第一章 量子力学基础习题1

合集下载

量子力学习题及解答

量子力学习题及解答

量子力学习题及解答第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。

解 根据普朗克的黑体辐射公式dv e chv d kThv v v 11833-⋅=πρ, (1)以及 c v =λ, (2)λρρd dv v v -=, (3)(有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。

本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。

但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kThc kT hc e kT hc e hcλλλλλπρ ⇒ 0115=-⋅+--kT hce kThc λλ ⇒ kThce kT hc λλ=--)1(5 如果令x=kThcλ ,则上述方程为x e x =--)1(5:这是一个超越方程。

首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=,经过验证,此解正是所要求的,这样则有xkhc T m =λ 把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。

据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。

解 根据德布罗意波粒二象性的关系,可知E=hv ,λhP =】如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph =λ nmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及,eVc e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。

结构化学习题

结构化学习题

第一章量子力学基础一选择题(1)根据无限深势阱中电子的能级公式,近似估计:当宏观粒子变为纳米微粒时,HOMO与LUMO之间的能隙将发生什么变化:(A)变大(B)变小(C)不变(2)为了写出一个经典力学量对应的量子力学算符,若坐标算符取作坐标本身,动量应换成算符(以一维运动为例)(A) mv (B)ħƏ / i Ə x (C)-ħ2Ə2/ Əx2(3)电子的de broglie波长为(A)λ= h / p(B)λ= c/ υ(C)λ= ∆x∆px(4)丁二烯等共轭分子中的π电子的离域化可降低体系的能量,这与简单的一维势阱中的粒子模型是一致的,因为一维势阱中的粒子的能量(A)反比于势阱长度的平方(B)正比于势阱长度(C)正比于量子数(5)对于厄米算符,下面那些说法是对的:(A)厄米算符中必然不包含虚数(B)厄米算符的本征值必定是实数(C)厄米算符的本征函数中必然不包括虚数(6) 对于算符Ĝ的非本征态(A)不可能测量其本征值g(B)不可能测量其平均值<g>(C)本征值与平均值均可测量,且两者相等第二章原子结构(1)P2组态的原子光谱项为:(A)1D,3P,1S (B)3D ,1P ,3S (C)3D,3P ,1D(2)Hund规则适用于下列哪种情况:(A)求出激发组态下的能量最低谱项(B)求出基组态下的基谱项(C)在基组态下为谱项的能量排序(3)配位化合物中d→d跃迁一般都很弱,因为这种跃迁属于(A)g←∕→g (B)g↔u (C)u←∕→u(4)CI原子基态的光谱项为2P,其能量最低的光谱支项为:(A) 2P3/2 (B) 2P1/2(C) 2P第三章双原子分子结构与化学键理论(1)用线性变分法求出的分子基态能量比起基态真实能量,只可能(A)更高或相等(B)更低 (C) 相等(2)N2,O2,F2的键长递增是因为(A)核外电子数依次减少(B)键级依次增大(C)净成键电子数依次减少(3)根据O2与O2+的电子结构,可知(A)O2是单重态(B) O2+是三重态(C)O2+比O2的键长短(4)顺磁性分子中的电子(A)有的不成对(B)完全成对(C)完全不成对(5)下列哪一条属于所谓的“成键三原则”之一:(A)原子半径相似(B)对称性匹配(C)电负性相似(5)下列哪种说法是正确的:(A)原子轨道只能以同号重叠组成分子轨道(B)原子轨道以异号重叠组成非键分子轨道(C)原子轨道可以按同号重叠或异号重叠,分别组成成键或反键轨道(6)氧的O2+,O2,O2-,O22- 对应下列哪种键级顺序:(A)2.5,2.0,1.5,1.0 (B)1.0,1.5,2.0,2.5 (C)2.5,1.5,1.0,2.0(7)下列哪些分子或分子离子具有顺磁性:(A)O2 ,N2(B) N2,F2(C)O22+,NO+第四章分子对称性与群论初步(1)丙二烯属于D2d点群,表明它有(A)两个小π键(B)一个∏34两个(C)两个∏33(2)C60 ,NH3,立方烷的分子点群分别是(A)C1, C2 ,C3(B)D2,D4V ,Td(C)Ih,C3V ,Oh(3) 含有不对称C原子但能与其镜像重合的化合物是(A)内消旋化合物(B)外消旋化合物(C)不对称分子(4) 下列哪组点群的分子可能具有偶极距:(A)Oh ,Dn ,Cnh(B)Ci ,Td ,S4(C)Cn ,Cnv ,Cs(5) CCI4 