人教版初二数学教案

合集下载

八年级数学教案人教版(通用19篇)

八年级数学教案人教版(通用19篇)

八年级数学教案人教版(通用19篇)八年级数学教案 1教学目标1.知识与技能领会运用完全平方公式进行因式分解的方法,发展推理能力.2.过程与方法经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤.3.情感、态度与价值观培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的.应用能力.重、难点与关键1.重点:理解完全平方公式因式分解,并学会应用.2.难点:灵活地应用公式法进行因式分解.3.关键:应用“化归”、“换元”的思想方法,把问题进行形式上的转化,•达到能应用公式法分解因式的目的教学方法采用“自主探究”教学方法,在教师适当指导下完成本节课内容.教学过程一、回顾交流,导入新知【问题牵引】1.分解因式:(1)-9x2+4y2;(2)(x+3y)2-(x-3y)2;(3)x2-0.01y2.【知识迁移】2.计算下列各式:(1)(m-4n)2;(2)(m+4n)2;(3)(a+b)2;(4)(a-b)2.【教师活动】引导学生完成下面两道题,并运用数学“互逆”的思想,寻找因式分解的规律.3.分解因式:(1)m2-8mn+16n2(2)m2+8mn+16n2;(3)a2+2ab+b2;(4)a2-2ab+b2.【学生活动】从逆向思维的角度入手,很快得到下面答案:解:(1)m2-8mn+16n2=(m-4n)2;(2)m2+8mn+16n2=(m+4n)2;(3)a2+2ab+b2=(a+b)2;(4)a2-2ab+b2=(a-b)2.【归纳公式】完全平方公式a2±2ab+b2=(a±b)2.二、范例学习,应用所学【例1】把下列各式分解因式:(1)-4a2b+12ab2-9b3;(2)8a-4a2-4;(3)(x+y)2-14(x+y)+49;(4)+n4.【例2】如果x2+axy+16y2是完全平方,求a的值.【思路点拨】根据完全平方式的定义,解此题时应分两种情况,即两数和的平方或者两数差的平方,由此相应求出a的值,即可求出a3.三、随堂练习,巩固深化课本P170练习第1、2题.【探研时空】1.已知x+y=7,xy=10,求下列各式的值.(1)x2+y2;(2)(x-y)22.已知x+=-3,求x4+的值.四、课堂总结,发展潜能由于多项式的因式分解与整式乘法正好相反,因此把整式乘法公式反过来写,就得到多项式因式分解的公式,主要的有以下三个:a2-b2=(a+b)(a-b);a2±ab+b2=(a±b)2.在运用公式因式分解时,要注意:(1)每个公式的形式与特点,通过对多项式的项数、•次数等的总体分析来确定,是否可以用公式分解以及用哪个公式分解,通常是,当多项式是二项式时,考虑用平方差公式分解;当多项式是三项时,应考虑用完全平方公式分解;(2)•在有些情况下,多项式不一定能直接用公式,需要进行适当的组合、变形、代换后,再使用公式法分解;(3)当多项式各项有公因式时,应该首先考虑提公因式,•然后再运用公式分解.五、布置作业,专题突破八年级数学教案 2一、内容和内容解析1.内容三角形高线、中线及角平分线的概念、几何语言表达及它们的画法.2.内容解析本节内容概念较多,有三角形的高、中线、角平分线和重心等有关概念;需要学生动手的频率也较高,要掌握任意三角形的高、中线、角平分线的画法,培养学生动手操作及解决问题的能力;鼓励学生主动参与,体验几何知识在现实生活中的真实性,激发学生热爱生活、勇于探索的思想感情。

八级上册数学教案人教版(全册)

八级上册数学教案人教版(全册)

八级上册数学教案人教版(第一部分)一、教学目标1. 知识与技能:使学生掌握本册数学的基本概念、性质、定理和公式,提高学生的数学思维能力和解决问题的能力。

2. 过程与方法:通过自主学习、合作探讨、实践操作等方式,培养学生的数学学习兴趣,提高学生的数学素养。

3. 情感态度与价值观:让学生体验到数学在实际生活中的运用,认识到数学的重要性,培养学生的责任感和使命感。

二、教学内容1. 第一章:实数与函数(1) 实数的概念、性质和运算;(2) 函数的定义、性质和图像;(3) 一次函数、二次函数、反比例函数的解析式、图像和性质。

2. 第二章:几何基础(1) 点、线、面的基本概念和性质;(2) 直线方程、圆方程;(3) 三角形、四边形的性质和判定;(4) 坐标系的应用。

三、教学重点与难点1. 教学重点:实数的运算、函数的性质、几何图形的判定与性质。

2. 教学难点:函数的图像、几何图形的复杂计算和证明。

四、教学方法1. 采用问题驱动法,引导学生主动探究数学问题;2. 运用案例分析法,让学生通过实际例子理解数学概念;3. 利用数形结合法,培养学生直观的数学思维;4. 实施分组合作学习,培养学生的团队协作能力。

