已被赋值,要交换a 、b 的值,采用的算法是A .a=b, b=aB .a=c, b=a, c=bC .a=c, b=a, c=aD .c=a, a=b, b=c8.已知点M (-3,0),N (3,0),B (1,0),圆C 与直线MN 切于点B ,过M 、N 与圆C 相切的两直线相交于点P ,则P 点的轨迹方程为A .221(1)8y x x -=<- B .)1(1822>=-x y xC .1822=+y x (x > 0) D .221(1)10y x x -=>第 Ⅱ 卷 (非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分。
2007年高考数学试题(北京.理)含答案

年普通高等学校招生全国统一考试数学(理工农医类)(北京卷)一、本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知cos tan 0θθ< ,那么角θ是( )A.第一或第二象限角 B.第二或第三象限角C.第三或第四象限角 D.第一或第四象限角2.函数()3(02)xf x x =<≤的反函数的定义域为( )A.(0)+∞, B.(19], C.(01), D.[9)+∞, 3.平面α∥平面β的一个充分条件是( )A.存在一条直线a a ααβ,∥,∥B.存在一条直线a a a αβ⊂,,∥C.存在两条平行直线a b a b a b αββα⊂⊂,,,,∥,∥D.存在两条异面直线a b a a b αβα⊂,,,∥,∥ 4.已知O 是ABC △所在平面内一点,D 为BC 边中点,且2OA OB OC ++=0 ,那么( )A.AO OD =B.2AO OD =C.3AO OD = D.2AO OD = 5.记者要为5名志愿都和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有( )A.1440种 B.960种 C.720种 D.480种6.若不等式组220x y x y y x y a-0⎧⎪+⎪⎨⎪⎪+⎩≥,≤,≥,≤表示的平面区域是一个三角形,则a 的取值范围是( ) A.43a ≥B.01a <≤ C.413a ≤≤ D.01a <≤或43a ≥ 7.如果正数abcd ,,,满足4a b cd +==,那么( )A.ab c d +≤,且等号成立时a b c d ,,,的取值唯一B.ab c d +≥,且等号成立时a b c d ,,,的取值唯一C.ab c d +≤,且等号成立时a b c d ,,,的取值不唯一ab c d +≥,且等号成立时a b c d ,,,的取值不唯一8.对于函数①()lg(21)f x x =-+,②2()(2)f x x =-,③()cos(2)f x x =+,判断如下三个命题的真假:命题甲:(2)f x +是偶函数;命题乙:()f x 在()-∞2,上是减函数,在(2)+∞,上是增函数;命题丙:(2)()f x f x +-在()-∞+∞,上是增函数.能使命题甲、乙、丙均为真的所有函数的序号是( )A.①③ B.①② C.③ D.②2007年普通高等学校招生全国统一考试数学(理工农医类)(北京卷)第II 卷(共110分)注意事项:1.用钢笔或圆珠笔将答案直接写在试卷上.2.答卷前将密封线内的项目填写清楚.二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上. 9.22(1)i =+ .10.若数列{}n a 的前n 项和210(123)n S n n n =-= ,,,,则此数列的通项公式为 ;数列{}n na 中数值最小的项是第 项.11.在ABC △中,若1tan 3A =,150C = ,1BC =,则AB = . 12.已知集合{}|1A x x a =-≤,{}2540B x x x =-+≥.若A B =∅ ,则实数a 的取值范围是 .13.2002年在北京召开的国际数学家大会,会标是以我国古代数学家赵爽的弦图为基础设计的.弦图是由四个全等直角三角形与一个小正方形拼成的一个大正方形(如图).如果小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为θ,那么cos2θ的值等于 .14.已知函数()f x ,()g x 分别由下表给出则[(1)]f g 的值为 ;满足[()][()]f g x g f x >的x 的值是.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(本小题共13分)数列{}n a 中,12a =,1n n a a cn +=+(c 是常数,123n = ,,,),且123a a a ,,成公比不为1的等比数列.(I )求c 的值;(II )求{}n a 的通项公式.16.(本小题共14分) 如图,在Rt AOB △中,π6OAB ∠=,斜边4AB =.Rt AOC △可以通过Rt AOB △以直线AO 为轴旋转得到,且二面角B AO C--是直二面角.动点D 的斜边AB 上.(I )求证:平面COD ⊥平面AOB ;(II )当D 为AB 的中点时,求异面直线AO 与CD 所成角的大小;(III )求CD 与平面AOB 所成角的最大值.17.(本小题共14分) 矩形ABCD 的两条对角线相交于点(20)M ,,AB 边所在直线的方程为360x y --=,点(11)T -,在AD 边所在直线上.(I )求AD 边所在直线的方程;(II )求矩形ABCD 外接圆的方程;(III )若动圆P 过点(20)N -,,且与矩形ABCD 的外接圆外切,求动圆P 的圆心的轨迹方程.18.(本小题共13分)某中学号召学生在今年春节期间至少参加一次社会公益活动(以下简称活动).该校合唱团共有100名学生,他们参加活动的次数统计如图所示.(I )求合唱团学生参加活动的人均次数; (II )从合唱团中任意选两名学生,求他们参加活动次数恰好相等的概率. x1 2 3 ()f x 13 1 x 1 2 3 ()g x 3 2 1 O C AD B1 2 3 102030 40 50 参加人数 活动次数III )从合唱团中任选两名学生,用ξ表示这两人参加活动次数之差的绝对值,求随机变量ξ的分布列及数学期望E ξ.19.(本小题共13分)如图,有一块半椭圆形钢板,其半轴长为2r ,短半轴长为r ,计划将此钢板切割成等腰梯形的形状,下底AB 是半椭圆的短轴,上底CD 的端点在椭圆上,记2CD x =,梯形面积为S .(I )求面积S 以x 为自变量的函数式,并写出其定义域;(II )求面积S 的最大值.20.已知集合{}12(2)k A a a a k = ,,,≥,其中(12)i a i k ∈=Z ,,,,由A 中的元素构成两个相应的集合:{}()S a b a A b A a b A =∈∈+∈,,,,{}()T a b a A b A a b A =∈∈-∈,,,. 