PH3SF6的分子点群分别是(A)C4 C3C6(B)D2D3hTd(C)TdC3vOh(6 非极性分子的判据之一是(A) 所有对称元素交于唯一一点(B) 至少有两个对称元素只交于唯一一点(C) 两个对称元素相交(7) 下列那种分子可能具有旋光性:(A)丙二烯(B)六螺环烯(C) C60(8) [Co(NH3)4(H2O)2]3+能够有几种异构体:(A)2 (B)3 (C)6(9) 一个分子的分子点群是指:(A)全部对称操作的集合 (B)全部对称元素的集合(C)全部实对称操作的集合(10) 群中的某些元素若是可以通过相似变换联系起来,它们就共同组成(A)一个类(B)一个子群(C)一个不可约表示(11) 几个不可约表示的直积是(A) 可约表示(B)不可约表示(C)可约表示或不可约表示(12)水分子B1振动的基包括X和XZ,这种振动(A) 只有红外活性(B)只有拉曼活性(C)兼有红外和拉曼活性第五章多原子分子的结构与性质(1) 用VSEPR理论判断,IF5的几何构型是(A)三角双锥(B)正四棱锥(C)平面五边形(2)共轭有机分子的哪种原子上易发生游离基反应:(A)ρ较大的分子(B)F较大者(C)任意原子(3)己三烯电环化反应,在加热条件下保持什么对称性不变:(A)C2 (B)m (C)m和C2(4)根据分子轨道对称守恒原理,乙烯加氢反应是对称性禁阻的,由此判断(A)反应在热力学上必然属于吸热反应(B)平衡产率必然很低(C)反应活化能比较大(5)分子的下列反应哪些性质必须用离域分子轨道来描述(A)电子能谱,电子光谱(B)偶极距, 电荷密度(C)键长,键能第六章晶体的点阵结构与X射线衍射法(1)晶体等于(A)晶胞+点阵(B)特征对称要素+结构基元(C)结构基元+点阵(2)“六方晶系”这个名称表明其(A)晶胞形状为六棱柱(B)晶体有6次对称轴(C)晶胞中含有6个结构基元(3)下列哪两种晶体具有不同的点阵型式(A)NaCl与CsCl (B)NaCl与CaF2(C)NaCl与立方ZnS(4)Bravais格子不包含“四方底心”和“四方面心”,是因为它们其实分别是(A)四方简单和四方体心(B)四方体心和四方简单(C)四方简单和立方面心(5)某晶面与晶轴x,y,z轴相截,截数分别是4,2,1,其晶面指标是(A)(124)(B)(421)(C)(1/4,1/2,1)(6)下列哪种性质是晶态物质所特有的:(A)均匀性(B)各向异性(C)旋光性(7)与结构基元相对应的是(A)点阵点(B)素向量(C)复格子(8)点阵是(A)有规律地排布的一组点(B)按连接其中任意两点的向量平移而能复原的无限多个点(C)只沿特定方向平移而能复原的有限数目的点(9)金刚石与立方ZnS(A)点阵型式都是立方面心( B )点阵型式都是立方简单( C )点阵型式不同(10)在某立方晶体的X衍射粉末图上发现,h+k+l=奇数的衍射产生了系统消光,这种晶体具有下列哪种点阵(A)立方体心(B)立方简单(C)立方面心(11) “CsCl型晶体的点阵为立方体心点阵”这一表述(A)正确(B)不正确,因为立方体心不是一种点阵(C)不正确,因为CsCl型晶体的点阵为立方简单点阵(12)六方晶胞的形状是(A)六棱柱(B)6个顶点的封闭凸多面体(C)α=β=90°,γ=120°的平面六面体(13)空间格子共有多少种形状和型式(A)8,32(B)7,14(C)4,514)划分正当格子的第一标准是(A)平行六面体(B)尽可能高的对称性(C)尽可能少的点阵点(15)空间格子中,顶点,棱心,面心对格子的贡献分别为(A)1/8 ,1/4 ,1/2(B)1,1,1(C)1, 1/2 ,1/416)当Laue方程被满足时,空间点阵中被平移群Tmnp=ma +nb +pc所概括的任意两点阵点之间的波程差的波数为(A)mh+nk+pl(B)m+n+p(C)h+k+l(17)晶面作为等程面的条件是(A)h=nh*,k=nk*,l=nl*(n为整数)(B)h=mh*,k=nk*,l=pl*(m,n,p为整数)(C)h=rh*,k=sk*,l=tl*(r,s,t为分数)第七章金属晶体与离子晶体的结构(1)在离子晶体中,决定正离子配位数的关键因素是(A)正负离子的半径比(B)正负离子的电价比(C)负离子的电负性之比(2)对于二元离子晶体,下列哪一式成立:(A) n+/n-=Z-/Z+=CN-/CN+(B)n-/n+Z-/Z+=CN-/CN+(C)n+/n-=Z-/Z+=CN+/CN_(3)马德隆(madelung)常数与离子晶体的哪种因素有关:(A)化学组成(B)晶体结构型式(C)离子键长(4)Ge晶体(A4,即金刚石的结构)的空间利用率(堆积系数)小于W晶体(A2),它们的晶胞中的原子数目是:(A)Ge<W (B)Ge>W (C)Ge=W (5) NaCl与 CaF2晶体的相同之处是:(A)结构单元(B)负离子堆积方式(C)点阵型式(6)4:4是下列哪一种晶体的CN+/CN-:(A)CsCl (B)NaCl (C)六方ZnS(7)对于CaF2晶体,“简单立方”一词描述的是它的(A)负离子的堆积方式(B)点阵型式(C)正离子的堆积方式(8)某种离子晶体AB被称为NaCl型,这指的是(A)它的化学组成(B)它的结构型式(C)它的点阵型式(9)有的书说CaF2晶体是立方面心堆积中的全部四面体空隙被占据,有的书中却说是简单立方堆积中的半数立方体空隙被占据,说法不一的原因是(A)前一种说法错了(B)后一种说法错了(C)这是分别指正,负离子堆积。