五、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。

2. 作业完成情况:检查学生作业的准确性、书写规范性,评估学生的学习效果。

3. 考试成绩:定期进行数学考试,对学生的知识掌握程度进行评估。

4. 学生自评:鼓励学生自我评价,反思自己的学习过程,提出改进措施。

八级上册数学教案人教版(第二部分)六、教学安排1. 课时分配:本部分共安排课时,具体分配如下:第一章:实数与函数:课时第二章:几何基础:课时第十五章:课时2. 教学计划:根据课时分配,合理安排每个章节的教学内容,确保教学目标的达成。

七、教学资源1. 教材:使用人教版八级上册数学教材。

2. 教辅资料:提供相应的教辅资料,辅助教学。

新人教版八年级数学上册名师教案(6篇)_1

新人教版八年级数学上册名师教案(6篇)_1

新人教版八年级数学上册名师教案(6篇)新人教版八班级数学上册名师教案(篇1)教学目标:1、经受数据离散程度的探究过程2、了解刻画数据离散程度的三个量度极差、标准差和方差,能借助计算器求出相应的数值。

教学重点:会计算某些数据的极差、标准差和方差。

教学难点:理解数据离散程度与三个差之间的关系。

教学预备:计算器,投影片等教学过程:一、创设情境1、投影课本P138引例。

(通过对问题串的解决,使同学直观地估量从甲、乙两厂抽取的20只鸡腿的平均质量,同时让同学初步体会平均水平相近时,两者的离散程度未必相同,从而顺理成章地引入刻画数据离散程度的一个量度极差)2、极差:是指一组数据中最大数据与最小数据的差,极差是用来刻画数据离散程度的一个统计量。

二、活动与探究假如丙厂也参与了竞争,从该厂抽样调查了20只鸡腿,数据如图(投影课本159页图)问题:1、丙厂这20只鸡腿质量的平均数和极差是多少?2、如何刻画丙厂这20只鸡腿质量与其平均数的差距?分别求出甲、丙两厂的20只鸡腿质量与对应平均数的差距。

3、在甲、丙两厂中,你认为哪个厂鸡腿质量更符合要求?为什么?(在上面的情境中,同学很简单比较甲、乙两厂被抽取鸡腿质量的极差,即可得出结论。

这里增加一个丙厂,其平均质量和极差与甲厂相同,此时导致同学思想熟悉上的冲突,为引出另两个刻画数据离散程度的量度标准差和方差作铺垫。

三、讲解概念:方差:各个数据与平均数之差的平方的平均数,记作s2 设有一组数据:x1, x2, x3,,xn,其平均数为则s2= ,而s= 称为该数据的标准差(既方差的算术平方根)从上面计算公式可以看出:一组数据的极差,方差或标准差越小,这组数据就越稳定。

四、做一做你能用计算器计算上述甲、丙两厂分别抽取的20只鸡腿质量的方差和标准差吗?你认为选哪个厂的鸡腿规格更好一些?说说你是怎样算的?(通过对此问题的解决,使同学回顾了用计算器求平均数的步骤,并自由探究求方差的具体步骤)五、巩固练习:课本第172页随堂练习六、课堂小结:1、怎样刻画一组数据的离散程度?2、怎样求方差和标准差?七、布置作业:习题5.5第1、2题。

人教版八年级数学上册教案册5篇

人教版八年级数学上册教案册5篇

人教版八年级数学上册教案全册5篇一、教材分析1、特点与地位:重点中的重点。

本课是教材求两结点之间的最短路径问题是图最常见的应用的之一,在交通运输、通讯网络等方面具有肯定的有用意义。

2、重点与难点:结合学生现有抽象思维力量水平,已把握根本概念等学情,以及求解最短路径问题的自身特点,确立本课的重点和难点如下: (1)重点:如何将现实问题抽象成求解最短路径问题,以及该问题的解决方案。