其中()a b ,是有序数对,集合S 和T 中的元素个数分别为m 和n .若对于任意的a A ∈,总有a A -∉,则称集合A 具有性质P .(I )检验集合{}0123,,,与{}123-,,是否具有性质P 并对其中具有性质P 的集合,写出相应的集合S 和T ;(II )对任何具有性质P 的集合A ,证明:(1)2k k n -≤; (III )判断m 和n 的大小关系,并证明你的结论.2007年普通高等学校招生全国统一考试数学(理工农医类)(北京卷)答案一、选择题(本大题共8小题,每小题5分,共40分)1.C 2.B 3.D 4.A5.B 6.D7.A 8.D 4r C D A B2r6小题,每小题5分,共30分)9.i -10.211n - 3 11.102 12.(23), 13.725 14.1 2三、解答题(本大题共6小题,共80分)15.(共13分)解:(I )12a =,22a c =+,323a c =+,因为1a ,2a ,3a 成等比数列,所以2(2)2(23)c c +=+,解得0c =或2c =.当0c =时,123a a a ==,不符合题意舍去,故2c =.(II )当2n ≥时,由于 21a a c -=,322a a c -=,1(1)n n a a n c --=-, 所以1(1)[12(1)]2n n n a a n c c --=+++-= . 又12a =,2c =,故22(1)2(23)n a n n n n n =+-=-+= ,,. 当1n =时,上式也成立,所以22(12)n a n n n =-+= ,,. 16.(共14分)解法一:(I )由题意,CO AO ⊥,BO AO ⊥,BOC ∴∠是二面角B AO C --是直二面角,又 二面角B AO C --是直二面角,CO BO ∴⊥,又AO BO O = , CO ∴⊥平面AOB ,又CO ⊂平面COD .∴平面COD ⊥平面AOB .(II )作DE OB ⊥,垂足为E ,连结CE (如图),则DE AO ∥,CDE ∴∠是异面直线AO 与CD 所成的角. ADRt COE △中,2CO BO ==,112OE BO ==, 225CE CO OE ∴=+=. 又132DE AO ==. ∴在Rt CDE △中,515tan 33CE CDE DE ===. ∴异面直线AO 与CD 所成角的大小为15arctan3. (III )由(I )知,CO ⊥平面AOB , CDO ∴∠是CD 与平面AOB 所成的角,且2tan OC CDO OD OD ==. 当OD 最小时,CDO ∠最大,这时,OD AB ⊥,垂足为D ,3OA OB OD AB== ,23tan 3CDO =, CD ∴与平面AOB 所成角的最大值为23arctan3. 解法二:(I )同解法一. (II )建立空间直角坐标系O xyz -,如图,则(000)O ,,,(0023)A ,,,(200)C ,,,(013)D ,,,(0023)OA ∴= ,,,(213)CD =- ,,,cos OA CD OACD OA CD ∴<>= , 6642322== . ∴异面直线AO 与CD 所成角的大小为6arccos4. (III )同解法一17.(共14分) 解:(I )因为AB 边所在直线的方程为360x y --=,且AD 与AB 垂直,所以直线AD 的斜率为3-. O CA DB x y z(11)T -,在直线AD 上,所以AD 边所在直线的方程为13(1)y x -=-+.320x y ++=.(II )由36032=0x y x y --=⎧⎨++⎩,解得点A 的坐标为(02)-,, 因为矩形ABCD 两条对角线的交点为(20)M ,.所以M 为矩形ABCD 外接圆的圆心. 又22(20)(02)22AM =-++=.从而矩形ABCD 外接圆的方程为22(2)8x y -+=.(III )因为动圆P 过点N ,所以PN 是该圆的半径,又因为动圆P 与圆M 外切, 所以22PM PN =+, 即22PM PN -=.故点P 的轨迹是以M N ,为焦点,实轴长为22的双曲线的左支. 因为实半轴长2a =,半焦距2c =. 所以虚半轴长222b c a =-=.从而动圆P 的圆心的轨迹方程为221(2)22x y x -=-≤. 18.(共13分)解:由图可知,参加活动1次、2次和3次的学生人数分别为10、50和40.(I )该合唱团学生参加活动的人均次数为110250340230 2.3100100⨯+⨯+⨯==. (II )从合唱团中任选两名学生,他们参加活动次数恰好相等的概率为222105040021004199C C C P C ++==. (III )从合唱团中任选两名学生,记“这两人中一人参加1次活动,另一人参加2次活动”为事件A ,“这两人中一人参加2次活动,另一人参加3次活动”为事件B ,“这两人中一人参加1次活动,另一人参加3次活动”为事件C .易知(1)()()P P A P B ξ==+111110505040241001005099C C C C C C =+=; (2)()P P C ξ==1110402100899C C C ==; ξ的分布列: ξ 0 1 2P 41995099 899 ξ的数学期望:4150820129999993E ξ=⨯+⨯+⨯=. 19.(共13分)解:(I )依题意,以AB 的中点O 为原点建立直角坐标系O xy -(如图),则点C 的横坐标为x .点C 的纵坐标y 满足方程22221(0)4x y y r r+=≥, 解得222(0)y r x x r =-<< 221(22)22S x r r x =+- 222()x r r x =+- ,其定义域为{}0x x r <<. (II )记222()4()()0f x x r r x x r =+-<<,, 则2()8()(2)f x x r r x '=+-.令()0f x '=,得12x r =. 因为当02r x <<时,()0f x '>;当2r x r <<时,()0f x '<,所以12f r ⎛⎫ ⎪⎝⎭是()f x 的最大值. CD A B O x y12x r =时,S 也取得最大值,最大值为213322f r r ⎛⎫= ⎪⎝⎭. 即梯形面积S 的最大值为2332r . 20.(共13分) (I )解:集合{}0123,,,不具有性质P . 集合{}123-,,具有性质P ,其相应的集合S 和T 是{}(13)(31)S =--,,,, {}(21)23T =-(),,,.(II )证明:首先,由A 中元素构成的有序数对()i j a a ,共有2k 个. 因为0A ∉,所以()(12)i i a a T i k ∉= ,,,,; 又因为当a A ∈时,a A -∉时,a A -∉,所以当()i j a a T ∈,时,()(12j i a a T i j k ∉= ,,,,,.