量子化学习题解仅供参考

量子化学习题解仅供参考

(1) 2xsin(x2+1) (2) 5sinx (3) sin2x (4) x (5) 1/x2 1.2 如 Âf(x)=3x2f(x)+2xdf/dx,f(x)为任意函数,给出 Â 的表达式
Â=3x2+2xd/dx 1.3 给出 3 个满足 Âex=ex 的 Â 的表达式
(6) Â=24x+36x3
Â(bf+cg)= bÂf + cÂg,则 Â 一定是线性算符。
1)证明: Â 是线性算符 Â(bf+cg)= Â(bf) + Â(cg) = bÂf + cÂg
2)证明: Â(bf+cg)= bÂf + cÂg b,c 为常数
设 c=0 则有 Â(bf)= bÂf
设 c=1, b=1 则有 Â(f+g)= Âf + Âg 因此 Â 是线性算符
1.8 证明:(1) [Â, Bˆ ]= [Bˆ , Â] (2)[Âm,Ân]=0 (3)[Â2, Bˆ ]= Â[Â, Bˆ ]+[Â, Bˆ ]Â
(4) [Â, [Bˆ , Ĉ]]+ [Bˆ , [Ĉ, Â]]+ [Ĉ, [Â, Bˆ ]]=0 证明:(1) [Â, Bˆ ]= ÂBˆ Bˆ Â= (Bˆ ÂÂBˆ ) = [Bˆ , Â] (2)[Âm,Ân]= ÂmÂnÂnÂm= Âm+nÂm+n=0 (3) [Â2, Bˆ ]= Â2Bˆ Bˆ Â2 Â[Â, Bˆ ]+[Â, Bˆ ]Â= Â(ÂBˆ Bˆ Â)+ (ÂBˆ Bˆ Â)Â = Â2Bˆ ÂBˆ Â+ ÂBˆ ÂBˆ Â2= Â2Bˆ Bˆ Â2 [Â2, Bˆ ]= Â[Â, Bˆ ]+[Â, Bˆ ]Â (4) [Â, [Bˆ , Ĉ]]+ [Bˆ , [Ĉ, Â]]+ [Ĉ, [Â, Bˆ ]] =[Â, (Bˆ ĈĈBˆ )]+[Bˆ , (ĈÂÂĈ)]+ [Ĉ, (ÂBˆ Bˆ Â)] = ÂBˆ ĈÂĈBˆ Bˆ ĈÂ+ĈBˆ Â+Bˆ ĈÂBˆ ÂĈ ĈÂBˆ + ÂĈBˆ + ĈÂBˆ ĈBˆ Â ÂBˆ Ĉ+Bˆ ÂĈ=0 1.9 Hˆ pˆ x2 2m V (x) ,分别计算(1)当 V(x)=V(常数),(2)当 V(x)=kx2/2,(3)当 V(x) V(r)=e2/40r