(2)难点:求解最短路径算法的程序实现。

3、教学安排:最短路径问题包含两种状况:一种是求从某个源点到其他各结点的最短路径,另一种是求每一对结点之间的最短路径。

依据教学大纲安排,重点讲解第一种状况问题的解决。

安排一个课时讲授。

教材直接分析算法,考虑实际应用需要,补充旅游景点线路选择的实例,实例中问题解决与算法分析相结合,逐步推动教学过程。

二、教学目标分析1、学问目标:把握最短路径概念、能够求解最短路径。

2、力量目标:(1)通过将旅游景点线路选择问题抽象成求最短路径问题,培育学生的数据抽象力量。

(2)通过旅游景点线路选择问题的解决,培育学生的独立思索、分析问题、解决问题的力量。

3、素养目标:培育学生讲究工作方法、与他人合作,提高效率。

三、教法分析课前充分预备,研读教材,查阅相关资料,制作多媒体课件。

教学过程中除了使用传统的“讲授法”以外,主要采纳“案例教学法”,同时辅以多媒体课件,以启发的方式绽开教学。

由于本节课的内容属于图这一章的难点,考虑学生的承受力量,留意与学生沟通,依据学生的反响掌握好教学进度是本节课胜利的关键。

四、学法指导1、课前上次课结课时给学生布置任务,使其有针对性的预习。

2、课中指导学生争论任务解决方法,引导学生分析本节课学问点。

3、课后给学生布置同类型任务,加强练习。

五、教学过程分析(一)课前复习(3~5分钟)回忆“路径”的概念,为引出“最短路径”做铺垫。

教学方法及留意事项:(1)采纳提问方式,留意准时小结,提问的目的是帮忙学生回忆概念。

人教版初二数学上册教案【精选5篇】

人教版初二数学上册教案【精选5篇】

人教版初二数学上册教案【精选5篇】人教版初二数学上册教案【精选5篇】计算数学是数学的一个分支,研究数值计算方法和算法的理论和应用,用于解决复杂计算问题。

这里给大家分享一些关于人教版初二数学上册教案,供大家参考学习。

人教版初二数学上册教案精选篇1教学目标:1、认识对称现象,初步理解对称轴和轴对称图形的含义,掌握判断一个图形是否是轴对称图形的方法。

2、经历观察、操作、想象、交流等活动,感知现实世界中普遍存在的对称现象,发展空间观念。

3、体验到生活中处处有数学,获得成功的喜悦,培养学生的探究精神和美感。

教学重点:认识对称现象和轴对称图形的特点。

教学难点:掌握识别轴对称图形的方法。

教具准备:多媒体课件、实物图片等。

教学过程:一、谈话引入,激发兴趣1、说说在游乐场喜欢玩的项目,出示主题图,引导学生观察。

2、从蝴蝶形状的风筝引出对称二、合作探究,学习新知1、观察图形,认识对称(1)观察几幅对称图形,引导学生感悟对称。

(2)说一说生活中的对称现象2、动手操作,认识轴对称图形(1)猜一猜:出示几幅轴对称图形,猜一猜它们是怎么来的。

(2)动手操作,剪出轴对称图形师示范剪一件上衣的过程:折一折、画一画、剪一剪。

生动手剪出自己喜欢的轴对称图形。

交流展示学生的作品(3)认识对称轴看一看,摸一摸,说一说画一画:师示范画出对称轴,然后学生自己画,再交流。

3、初步理解轴对称图形(1)说一说轴对称图形的特点,初步理解轴对称图形。

(2)议一议:讨论判断轴对称图形的方法(对折后完全重合才是轴对称图形)。

(3)举一举身边的轴对称图形的例子。

三、巩固练习,拓展延伸1、判一判:哪些是轴对称图形。

2、猜一猜:出示轴对称图形的一半,猜出它是什么图形。

3、折一折、画一画、数一数:长方形、正方形、圆形各有几条对称轴。

四、课堂总结通过这节课的学习,你有什么收获?五、欣赏轴对称图形的美丽人教版初二数学上册教案精选篇2教学目标:1、通过观察、操作活动,让学生初步认识轴对称图形的基本特征。

人教版初二数学上册教案(通用10篇)

人教版初二数学上册教案(通用10篇)