从而,集合T 中元素的个数最多为21(1)()22k k k k --=, 即(1)2k k n -≤. (III )解:m n =,证明如下: (1)对于()a b S ∈,,根据定义,a A ∈,b A ∈,且a b A +∈,从而()a b b T +∈,. 如果()a b ,与()c d ,是S 的不同元素,那么a c =与b d =中至少有一个不成立,从而a b c d +=+与b d =中也至少有一个不成立.故()a b b +,与()c d d +,也是T 的不同元素.可见,S 中元素的个数不多于T 中元素的个数,即m n ≤,(2)对于()a b T ∈,,根据定义,a A ∈,b A ∈,且a b A -∈,从而()a b b S -∈,.如果()a b ,与()c d ,是T 的不同元素,那么a c =与b d =中至少有一个不成立,从而a b c d -=-与b d =中也不至少有一个不成立,故()a b b -,与()c d d -,也是S 的不同元素.可见,T 中元素的个数不多于S 中元素的个数,即n m ≤,由(1)(2)可知,m n =.。
2007年高考数学卷(湖北.理)含答案

2007年普通高等学校招生全国统一考试(湖北卷)数学(理工农医类)本试卷共4页,满分150分,考试时间120分钟.★祝考试顺利★注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置.2.选择题每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试题卷上无效.3.将填空题和解答题用0.5毫米的黑色墨水签字笔或黑色墨水钢笔直接答在答题卡上每题对应的答题区域内.答在试题卷上无效.4.考试结束,请将本试题卷和答题卡一并上交.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如果2323nx x ⎛⎫- ⎪⎝⎭的展开式中含有非零常数项,则正整数n 的最小值为( )A.3B.5 C.6 D.10 2.将π2cos 36x y ⎛⎫=+ ⎪⎝⎭的图象按向量π24⎛⎫=-- ⎪⎝⎭,a 平移,则平移后所得图象的解析式为( )A.π2cos 234x y ⎛⎫=+- ⎪⎝⎭B.π2cos 234x y ⎛⎫=-+ ⎪⎝⎭C.π2cos 2312x y ⎛⎫=-- ⎪⎝⎭D.π2cos 2312x y ⎛⎫=++ ⎪⎝⎭3.设P 和Q 是两个集合,定义集合{}|P Q x x P x Q -=∈∉,且,如果{}2|log 1P x x =<,{}|21Q x x =-<,那么P Q -等于( )A.{}|01x x << B.{}|01x x <≤C.{}|12x x <≤D.{}|23x x <≤4.平面α外有两条直线m 和n ,如果m 和n 在平面α内的射影分别是m '和n ',给出下列四个命题:①m n m n ''⊥⇒⊥; ②m n m n ''⊥⇒⊥;③m '与n '相交⇒m 与n 相交或重合; ④m '与n '平行⇒m 与n 平行或重合.其中不正确的命题个数是( ) A.1 B.2 C.3D.45.已知p 和q 是两个不相等的正整数,且2q ≥,则111lim 111pq n n n ∞⎛⎫+- ⎪⎝⎭=⎛⎫+- ⎪⎝⎭→( ) A .0B .1C .p qD .11p q -- 6.若数列{}n a 满足212n na p a +=(p 为正常数,n *∈N ),则称{}n a 为“等方比数列”. 甲:数列{}n a 是等方比数列; 乙:数列{}n a 是等比数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件7.双曲线22122:1(00)x y C a b a b-=>>,的左准线为l ,左焦点和右焦点分别为1F 和2F ;抛物线2C 的准线为l ,焦点为21F C ;与2C 的一个交点为M ,则12112F F MF MF MF -等于( )A .1-B .1C .12-D .128.已知两个等差数列{}n a 和{}n b 的前n 项和分别为A n 和n B ,且7453n n A n B n +=+,则使得n na b 为整数的正整数n 的个数是( )A .2B .3C .4D .59.连掷两次骰子得到的点数分别为m 和n ,记向量()m n ,a =与向量(11)=-,b 的夹角为θ,则0θπ⎛⎤∈ ⎥2⎝⎦,的概率是( )A .512B .12C .712D .5610.已知直线1x ya b+=(a b ,是非零常数)与圆22100x y +=有公共点,且公共点的横坐标和纵坐标均为整数,那么这样的直线共有( ) A .60条 B .66条 C .72条 D .78条二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡相应位置上.11.已知函数2y x a =-的反函数是3y bx =+,则a = ;b = . 12.复数i z a b a b =+∈R ,,,且0b ≠,若24z bz -是实数,则有序实数对()a b ,可以是 .(写出一个有序实数对即可)13.设变量x y ,满足约束条件02 3.x y x +⎧⎨-⎩≥,≤≤则目标函数2x y +的最小值为.14.某篮运动员在三分线投球的命中率是12,他投球10次,恰好投进3个球的概率 .(用数值作答)15.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t 的函数关系式为116t ay -⎛⎫= ⎪⎝⎭(a 为常数),如图所示.据图中提供的信息,回答下列问题:(I )从药物释放开始,每立方米空气中的含药量y (毫克)与时间t (小时)之间的函数关系式为 ;(II )据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那么药物释放开始,至少需要经过 小时后,学生才能回到教室.三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分)已知ABC △的面积为3,且满足06AB AC ≤≤,设AB 和AC 的夹角为θ. (I )求θ的取值范围; (II )求函数2()2sin 24f θθθ⎛⎫=+-⎪⎝⎭π的最大值与最小值.17.(本小题满分12分)在生产过程中,测得纤维产品的纤度(表示纤维粗细的一种量)共有100个数据,将数据分组如右表:(I )在答题卡上完成频率分布表,并在给定的坐标系中画出频率分布直方图;(II )估计纤度落在[1.381.50),中的概率及纤度小于1.40的概率是多少?(III )统计方法中,同一组数据常用该组区间的中点值(例如区间[1.301.34),的中点值是1.32)作为代表.