第一章 量子力学基础 例题与习题

第一章 量子力学基础 例题与习题

第一章量子力学基础例题与习题一、练习题1.立方势箱中的粒子,具有的状态量子数,是A. 211 B. 231 C. 222 D. 213。

解:(C)。

2.处于状态的一维势箱中的粒子,出现在处的概率是多少?A.B.C.D.E.题目提法不妥,以上四个答案都不对。

解:(E)。

3.计算能量为100eV光子、自由电子、质量为300g小球的波长。

( )解:光子波长自由电子300g小球。

4.根据测不准关系说明束缚在0到a范围内活动的一维势箱中粒子的零点能效应。

解:。

5.链状共轭分子在波长方向460nm处出现第一个强吸收峰,试按一维势箱模型估计该分子的长度。

解:6.设体系处于状态中,角动量和有无定值。

其值是多少?若无,求其平均值。

解:角动量角动量平均值7.函数是不是一维势箱中粒子的一种可能的状态?如果是,其能量有没有确定值?如有,其值是多少?如果没有确定值,其平均值是多少?解:可能存在状态,能量没有确定值,8.求下列体系基态的多重性。

(2s+1) (1)二维方势箱中的9个电子。

(2)二维势箱中的10个电子。

(3)三维方势箱中的11个电子。

解:(1)2,(2)3,(3)4。

9.在0-a间运动的一维势箱中粒子,证明它在区域内出现的几率。

当,几率P怎样变?解:10.在长度l的一维势箱中运动的粒子,处于量子数n的状态。

求 (1)在箱的左端1/4区域内找到粒子的几率?(2)n为何值,上述的几率最大?(3),此几率的极限是多少?(4)(3)中说明什么?解:11.一含K个碳原子的直链共轭烯烃,相邻两碳原子的距离为a,其中大π键上的电子可视为位于两端碳原子间的一维箱中运动。

取l=(K-1)a,若处于基组态中一个π电子跃迁到高能级,求伴随这一跃迁所吸收到光子的最长波长是多少?解:12.写出一个被束缚在半径为a的圆周上运动的质量为m的粒子的薛定锷方程,求其解。

解:13.在什么条件下?解:14.已知一维运动的薛定锷方程为:。

和是属于同一本征值得本征函数,证明常数。

一二三习题答案

一二三习题答案
(A)1(B)2(C)4(D)5
B18.原子轨道指的是下列的哪一种说法?
(A)原子的运动轨迹(B)原子的单电子波函数(C)原子的振动态(D)原子状态
C19.钠原子光谱D线是双重线,其原因是下列的哪一个:
(A)电子的轨道角动量(B)外磁场;(C)自旋轨道耦合(D)3p能级高
C20.对于原子中电子的总能量,下列的哪一个说法是正确的?
D15.如果氢原子的电离能是13.6 eV,则Li2+的电离能是下列的哪一个?
(A)13.6eV,(B)27.2 eV;(C)54.4 eV;(D)122.4 eV
A16.在氢原子中,对于电子的能量,下列的哪一种说法正确?
(A)只与n有关;(B)只与l有关;(C)只与m有关;(D)与n和l有关
B17.测量3d态氢原子的轨道角动量的z轴分量,可得到几个数值?
(C)动量一定有确定值;(D)几个力学量可同时有确定值;
7.试将指数函数e±ix表示成三角函数的形式cosex±isinex
8.微观粒子的任何一个状态都可以用波函数来描述;ψψ*表示粒子出现的概率密度。
D9.Planck常数h的值为下列的哪一个?D
(A)1.38×10-30J/s(B)1.38×10-16J/s(C)6.02×10-27J·s(D)6.62×10-34J·s
(A)CA=0.90,CB=0.10;(B)CA=0.95,CB=0.32;
(C)CA=CB;(D)CA=0.10,CB=0.90;
B7.下列分子的基态中哪个是三重态?
(A)F2(B)O2(C)N2(D)H2+
B8.对分子的三重态,下列哪种说法正确?
(A)分子有一个未成对的电子(B)分子有两个自旋平行的电子
(A)Zeeman(B)Gouy(C)Stark(D)Stern-Gerlach