初二数学上册教案人教版初二数学上册教案(通用10篇)作为一名优秀的教育工作者,总不可避免地需要编写教案,教案有利于教学水平的提高,有助于教研活动的开展。

那要怎么写好教案呢?以下是小编整理的人教版初二数学上册教案,欢迎阅读,希望大家能够喜欢。

初二数学上册教案篇1教学目标:1. 掌握三角形内角和定理及其推论;2. 弄清三角形按角的分类, 会按角的大小对三角形进行分类;3.通过对三角形分类的学习,使学生了解数学分类的基本思想,并会用方程思想去解决一些图形中求角的问题。

4.通过三角形内角和定理的证明,提高学生的逻辑思维能力,同时培养学生严谨的科学态5. 通过对定理及推论的分析与讨论,发展学生的求同和求异的思维能力,培养学生联系与转化的辩证思想。

教学重点:三角形内角和定理及其推论。

教学难点:三角形内角和定理的证明教学用具:直尺、微机教学方法:互动式,谈话法教学过程:1、创设情境,自然引入把问题作为教学的出发点,创设问题情境,激发学生学习兴趣和求知欲,为发现新知识创造一个最佳的心理和认知环境。

问题1 三角形三条边的关系我们已经明确了,而且利用上述关系解决了一些几何问题,那么三角形的三个内角有何关系呢?问题2 你能用几何推理来论证得到的关系吗?对于问题1绝大多数学生都能回答出来(小学学过的),问题2学生会感到困难,因为这个证明需添加辅助线,这是同学们第一次接触的新知识―――“辅助线”。

教师可以趁机告诉学生这节课将要学习的一个重要内容(板书课题)新课引入的好坏在某种程度上关系到课堂教学的成败,本节课从旧知识切入,特别是从知识体系考虑引入,“学习了三角形边的关系,自然想到三角形角的关系怎样呢?”使学生感觉本节课学习的内容自然合理。

2、设问质疑,探究尝试(1)求证:三角形三个内角的和等于让学生剪一个三角形,并把它的三个内角分别剪下来,再拼成一个平面图形。

这里教师设计了电脑动画显示具体情景。

然后,围绕问题设计以下几个问题让学生思考,教师进行学法指导。

八年级上册数学教案人教版【优秀8篇】

八年级上册数学教案人教版【优秀8篇】

八年级上册数学教案人教版【优秀8篇】篇一:人教版八年级上册数学教案篇一一、教学目标:1、加深对加权平均数的理解2、会根据频数分布表求加权平均数,从而解决一些实际问题3、会用计算器求加权平均数的值二、重点、难点和难点的突破方法:1、重点:根据频数分布表求加权平均数2、难点:根据频数分布表求加权平均数3、难点的突破方法:首先应先复习组中值的定义,在七年级下教材P72中已经介绍过组中值定义。

因为在根据频数分布表求加权平均数近似值过程中要用到组中值去代替一组数据中的每个数据的值,所以有必要在这里复习组中值定义。

应给学生介绍为什么可以利用组中值代替一组数据中的每个数据的值,以及这样代替的好处、不妨举一个例子,在一组中如果数据分布较为均匀时,比如教材P140探究问题的表格中的第三组数据,它的范围是41≤X≤61,共有20个数据,若分布较为平均,41、42、43、44…60个出现1次,那么这组数据的和为41+42+…+60=1010。

而用组中值51去乘以频数20恰好为1020≈1010,即当数据分布较为平均时组中值恰好近似等于它的平均数。

所以利用组中值X频数去代替这组数据的和还是比较合理的,而且这样做的好处是简化了计算量。

为了更好的理解这种近似计算的方法和合理性,可以让学生去读统计表,体会表格的实际意义。

三、例习题的意图分析1、教材P140探究栏目的意图。

(1)、主要是想引出根据频数分布表求加权平均数近似值的计算方法。

(2)、加深了对“权”意义的理解:当利用组中值近似取代替一组数据中的平均值时,频数恰好反映这组数据的轻重程度,即权。

这个探究栏目也可以帮助学生去回忆、复习七年级下的关于频数分布表的一些内容,比如组、组中值及频数在表中的具体意义。

2、教材P140的思考的意图。

(1)、使学生通过思考这两个问题过程中体会利用统计知识可以解决生活中的许多实际问题(2)、帮助学生理解表中所表达出来的信息,培养学生分析数据的能力。

初二人教版数学教学设计(精选12篇)

初二人教版数学教学设计(精选12篇)