据此,估计纤度的期望. 18.(本小题满分12分)如图,在三棱锥V ABC -中,VC ⊥底面ABC ,AC BC ⊥,D 是AB 的中点,且AC BC a ==,VDC θ∠=π02θ⎛⎫<< ⎪⎝⎭.(I )求证:平面VAB ⊥VCD ;(II )当解θ变化时,求直线BC 与平面VAB 所成的角的取值范围.19.(本小题满分12分)在平面直角坐标系xOy 中,过定点(0)C p ,作直线与抛物线22x py =(0p >)相交于A B ,两点.(I )若点N 是点C 关于坐标原点O 的对称点,求ANB △面积的最小值;(II )是否存在垂直于y 轴的直线l ,使得l 被以AC 为直径的圆截得的弦长恒为定值?若存在,求出l 的方程;若不存在,说明理由.(此题不要求在答题卡上画图) 20.(本小题满分13分) 已知定义在正实数集上的函数21()22f x x ax =+,2()3ln g x a x b =+,其中0a >.设两曲线()y f x =,()y g x =有公共点,且在该点处的切线相同. (I )用a 表示b ,并求b 的最大值;VAx(II )求证:()()f x g x ≥(0x >). 21.(本小题满分14分) 已知m n ,为正整数,(I )用数学归纳法证明:当1x >-时,(1)1mx mx ++≥;(II )对于6n ≥,已知11132m n ⎛⎫-< ⎪+⎝⎭,求证1132mm m ⎛⎫-< ⎪+⎝⎭, 求证1132m mm n ⎛⎫⎛⎫-< ⎪ ⎪+⎝⎭⎝⎭,12m n =,,,; (III )求出满足等式34(2)(3)nnn m n n ++++=+的所有正整数n .2007年普通高等学校招生全国统一考试(湖北卷)数学(理工农医类)试题参考答案一、选择题:本题考查基础知识和基本运算.每小题5分,满分50分. 1.B 2.A 3.B 4.D 5.C 6.B 7.A 8.D 9.C 10.A二、填空题:本题考查基础知识和基本运算.每小题5分,满分25分. 11.162;12.(21),(或满足2a b =的任一组非零实数对()a b ,)13.32-14.1512815.110110010111610t t t y t -⎧⎛⎫ ⎪⎪⎝⎭⎪=⎨⎪⎛⎫⎛⎫> ⎪ ⎪⎪⎝⎭⎝⎭⎩,,,≤≤;0.6 三、解答题:本大题共6小题,共75分.16.本小题主要考查平面向量数量积的计算、解三角形、三角公式、三角函数的性质等基本知识,考查推理和运算能力.解:(Ⅰ)设ABC △中角A B C ,,的对边分别为a b c ,,, 则由1sin 32bc θ=,0cos 6bc θ≤≤,可得0cot 1θ≤≤,ππ42θ⎡⎤∈⎢⎥⎣⎦,∴.(Ⅱ)2π()2sin 24f θθθ⎛⎫=+⎪⎝⎭π1cos 222θθ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦(1sin 2)2θθ=+-πsin 2212sin 213θθθ⎛⎫=+=-+ ⎪⎝⎭.ππ42θ⎡⎤∈⎢⎥⎣⎦,∵,ππ2π2363θ⎡⎤-∈⎢⎥⎣⎦,,π22sin 2133θ⎛⎫-+ ⎪⎝⎭∴≤≤.即当5π12θ=时,max ()3f θ=;当π4θ=时,min ()2f θ=. 17.本小题主要考查频率分布直方图、概率、期望等概念和用样本频率估计总体分布的统计方法,考查运用概率统计知识解决实际问题的能力. 解:(Ⅰ)(Ⅱ)纤度落在[)1.381.50,中的概率约为0.300.290.100.69++=,纤度小于1.40的概率约为10.040.250.300.442++⨯=. (Ⅲ)总体数据的期望约为1.320.04 1.360.25 1.400.30 1.440.29 1.480.10 1.520.02 1.4088⨯+⨯+⨯+⨯+⨯+⨯=.样本数据18.本小题主要考查线面关系、直线与平面所成角的有关知识,考查空间想象能力和推理运算能力以及应用向量知识解决数学问题的能力. 解法1:(Ⅰ)AC BC a ==∵,ACB ∴△是等腰三角形,又D 是AB 的中点, CD AB ⊥∴,又VC ⊥底面ABC .VC AB ⊥∴.于是AB ⊥平面VCD . 又AB ⊂平面VAB ,∴平面VAB ⊥平面VCD .(Ⅱ) 过点C 在平面VCD 内作CH VD ⊥于H ,则由(Ⅰ)知CD ⊥平面VAB . 连接BH ,于是CBH ∠就是直线BC 与平面VAB 所成的角. 在CHD Rt △中,sin CH a θ=; 设CBH ϕ∠=,在BHC Rt △中,sin CH a ϕ=,sin 2θϕ=. π02θ<<∵, 0sin 1θ<<∴,0sin 2ϕ<<. 又π02ϕ≤≤,π04ϕ<<∴. 即直线BC 与平面VAB 所成角的取值范围为π04⎛⎫ ⎪⎝⎭,.解法2:(Ⅰ)以CA CB CV ,,所在的直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则(000)(00)(00)000tan 222a a C A a B a D V a θ⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭,,,,,,,,,,,,,,,于是,tan 22a aVD θ⎛⎫= ⎪ ⎪⎝⎭,,,022a a CD ⎛⎫= ⎪⎝⎭,,,(0)AB a a =-,,. 从而2211(0)0002222a aABCD a a a a ⎛⎫=-=-++= ⎪⎝⎭,,,,··,即AB CD ⊥. 同理2211(0)tan 0022222a aABVD a a a a θ⎛⎫=--=-++= ⎪ ⎪⎝⎭,,,,··,即AB VD ⊥.又CD VD D =,AB ⊥∴平面VCD . 又AB ⊂平面VAB .∴平面VAB ⊥平面VCD .(Ⅱ)设直线BC 与平面VAB 所成的角为ϕ,平面VAB 的一个法向量为()x y z =,,n ,则由00AB VD ==,nn ··. ADBCHV得0tan 0222ax ay a a x y az θ-+=⎧⎪⎨+-=⎪⎩,.可取(11)θ=n ,又(00)BC a =-,,,于是sin sin 2BC BCa ϕθ===n n ···, π02θ<<∵,0sin 1θ<<∴,0sin 2ϕ<<.又π02ϕ≤≤,π04ϕ<<∴. 即直线BC 与平面VAB 所成角的取值范围为π04⎛⎫ ⎪⎝⎭,.解法3:(Ⅰ)以点D为原点,以DC DB ,所在的直线分别为x 轴、y 轴,建立如图所示的空间直角坐标系,则(000)000000222D A a B a C a ⎛⎫⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,,,,,,,,,,0tan 22V a a θ⎛⎫- ⎪ ⎪⎝⎭,,,于是0tan 22DV a a θ⎛⎫=- ⎪ ⎪⎝⎭,,,002DC a ⎛⎫=- ⎪ ⎪⎝⎭,,,(00)AB =,,.