第一章量子力学基础习题

第一章量子力学基础习题

第一章 量子力学基础一.选择题1. 已知某色光照射到一金属表面、产生了光电效应,若此金属的逸出电势是0U (使电子从金属逸出需做功0eU )则此单色光的波长λ必须满足: A(A )0/eU hc ≤λ (B )()o hc eU λ≥(C )()()0/eU hc λ≤ (D )()()0/eU hc λ≥2. 用强度为I ,波长为λ的X 射线(伦琴射线)分别照射锂(Z=3)和铁(Z=26),若在同一散射角下测得康普顿散射的X 射线波长分别Li λ和()11,Fe L F λλλλ>,它们对应的强度分别为1L I 和Fe I ,则(A )11,L Fe L Fe I I λλ>< (B )11,L Fe L Fe I I λλ== (C )11,l Fe L Fe I I λλ=>(D )11,L Fe L Fe I I λλ<> [ C ]3. 根据玻尔氢原子理论,氢原子中的电子在第一和第三轨道上运动时速度大小之比21:v v 是: (A )1; (B )19; (C )3;(D )9 。

[ C ]4. 若外来单色光将氢原子激发至第三激发态,则当氢原子跃迁回低能态时,可发出的可见光光谱的条数是: C (A )1; (B )2; (C )3; (D ) 65. 电子显微镜中的电子从静止开始通过电势差为U 的静电场加速后,其德布罗意波长是0.40A ,则U 约为(A )150V (B )330V (C )630V (D )940V(普朗克常量34606310.h j s -=⨯) [ D ] 6. 若α粒子(电量为2e )在磁感应强度为B 均匀磁场中沿半径为R 的圆形轨道运动,则α粒子的德布罗意波长是 (A )()2h eRB (B )()h eRB(C )()12eRBh (D ))1eRBh [ A ] 7. 已知粒子在一维矩形无限深势阱中运动,其波函数为:()32x x a πφ=(-a ≤x ≤a )那么粒子在x=5a/6处出现的几率密度为: (A )1/(2a ) (B )1/a(C) (D) [ ]解答:()2222531516cos cos 242ax a a aπρϕπ====, 故选(A )。

量子力学教程(第三版)周世勋课后答案详解

量子力学教程(第三版)周世勋课后答案详解

1量子力学课后习题详解第一章量子理论基础1.1由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λT=b (常量);并近似计算b 的数值,准确到二位有效数字。

解根据普朗克的黑体辐射公式dv ec hvd kThv vv 11833−⋅=πρ,(1)以及c v =λ,(2)λρρd dv v v −=,(3)有,118)()(5−⋅=⋅=⎟⎠⎞⎜⎝⎛−=−=kT hcv v e hc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。

本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。

但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:201151186'=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−⋅+−−⋅=−kThc kThce kT hc ehc λλλλλπρ⇒115=−⋅+−−kThc ekThc λλ⇒kThc ekThc λλ=−−)1(5如果令x=kThcλ,则上述方程为xe x =−−)1(5这是一个超越方程。

首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ把x 以及三个物理常量代入到上式便知Km T m ⋅×=−3109.2λ这便是维恩位移定律。