初二人教版数学教学设计〔精选12篇〕篇1:初二人教版数学教学工作总结本学期来,我担任八年级二班的数学老师,在教学期间认真备课、上课、听课、评课,及时修改作业、讲评作业,做好课后辅导工作,广泛涉猎各种知识,不断进步自己的业务程度,充实自己的头脑,严格要求学生,尊重学生,使学生学有所得,不断进步,并顺利完成教育教学任务。

一、坚持认真备课备课中我不仅备学生而且备教材备教法,根据教材内容及学生的实际,设计课的类型,拟定采用的教学方法,并对教学过程的程序及时间安排都作了详细的记录,认真写好教案。

每一课都做到“有备而来”,每堂课都在课前做好充分的准备,并制作各种利于吸引学生注意力的有趣教具,课后及时对该课作出总结,写好教学反思。

二、努力增强我的上课技能进步教学质量,使讲解明晰化,条理化,准确化,情感化,生动化,做到线索明晰,层次清楚,言简意赅,深化浅出。

在课堂上特别注意调动学生的积极性,加强师生交流,充分表达学生的主作用,让学生学得容易,学得轻松,学得愉快;注意精讲精练,在课堂上老师讲得尽量少,学生动口动手动脑尽量多;同时在每一堂课上都充分考虑每一个层次的学生学习需求和学习才能,让各个层次的学生都得到进步。

如今学生普遍反映喜欢上数学课,就连以前极讨厌数学的学生都乐于上课了。

三、与同事交流,虚心请教其他老师在教学上,有疑必问。

在各个章节的学习上都积极征求其他老师的意见,学习他们的方法,同时,多听老师的课,做到边听边讲,学习别人的优点,克制自己的缺乏,并常常邀请其他老师来听课,征求他们的意见,改良工作。