从而(00)ABDC =,,·0002a ⎛⎫-= ⎪ ⎪⎝⎭,,·,即AB DC ⊥.同理(00)0tan 022AB DV a a θ⎛⎫=-= ⎪ ⎪⎝⎭,,,,·,即AB DV ⊥. 又DCDV D =,AB ⊥∴平面VCD .又AB ⊂平面VAB ,∴平面VAB ⊥平面VCD .(Ⅱ)设直线BC 与平面VAB 所成的角为ϕ,平面VAB 的一个法向量为()x yz =,,n,则由00AB DV ==,··n n ,得0tan 022ax az θ=⎨-+=⎪⎩,.可取(tan 01)θ=,,n,又022BC a ⎛⎫=-- ⎪ ⎪⎝⎭,,,于是tan 2sin sin 2BC a BC θϕθ===n n ···,π02θ<<∵,0sin 1θ<<∴,0sin ϕ<<. 又π02ϕ≤≤,π04ϕ<<∴, 即直线BC 与平面VAB 所成角的取值范围为π04⎛⎫ ⎪⎝⎭,.解法4:以CA CB CV ,,所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则(000)(00)(00)022a aC A a B aD ⎛⎫ ⎪⎝⎭,,,,,,,,,,,. 设(00)(0)V t t >,,.(Ⅰ)(00)0(0)22a a CV t CD AB a a ⎛⎫===- ⎪⎝⎭,,,,,,,,, (0)(00)0000AB CV a a t =-=++=,,,,··,即AB CV ⊥.22(0)0002222a a a a AB CD a a ⎛⎫=-=-++= ⎪⎝⎭,,,,··,即AB CD ⊥.又CV CD C =,AB ⊥∴平面VCD . 又AB ⊂平面VAB ,∴平面VAB ⊥平面VCD .(Ⅱ)设直线BC 与平面VAB 所成的角为ϕ, 设()x y z =,,n 是平面VAB 的一个非零法向量,则()(0)0()(0)0AB x y z a a ax ay AV x y z a t ax tz ⎧=-=-+=⎪⎨=-=-+=⎪⎩,,,,,,,,,,n n ····取z a =,得x y t ==.可取()t t a =,,n ,又(00)CBa =,,, A于是sin CB CBa ϕ====···n n(0)t ∈+,∵∞,sin ϕ关于t 递增. 0sin ϕ<<∴,π04ϕ⎛⎫∈ ⎪⎝⎭,∴. 即直线BC 与平面VAB 所成角的取值范围为π04⎛⎫ ⎪⎝⎭,.19.本小题主要考查直线、圆和抛物线等平面解析几何的基础知识,考查综合运用数学知识进行推理运算的能力和解决问题的能力.解法1:(Ⅰ)依题意,点N 的坐标为(0)N p -,,可设1122()()A x y B x y ,,,,直线AB 的方程为y kx p =+,与22x py =联立得22x py y kx p ⎧=⎨=+⎩,.消去y 得22220x pkx p --=.由韦达定理得122x x pk +=,2122x x p =-.于是12122ABN BCN ACN S S S p x x =+=-△△△·.12p x x =-=2p ==∴当0k =时,2min ()ABN S =△.(Ⅱ)假设满足条件的直线l 存在,其方程为y a =,AC 的中点为O ',l 与AC 为直径的圆相交于点P ,Q PQ ,的中点为H ,则O H PQ '⊥,Q '点的坐标为1122x y p +⎛⎫⎪⎝⎭,. 12O P AC '===∵, 111222y p O H a a y p +'=-=--,222PH O P O H ''=-∴2221111()(2)44y p a y p =+---1()2p a y a p a ⎛⎫=-+- ⎪⎝⎭,22(2)PQ PH =∴14()2p a y a p a ⎡⎤⎛⎫=-+- ⎪⎢⎥⎝⎭⎣⎦.令02p a -=,得2p a =,此时PQ p =为定值,故满足条件的直线l 存在,其方程为2py =, 即抛物线的通径所在的直线. 解法2:(Ⅰ)前同解法1,再由弦长公式得12AB x =-==2=又由点到直线的距离公式得d =.从而112222ABN S dAB p ===△···∴当0k =时,2min ()ABN S =△.(Ⅱ)假设满足条件的直线l 存在,其方程为y a =,则以AC 为直径的圆的方程为11(0)()()()0x x x y p y y -----=,将直线方程y a =代入得211()()0x x x a p a y -+--=,则21114()()4()2p x a p a y a y a p a ⎡⎤⎛⎫=---=-+- ⎪⎢⎥⎝⎭⎣⎦△. 设直线l 与以AC 为直径的圆的交点为3344()()P x y Q x y ,,,,则有34PQ x x =-==令02p a -=,得2p a =,此时PQ p =为定值,故满足条件的直线l 存在,其方程为2py =, 即抛物线的通径所在的直线.20.本小题主要考查函数、不等式和导数的应用等知识,考查综合运用数学知识解决问题的能力.解:(Ⅰ)设()y f x =与()(0)y g x x =>在公共点00()x y ,处的切线相同.()2f x x a '=+∵,23()a g x x'=,由题意00()()f x g x =,00()()f x g x ''=. 即22000200123ln 232x ax a x b a x a x ⎧+=+⎪⎪⎨⎪+=⎪⎩,,由20032a x a x +=得:0x a =,或03x a =-(舍去). 即有222221523ln 3ln 22b a a a a a a a =+-=-. 令225()3ln (0)2h t t t t t =->,则()2(13ln )h t t t '=-.于是当(13ln )0t t ->,即130t e <<时,()0h t '>; 当(13ln )0t t -<,即13t e >时,()0h t '<.故()h t 在130e ⎛⎫ ⎪⎝⎭,为增函数,在13e ⎛⎫+ ⎪⎝⎭,∞为减函数,于是()h t 在(0)+,∞的最大值为123332h e e ⎛⎫= ⎪⎝⎭.(Ⅱ)设221()()()23ln (0)2F x f x g x x ax a x b x =-=+-->, 则()F x '23()(3)2(0)a x a x a x a x x x-+=+-=>. 故()F x 在(0)a ,为减函数,在()a +,∞为增函数,于是函数()F x 在(0)+,∞上的最小值是000()()()()0F a F x f x g x ==-=. 故当0x >时,有()()0f x g x -≥,即当0x >时,()()f x g x ≥.21.本小题主要考查数学归纳法、数列求和、不等式等基础知识和基本的运算技能,考查分析问题能力和推理能力. 