据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

1.2在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。

解根据德布罗意波粒二象性的关系,可知E=hv ,λh P =如果所考虑的粒子是非相对论性的电子(2c E e µ<<动),那么ep E µ22=如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0×,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph=λ3nmm mE c hc E h e e 71.01071.031051.021024.1229662=×=××××===−−µµ在这里,利用了meV hc ⋅×=−61024.1以及eVc e 621051.0×=µ最后,对Ec hc e 22µλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。

第1章 量子力学基础-习题与答案

第1章 量子力学基础-习题与答案

一、是非题1. “波函数平方有物理意义, 但波函数本身是没有物理意义的”。

对否 解:不对2. 有人认为,中子是相距为10-13 cm 的质子和电子依靠库仑力结合而成的。

试用测不准关系判断该模型是否合理。

解:库仑吸引势能大大地小于电子的动能, 这意味着仅靠库仑力是无法将电子与质子结合成为中子的,这个模型是不正确的。

二、选择题1. 一组正交、归一的波函数123,,,ψψψ。

正交性的数学表达式为 a ,归一性的表达式为 b 。

()0,()1i i i i a d i jb ψψτψψ**=≠=⎰⎰2. 列哪些算符是线性算符------------------------------------------------------ (A, B, C, E )(A) dxd(B) ∇2 (C) 用常数乘 (D) (E) 积分3. 下列算符哪些可以对易-------------------------------------------- (A, B, D )(A) xˆ 和 y ˆ (B) x∂∂和y ∂∂ (C) ˆx p和x ˆ (D) ˆx p 和y ˆ 4. 下列函数中 (A) cos kx (B) e -bx(C) e -ikx(D) 2e kx -(1) 哪些是dxd的本征函数;-------------------------------- (B, C ) (2) 哪些是的22dx d 本征函数;-------------------------------------- (A, B, C )(3) 哪些是22dx d 和dxd的共同本征函数。

------------------------------ (B, C )5. 关于光电效应,下列叙述正确的是:(可多选) ------------------(C,D )(A)光电流大小与入射光子能量成正比 (B)光电流大小与入射光子频率成正比 (C)光电流大小与入射光强度成正比 (D)入射光子能量越大,则光电子的动能越大6. 提出实物粒子也有波粒二象性的科学家是:------------------------------( A )(A) de Bröglie (B) A.Einstein (C) W. Heisenberg (D) E. Schrödinger7. 首先提出微观粒子的运动满足测不准原理的科学家是:--------------( C )(A) 薛定谔 (B) 狄拉克 (C) 海森堡 (D) 波恩 8. 下列哪几点是属于量子力学的基本假设(多重选择):---------------( AB)(A)电子自旋(保里原理) (B)微观粒子运动的可测量的物理量可用线性厄米算符表征 (C)描写微观粒子运动的波函数必须是正交归一化的 (D)微观体系的力学量总是测不准的,所以满足测不准原理9. 描述微观粒子体系运动的薛定谔方程是:------------------------------( D ) (A) 由经典的驻波方程推得 (B) 由光的电磁波方程推得(C) 由经典的弦振动方程导出 (D) 量子力学的一个基本假设三、填空题:1. 1927年戴维逊和革未的电子衍射实验证明了实物粒子也具有波动性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