解法1:(Ⅰ)证:用数学归纳法证明: (ⅰ)当1m =时,原不等式成立;当2m =时,左边212x x =++,右边12x =+, 因为20x≥,所以左边≥右边,原不等式成立;(ⅱ)假设当m k =时,不等式成立,即(1)1kx kx ++≥,则当1m k =+时,1x >-∵,10x +>∴,于是在不等式(1)1k x kx ++≥两边同乘以1x +得2(1)(1)(1)(1)1(1)1(1)k x x kx x k x kx k x ++++=+++++·≥≥,所以1(1)1(1)k x k x ++++≥.即当1m k =+时,不等式也成立.综合(ⅰ)(ⅱ)知,对一切正整数m ,不等式都成立.(Ⅱ)证:当6n m n ,≥≤时,由(Ⅰ)得111033mm n n ⎛⎫+-> ⎪++⎝⎭≥, 于是11133n nmm n n ⎛⎫⎛⎫--= ⎪ ⎪++⎝⎭⎝⎭≤11132mn mn ⎡⎤⎛⎫⎛⎫-<⎢⎥ ⎪ ⎪+⎝⎭⎝⎭⎢⎥⎣⎦,12m n =,,,. (Ⅲ)解:由(Ⅱ)知,当6n ≥时,2121111111113332222n nnnn n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+-++-<+++=-< ⎪ ⎪ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,2131333n nnn n n n n ++⎛⎫⎛⎫⎛⎫+++< ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭∴. 即34(2)(3)nnn n n n ++++<+.即当6n ≥时,不存在满足该等式的正整数n .故只需要讨论12345n =,,,,的情形: 当1n =时,34≠,等式不成立; 当2n =时,222345+=,等式成立; 当3n =时,33333456++=,等式成立;当4n =时,44443456+++为偶数,而47为奇数,故4444434567+++≠,等式不成立; 当5n =时,同4n =的情形可分析出,等式不成立. 综上,所求的n 只有23n =,. 解法2:(Ⅰ)证:当0x =或1m =时,原不等式中等号显然成立,下用数学归纳法证明: 当1x >-,且0x ≠时,2m ≥,(1)1mx mx +>+. ①(ⅰ)当2m =时,左边212x x =++,右边12x =+,因为0x ≠,所以20x >,即左边>右边,不等式①成立;(ⅱ)假设当(2)m k k =≥时,不等式①成立,即(1)1kx kx +>+,则当1m k =+时,因为1x >-,所以10x +>.又因为02x k ≠,≥,所以20kx >.于是在不等式(1)1kx kx +>+两边同乘以1x +得2(1)(1)(1)(1)1(1)1(1)k x x kx x k x kx k x ++>++=+++>++·,所以1(1)1(1)k x k x ++>++.即当1m k =+时,不等式①也成立.综上所述,所证不等式成立.(Ⅱ)证:当6n ≥,m n ≤时,11132nn ⎛⎫-< ⎪+⎝⎭∵,11132nm mn ⎡⎤⎛⎫⎛⎫-<⎢⎥ ⎪⎪+⎝⎭⎝⎭⎢⎥⎣⎦∴, 而由(Ⅰ),111033mm n n ⎛⎫--> ⎪++⎝⎭≥, 1111332nnm mm n n ⎡⎤⎛⎫⎛⎫⎛⎫--<⎢⎥ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦∴≤.(Ⅲ)解:假设存在正整数06n ≥使等式00000034(2)(3)nn n n n n ++++=+成立,即有0000002341333n n n n n n n ⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭. ②又由(Ⅱ)可得00000234333n n n n n n n ⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭000000011111333n n n n n n n n ⎛⎫⎛⎫⎛⎫-=-+-++- ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭00011111112222n n n -⎛⎫⎛⎫<+++=-< ⎪ ⎪⎝⎭⎝⎭,与②式矛盾. 故当6n ≥时,不存在满足该等式的正整数n . 下同解法1.。
2007年全国各地高考数学试卷及答案(37套)word--完整版

2007年普通高等学校招生全国统一考试数学卷(四川.文)含答案
2007年普通高等学校招生全国统一考试数学卷(天津.理)含答案
2007年普通高等学校招生全国统一考试数学卷(天津.文)含答案
2007年普通高等学校招生全国统一考试数学卷(浙江.理)含答案
2007年普通高等学校招生全国统一考试数学卷(湖南.理)含答案
2007年普通高等学校招生全国统一考试数学卷(湖南.文)含答案
2007年普通高等学校招生全国统一考试数学卷(江西.理)含答案
2007年普通高等学校招生全国统一考试数学卷(江西.文)含答案
2007年普通高等学校招生全国统一考试数学卷(山东.理)含答案
2007年全国各地高考数学试卷及答案(37套)--完整版
2007年普通高等学校招生全国统一考试数学卷(全国卷Ⅰ.理)含答案
2007年普通高等学校招生全国统一考试数学卷(全国卷Ⅰ.文)含答案
2007年普通高等学校招生全国统一考试数学卷(全国卷Ⅱ.理)含答案
2007年普通高等学校招生全国统一考试数学卷(全国卷Ⅱ.文)含答案
宁夏和海南都是新课标教材,使用的是同一套数学题。
பைடு நூலகம் 四川省蓬安中学校 张万建 整理 zwjozwj@
2007年普通高等学校招生全国统一考试数学卷 (宁夏.海南.理) 含答案
2007年普通高等学校招生全国统一考试数学卷 (宁夏.海南.文) 含答案
2007年普通高等学校招生全国统一考试数学卷(江苏卷不分文理)含答案
注:使用全国卷Ⅰ的省份:河北 河南 山西 广西 ;
使用全国卷Ⅱ的省份:吉林 黑龙江 云南 贵州 新疆 青海 甘肃 内蒙 西藏
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用前 试卷类型:B2007年普通高等学校招生全国统一考试(广东卷)数学(理科)本试卷共4页,21小题,满分150分,考试时间120分钟.注意事项:1.答卷前,考生务必用黑色字迹的铅笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上.用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上、将条形码横贴在答题卡右上角“条形码粘贴处”.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号(或题组号)对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回. 参考公式:锥体的体积公式sh V 31=,其中S 是锥体的底面积,h 是锥体的高. 如果事件A 、B 互斥,那么)()()(B P A P B A P +=+. 如果事件A 、B 相互独立,那么)()()(B P A P B A P •=•.用最小二乘法求线性同归方程系数公式1221ˆˆˆ,ni ii ni i x y nx ybay bx x nx==-==--∑∑. 一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项符合要求的. 1.已知函数xx f -=11)(的定义域为M ,)1ln()(x x g +=的定义域为N ,则M N =A .{}1x x >-B .{}1x x <C .{}11x x -<<D .∅2.若复数)2)(1(i bi ++是纯虚数(i 是虚数单位,b 是实数)则b =A .2B .21C .21-D .-23.若函数21()sin (),()2f x x x f x =-∈R 则是A .最小正周期为2π的奇函数 B .最小正周期为π的奇函数C .最小正周期为π2的偶函数D .最小正周期为π的偶函数4.客车从甲地以60km/h 的速度匀速行驶1小时到达乙地,在乙地停留了半小时,然后以80km/h 的速度匀速行驶1小时到达丙地,下列描述客车从甲地出发.经过乙地,最后到达丙地所经过的路程s 与时间t 之间关系的图象中,正确的是A .B .C .D .5.已知数{}n a 的前n 项和29n S n n =-,第k 项满足58k a <<,则k=A .9B .8C .7D .6 6.图1是某县参加2007年高考的学生身高条形统计图,从左到右的各条形表示的学生人数依次记为A 1、A 2、…、A 10(如A 2表示身高(单位:cm )(150,155)内的学生人数).图2是统计图1中身高在一定范围内学生人数的一个算法流程图.现要统计身高在160~180cm(含160cm,不含180cm)的学生人数,那么在流程图中的判断框内应填写的条件是A .i<6B . i<7C . i<8D . i<97.图3是某汽车维修公司的维修点环形分布图,公司在年初分配给A 、B 、C 、D 四个维修点的这批配件分别调整为40、45、61件,但调整只能在相邻维修点之间进行,那么要完成上述调整,最少的调动件次(n 件配件从一个维修点调整到相邻维修点的调动件次为n )为A .15B .16C .17D .18 8.设S 是至少含有两个元素的集合,在S 上定义了一个二元运算“*”(即对任意的a,b ∈S ,对于有序元素对(a,b ),在S 中有唯一确定的元素a*b 与之对应),若对任意的a,b ∈S,有a*(b*a)=b,则对任意的a,b ∈S,下列等式中不恒成立的是 A .(a*b )*a=a B .[a*(b*a)]*(a*b)=a C .b*(b*b)=b D .(a*b)* [b*(a*b)]=b二、填空题:本大题共7小题,每小题5分,满分30分,其中13~15题是选做题,考生只能选做二题,三题全答的,只计算前两题得分.9.甲、乙两个袋中均装有红、白两种颜色的小球,这些小球除颜色外完全相同.其中甲袋装有4个红球,2个白球,乙袋装有1个红球,5个白球. 现分别从甲、乙两袋中各随机取出一个球,则取出的两球都是红球的概率为 .(答案用分数表示) 10. 若向量a 、b 满足|a |=|b |=1,a 与b 的夹角为120,则a a +=a b . 11.在平面直角坐标系xOy 中,有一定点A (2,1),若线段OA 的垂直平分线过抛物线22(0)y px p =>的焦点,则该抛物线的准线方程是 .12.如果一个凸多面体n 棱锥,那么这个凸多面体的所有顶点所确定的直线共有 条.这些直线中共有)(n f 对异面直线,则)4(f = 图4 ; )(n f = .(答案用数字或n 的解析式表示)13.(坐标系与参数方程选做题)在平面直角坐标系xOy 中,直线l 的参数方程为3()3x t t y t =+⎧∈⎨=-⎩R 参数,圆C 的参数方程为[])20(2sin 2cos 2πθθθ,参数∈⎩⎨⎧+==y x ,则圆C 的圆心坐标为 ,圆心到直线l 的距离为 .14.(不等式选讲选做题)设函数)2(,312)(-++-=f x x x f 则= ;若2)(≤x f ,则x 的取值范围是 . 15.(几何证明选讲选做题)如图5所法,圆O 的直径6=AB ,C为圆周上一点,3=BC ,过C 作圆的切线l ,过A 作l 的垂线AD ,AD 分别与直线l 、圆交于点D 、E ,则∠DAC = ,线段AE 的长为 .图5三、解答题:本大题共有6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分) 已知△ABC 顶点的直角坐标分别为)0,()0,0()4,3(c C B A 、、.(1)若5=c ,求sin ∠A 的值;(2)若∠A 是钝角,求c 的取值范围.17.(本题满分12分)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生 产能耗y (吨标准煤)的几组对照数据x3 4 56y2.5344.5(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程ˆˆy bx a =+;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性同归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值:3 2.543546 4.566.5⨯+⨯+⨯+⨯=) 18.(本小题满分14分)在平面直角坐标系xOy 中,已知圆心在第二象限,半径为22的圆C 与直线y=x 相切于坐标原点O .椭圆9222y ax +=1与圆C 的一个交点到椭圆两点的距离之和为10.(1)求圆C 的方程.(2)试探求C 上是否存在异于原点的点Q ,使Q 到椭圆右焦点P 的距离等于线段OF 的长.若存在,请求出点Q 的坐标;若不存在,请说明理由. 19.(本小题满分14分)如图6所示,等腰△ABC 的底边AB =66,高CD =3,点B 是线段BD 上异于点B 、D 的动点.点F 在BC 边上,且EF ⊥AB .现沿EF 将△BEF 折起到△PEF 的位置,使PE ⊥AE .记BE =x ,V (x )表示四棱锥P-ACFE 的体积.(1)求V (x )的表达式;(2)当x 为何值时,V (x )取得最大值?(3)当V (x )取得最大值时,求异面直线AC 与PF 所成角的余弦值 20.(本小题满分14分)已知a 是实数,函数2()223f x ax x a =+--.如果函数()y f x =在区间[1,1]-上有零点,求a 的取值范围. 21.