sin β φ = sin (φ + 2π )
若上式成立, 若上式成立,则:
β =n
β 2π = n 2π
n = 0,±1,±2,
n 2 2 E = 2 ma 2
β = n2
inφ
Φ (φ ) = ce
=
1 inφ e 2π
习题
1.26正方体箱中的粒子处于状态和时,其几率密度最大处的 正方体箱中的粒子处于状态和时, 正方体箱中的粒子处于状态和时 坐标是什么?若不考虑边界,各有几个节面? 坐标是什么?若不考虑边界,各有几个节面?表示这些节面 的方程是什么?这些节面将整个正方体箱分成几个部分? 的方程是什么?这些节面将整个正方体箱分成几个部分?你 能不能不用计算而直接得出这些答案? 能不能不用计算而直接得出这些答案?
基本知识
5.态叠加原理
为某一微观体系的可能状态, 若Ψ1, Ψ2, Ψi, Ψn为某一微观体系的可能状态,由 它们线性组合也是该体系的可能状态. 它们线性组合也是该体系的可能状态.
Ψ = c1ψ 1 + c2ψ 2 + … cnψ n = ∑ ciψ i
i =1
n
式中Ci是任意常数,数值的大小反应了Ψi对Ψ的贡献 的大小.
A
x
z
θ
r
o
z
y
y
体系的能量 算符
x
P
2 1 2 1 = H [ 2 (r )+ 2 (sin θ ) 2m r r r r sin θ θ θ 1 2 + 2 2 ] + V (r ) 2 r sin θ φ
习题
因为是自由粒子, 因为是自由粒子,V(r)=0.又因为 .又因为r=a 因此体系的能量算符变为
n nz2 h 2 E=( + 2 + 2) a b c 8m
2 x 2
2 ny
立方箱:简并态:能量相同的不同状态; 立方箱:简并态:能量相同的不同状态; 简并度:能量相同的不同状态数. 简并度:能量相同的不同状态数. 3.刚性转子(平面) 刚性转子(平面)
习题
1.3计算波长 =400nm的光照射到金属铯上,金属铯所放 计算波长λ= 的光照射到金属铯上, 计算波长 的光照射到金属铯上 出来的光电子的初速度.已知铯的临阈波长为600nm. 出来的光电子的初速度.已知铯的临阈波长为 . Cs:λλ=400nm λCs=600nm求v.
2 1 1 2 H = [ (sin θ )+ ] 2 2 2 2ma sin θ θ θ sin θ φ
又因为r=a,体系的波函数 , 又因为 θφ)=R(r)Y(θφ θφ)=CY(θφ 薛定谔方程 θφ) ψ(rθφ θφ θφ θφ
2 1 1 2 [ (sin θ )+ 2 ]Y (θφ ) = EY (θφ ) 2 2 2ma sin θ θ θ sin θ φ
则 Bψ 是算符F 的本征函数.
习题
1.22 写出平面刚性转子的 写出平面刚性转子的Schrodinger方程,并求解. 方程, 方程 并求解. 考虑一围绕相距为 r的固定点的自由粒 的固定点的自由粒 子的运动,也就是被束缚在半径为 的球面 子的运动,也就是被束缚在半径为r的球面 上的自由粒子的运动. 上的自由粒子的运动.由于自由粒子在运动 不变, 过程中 r不变,故称为刚性转子. 不变 故称为刚性转子.
1.波函数: ψ是体系中所有粒子坐标的函数, 也是时间的函数. Ψ(xyzt)= Ψ(x1y1z1,x2y2z2,t) 在化学中所有涉及的波函数均为定态波函数. 定态:几率密度不随时间t改变而变化. 物理意义:∣Ψ(r,t)∣2= Ψ* Ψ 在原子,分子等体系中,Ψ代表原子轨道或分子轨道,将Ψ* Ψ称为几率密度,即通常所说的电子云.
2 d 2 变为: 变为: H = 2ma 2 dφ 2
体系的波函数变为: θφ)=cY(θφ θφ)=C Φ (φ ) 体系的波函数变为: ψ(rθφ θφ θφ
z
2 d 2 Φ (φ ) = EΦ (φ ) 薛定谔方程: 薛定谔方程 2 2 2ma dφ
θ
r
M ( x , y, z )
z
习题
1.4 求波长为 求波长为0.1nm的电子和中子的动能和动量. 的电子和中子的动能和动量. 的电子和中子的动能和动量
me = 9.11 × 10 31 kg
p = mv= h
m n = 1.675 × 10 27 kg
λ
v=
h mλ
(1)电子:
h 6.626 × 10 34 Js = v= me λ 9.11 × 10 31 kg × 0.1 × 10 9 m
第一章 量子力学基础 习题课
公用邮箱:jluchem2009@ 密码:jluchem 2009.03.16
基本知识
一.光与实物粒子的波粒二象性
重要的实验现象: 1.黑体辐射:说明能量是量子化的, h = 6.626×1034 Js 2.光电效应:说明光具有粒子性, 光的干涉,衍射现象说明光具有波动性.
1 1 2 2 n n
厄米算符 算符对易
* u1 Fu 2 dx = ∫ u 2 ( Fu1 )* dx ∫
[ A, B] = 0
ABu ( x) BAu ( x) = 0
若两算符对易,则二力学量同时有确定值.
基本知识
3.本征函数
Aψ = aψ
若某一力学量A的算符 A 作用于某一状态ψ后, 等于一常数a乘以ψ,则力学量A有确定值,a是 算符
基本知识
2.算符: 微观体系的每一个可观测力学量(如能量 ,动量, 角动量,坐标,时间等)都与一个线性厄米算符 相对应.
线性算符 F [c1u1 ( x ) + c2u2 ( x ) + + cn un ( x )] = c Fu ( x ) + c Fu (x ) + + c Fu ( x )
A ψ i ≠ a iψ i a
∑ = ∑C
C i ai
2 i
2
=
∑c
i =1
n
2 i
ai
基本知识
三.简单应用
1.一维箱中粒子
ψ (x ) =
2 nπ sin x x a a
h2 2 E = nx 8ma 2
2.三维箱中粒子 三个方向一维箱的叠加. 三个方向一维箱的叠加.
nπ 8 nπ Ψ ( xyz ) = sin x x sin y sin z z abc a b c n yπ
θ:反射光(衍射线)与晶面之间的夹角,衍射角; α:2θ,反射光与入射光方向的夹角; d:晶体的面间距 h h n:衍射级数 λ= = p mv λ:电子的De-Broglie波长
基本知识
光与实物粒子的波粒二象性 光 波性 粒子性 二象性 实物粒子 u:实物粒子 : 波的传播速度 v:实物粒子 : 的运动速度
Φ (φ ) = Φ (φ + 2π )
± i β (φ + 2π )
e
±i βφ
=e
三角函数形式: 三角函数形式
cos β φ ± i sin β φ = cos β (φ + 2π ) ± i sin β (φ + 2π )
习题
实部与虚部分别相等: 实部与虚部分别相等
cos β φ = cos β (φ + 2π )
1 1 2 2ma 2 E [ Y (θφ ) (sin θ )+ ]Y (θφ ) = 2 2 2 sin θ θ θ sin θ φ
习题
若刚性转子被束缚在平面上运动, 若刚性转子被束缚在平面上运动,即 r=a, θ=π/2 , sinθ=1 φ=02π, 体系的算符 θ π π
1 1 2 1 2 2 [ 2 (r )+ 2 H = (sin θ )+ 2 2 ] 2 2m r r r r sin θ θ r sin θ φ θ
Ek= hν -hν0 = h(ν - ν0 )=(1/2)mv2 W0=hν0 (脱出功,金属固有, ν0 临阈频率)
1 2 h h = mv λ λ0 2
c
c
基本知识
3.电子衍射:电子照射到晶体表面上时发生衍射,能够在 屏幕上获得明暗相间的环纹. 说明电子不仅具有粒子性,还具有波性.
Bragg公式: 2 d sin θ =nλ
的本征值,ψ是算符 A
的本征函数(或 A
本征态),
ψ=aψ称为本征方程. A
Aψ ≠ aψ
则体系处于这个状态 时没有确定值, 时没有确定值,可计 算平均值. 算平均值.
a =< a >=
ψ (r ) Αψ (r )dτ ∫
ψ (r )ψ (r )dτ ∫
a =< a >= ∫ψ * (r ) Αψ (r )dτ (ψ是归一化的)
第3条衍射线 n=3 3 r2=3.39cm
θ = 17.510
2θ = 34 .99 0
r( n = 2 ) = 2.5tg 2θ = 1.750 cm
习题
Fψ = λψ ABψ = λψ [A, B ] = 1 AB BA = 1 ABψ BAψ = ψ λψ BAψ = ψ BAψ = (λ 1)ψ ∴ F ( Aψ ) = ABAψ = A(λ 1)ψ = (λ 1) Aψ
则 Aψ 是算符 F 的本征函数;
(2)求证
F ( Bψ ) = (λ + 1) Bψ
[A, B] = 1 AB BA = 1 AB( Bψ ) BA( Bψ ) = Bψ ABBψ = Bψ + Bλψ = (λ + 1) Bψ F ( Bψ ) = (λ + 1) Bψ
ν=
c
λ
1 1 1 c c 2 E = mv = hν hν o = h h = hc λ λ 2 λ λo o
相关文档
最新文档