(本小题满分14分)已知函数2()1f x x x =+-,α、β是方程()0f x =的两个根(αβ>),()f x '是()f x 的导数,设11a =,1()()n n n n f a a a f a +=-',(1,2,)n =.(1)求α、β的值;(2)证明:任意的正整数n ,都有n a α>; (3)记ln n n n a b a βα-=-,(1,2,)n =,求数列{n b }的前n 项和n S .2007年普通高等学校全国招生统一考试 (广东卷)数学(理科)参考答案一、选择题二、填空题9.19 10.12 11.54x =- 12.()12n n +,()()122n n n --13.(0,2), 14.6,[]1,1- 15.30,3三、解答题16.解:(1)∵()3,4A ,()0,0B , ∴5AB =,4sin 5B =. 当5c =时,5BC =,AC ==根据正弦定理,得sin sin BC ACA B=, ∴sin 5A =. (2)∵()3,4A ,()0,0B ,(),0C c , ∴5AB =,AC =,BC c =.根据余弦定理,得222cos 2AB AC BCA AB AC+-=.若A ∠为钝角,则cos 0A <,即2220AB AC BC +-<,即()22225340c c ⎡⎤+-+-<⎣⎦,解得253c >.17.解:(1)如下图(2)y x i ni i ∑=1=3⨯2.5+4⨯3+5⨯4+6⨯4.5=66.5,x =46543+++=4.5,y =2.534 4.54+++=3.5,222221345686ni ix ==+++=∑,b =266.54 4.5 3.50.7864 4.5-⨯⨯=-⨯, a =3.5-0.7⨯4.5=0.35.故线性回归方程为y =0.7x +0.35.(3)根据回归方程的预测,现在生产100吨产品消耗的标准煤的数量为 0.7⨯100+0.35=70.35,故耗能减少了90-70.35=19.65(吨)18.解:(1)设圆心坐标为(m ,n )(m <0,n >0),则该圆的方程为()()228x m y n -+-=,已知该圆与直线y =x 相切,那么圆心到该直线的距离等于圆的半径,则2n m -=22.即n m -=4 ① 又圆与直线切于原点,将点(0,0)代入,得m 2+n 2=8. ② 联立方程①和②组成方程组解得⎩⎨⎧=-=22n m ,故圆的方程为()()22228x y ++-=. (2)a =5,∴a 2=25,则椭圆的方程为221259x y +=. 其焦距c =925-=4,右焦点为(4,0),那么OF =4.要探求是否存在异于原点的点Q ,使得该点到右焦点F 的距离等于OF 的长度4,我们可以转化为探求以右焦点F 为顶点,半径为4的圆()2248x y -+=与(1)所求的圆的交点数.通过联立两圆的方程解得x =54,y =512. 即存在异于原点的点Q (54,512),使得该点到右焦点F 的距离等于OF 的长.19.解:(1)∵EF AB ⊥,∴EF PE ⊥.又∵PE AE ⊥,EF AE E =,且PE 在平面ACFE 外, ∴PE ⊥平面ACFE .∵EF AB ⊥,CD AB ⊥,∴EFCD .∴EF x CD EF x CD BD BD =⇒==. 所以四边形ACFE 的面积2211322ACFE ABC BEF S S S x x ∆∆=-=⨯-=.∴四棱锥P ACFE -的体积31363P ACFE ACFE V S PE x -==.即()3V x =-(0x <<.(2)由(1)知()212V x x '=. 令()0V x '=,解得6x =.∵当06x <<时,()0V x '>,当6x <<()0V x '<,∴当6BE x ==时,()V x 有最大值,最大值为()6V = (3)(解法1)过点F 作FG AC 交AE 于点G ,连接PG ,则PFG ∠为异面直线AC 与PF 所成的角.∵ABC ∆是等腰三角形, ∴GBF ∆也是等腰三角形.于是FG BF PF ====从而PG =在GPF ∆中,根据余弦定理,得2221cos 27PF FG PG PFG PF FG +-∠==⋅. 故异面直线AC 与PF 所成的角的余弦值为17. (解法2)以点E 为坐标原点,向量EA ,EF ,EP 分别为x ,y ,z 轴的正向建立空间直角坐标系,则()0,0,0E ,()0,0,6P ,()F ,()6,0,0A ,()6,3,0C .于是()AC =-,()6PF =-.异面直线AC 与PF 所成角θ的余弦为1cos 733AC PF AC PFθ===,故异面直线AC 与PF 所成的角的余弦值为17. 20.解:当a =0时,函数为()23f x x =-,其零点x =32不在区间[-1,1]上. 当a ≠0时,函数()f x 在区间[-1,1]分为两种情况: ①方程()0f x =在区间[]1,1-上有重根.此时()4830a a ∆=++=,解得a =.当32a -=时,()0f x =的重根[]31,12x -=∈-. ②函数在区间[─1,1]上只有一个零点,但不是()0f x =的重根. 此时()()110f f -≤,即()()510a a --≤,解得15a ≤≤. ③函数在区间[─1,1]上有两个零点,此时()()0,111,2110.a f f ⎧∆>⎪⎪-<-<⎨⎪⎪-≥⎩解得a <或5a ≥. 综上所述,如果函数在区间[─1,1]上有零点,那么实数a 的取值范围为[)3,1,2⎛--∞+∞ ⎝⎦.21.解:(1)解方程x 2+x -1=0得x =251±-, 由αβ>,知12α-+=,12β--=. (2)∵()21f x x '=+,∴1()()n n n n f a a a f a +=-'2121n n a a +=+. ()()2222212121212121n n n n n n n n n a a a a a a a a a αααααααα+-+-+---+--===+++. 下面用数学归纳法证明,当1n ≥时,0n a α->成立. ①当1n =时,110a αα-=-=>,命题成立. ②假设n k =(1k ≥)时命题成立,即0k a α->,此时0k a α>>. 则当1n k =+时,()21021kk k a a a αα+--=>+,命题成立.根据数学归纳法可知,对任意的正整数n ,有0n a α->. (3)根据(2),同理可得()2121nn n a a a ββ+--=+.∵n a αβ>>(1,2,3,n =),且11a =,∴11b =ln n n n a b a βα-=-()()2111211ln 2ln 2n n n n n a a b a a ββαα-------===--, 即数列{}n b 为首项为1b ,公比为2的等比数列. 故数列{}n b 前n 项和()()()121211214ln24ln1222n n n n b S +-==-⋅=--.。