四、完善修改作业布置作业做到精读精练。

有针对性,有层次性。

为了做到这点,我常常上网、书店等地去搜集资料,对各种辅助资料进展挑选,力求每一次练习都起到最大的效果。

同时对学生的作业修改及时、认真,分析^p 并记录学生的作业情况,将他们在作业过程出现的问题作出分类总结,进展透切的评讲,并针对有关情况及时改良教学方法,做到有的放矢。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版初二数学教案【篇一:人教版初二数学教案】本资料为word文档,请点击下载地址下载文章来源k j.com第十六章分式16.1分式16.1.1从分数到分式一、目标1.了解分式、有理式的概念.2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件.二、重点、难点1.重点:理解分式有意义的条件,分式的值为零的条件.2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件.3.认知难点与突破方法难点是能熟练地求出分式有意义的条件,分式的值为零的条件.突破难点的方法是利用分式与分数有许多类似之处,从分数入手,研究出分式的有关概念,同时还要讲清分式与分数的联系与区别.三、例、习题的意图分析本章从实际问题引出分式方程 = ,给出分式的描述性的定义:像这样分母中含有字母的式子属于分式. 不要在列方程时耽误时间,列方程在这节课里不是重点,也不要求解这个方程.1.本节进一步提出p4[思考]让学生自己依次填出:,,, .为下面的[观察]提供具体的式子,就以上的式子,,,,有什么共同点?它们与分数有什么相同点和不同点?p5[归纳]顺理成章地给出了分式的定义.分式与分数有许多类似之处,研究分式往往要类比分数的有关概念,所以要引导学生了解分式与分数的联系与区别.希望老师注意:分式比分数更具有一般性,例如分式可以表示为两个整式相除的商(除式不能为零),其中包括所有的分数 .2. p5[思考]引发学生思考分式的分母应满足什么条件,分式才有意义?由分数的分母不能为零,用类比的方法归纳出:分式的分母也不能为零.注意只有满足了分式的分母不能为零这个条件,分式才有意义.即当b≠0时,分式才有意义.3. p5例1填空是应用分式有意义的条件—分母不为零,解出字母x的值.还可以利用这道题,不改变分式,只把题目改成“分式无意义”,使学生比较全面地理解分式及有关的概念,也为今后求函数的自变量的取值范围,打下良好的基础.4. p12[拓广探索]中第13题提到了“在什么条件下,分式的值为0?”,下面补充的例2为了学生更全面地体验分式的值为0时,必须同时满足两个条件:○1分母不能为零;○2分子为零.这两个条件得到的解集的公共部分才是这一类题目的解.四、课堂引入1.让学生填写p4[思考],学生自己依次填出:,,, .2.学生看p3的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?请同学们跟着教师一起设未知数,列方程.设江水的流速为x千米/时.轮船顺流航行100千米所用的时间为小时,逆流航行60千米所用时间小时,所以 = .3. 以上的式子,,,,有什么共同点?它们与分数有什么相同点和不同点?五、例题讲解p5例1. 当x为何值时,分式有意义.[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解出字母x的取值范围.[提问]如果题目为:当x为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.(补充)例2. 当m为何值时,分式的值为0?(1)(2) (3)[分析] 分式的值为0时,必须同时满足两个条件:○1分母不能为零;○2分子为零,这样求出的m的解集中的公共部分,就是这类题目的解.[答案] (1)m=0 (2)m=2 (3)m=1六、随堂练习1.判断下列各式哪些是整式,哪些是分式?9x+4, , , , ,2. 当x取何值时,下列分式有意义?(1)(2)(3)3. 当x为何值时,分式的值为0?(1)(2) (3)七、课后练习1.列代数式表示下列数量关系,并指出哪些是正是?哪些是分式?(1)甲每小时做x个零件,则他8小时做零件个,做80个零件需小时.(2)轮船在静水中每小时走a千米,水流的速度是b千米/时,轮船的顺流速度是千米/时,轮船的逆流速度是千米/时.(3)x与y的差于4的商是 .2.当x取何值时,分式无意义?3. 当x为何值时,分式的值为0?八、答案:六、1.整式:9x+4, , 分式: , ,3.(1)x=-7 (2)x=0 (3)x=-1七、1.18x, ,a+b, , ; 整式:8x, a+b, ;分式: ,2. x = 3. x=-116.1.2分式的基本性质一、目标1.理解分式的基本性质.2.会用分式的基本性质将分式变形.二、重点、难点1.重点: 理解分式的基本性质.2.难点: 灵活应用分式的基本性质将分式变形.3.认知难点与突破方法教学难点是灵活应用分式的基本性质将分式变形. 突破的方法是通过复习分数的通分、约分总结出分数的基本性质,再用类比的方法得出分式的基本性质.应用分式的基本性质导出通分、约分的概念,使学生在理解的基础上灵活地将分式变形.三、例、习题的意图分析1.p7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变.2.p9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解.3.p11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变.“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5.四、课堂引入1.请同学们考虑:与相等吗?与相等吗?为什么?2.说出与之间变形的过程,与之间变形的过程,并说出变形依据?3.提问分数的基本性质,让学生类比猜想出分式的基本性质.五、例题讲解p7例2.填空:[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.p11例3.约分:[分析] 约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.p11例4.通分:[分析] 通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.(补充)例5.不改变分式的值,使下列分式的分子和分母都不含“-”号.,,,,。

[分析]每个分式的分子、分母和分式本身都有自己的符号,其中两个符号同时改变,分式的值不变.解: = , = , = , = , = 。

六、随堂练习1.填空:(1) = (2) =(3) = (4) =2.约分:(1)(2)(3)(4)3.通分:(1)和(2)和(3)和(4)和4.不改变分式的值,使下列分式的分子和分母都不含“-”号.(1) (2) (3) (4)七、课后练习1.判断下列约分是否正确:(1) = (2) =(3) =02.通分:(1)和(2)和3.不改变分式的值,使分子第一项系数为正,分式本身不带“-”号.(1)(2)八、答案:六、1.(1)2x (2) 4b (3) bn+n (4)x+y2.(1)(2)(3)(4)-2(x-y)23.通分:(1) = , =(2) = , =(3) = =(4) = =4.(1) (2) (3) (4)16.2分式的运算16.2.1分式的乘除(一)一、教学目标:理解分式乘除法的法则,会进行分式乘除运算.二、重点、难点1.重点:会用分式乘除的法则进行运算.2.难点:灵活运用分式乘除的法则进行运算 .3. 难点与突破方法分式的运算以有理数和整式的运算为基础,以因式分解为手段,经过转化后往经过转化后往往可视为整式的运算.分式的乘除的法则和运算顺序可类比分数的有关内容得到.所以,教给学生类比的数学思想方法能较好地实现新知识的转化.只要做到这一点就可充分发挥学生的主体性,使学生主动获取知识.教师要重点处理分式中有别于分数运算的有关内容,使学生规范掌握,特别是运算符号的问题,要抓住出现的问题认真落实.三、例、习题的意图分析1.p13本节的引入还是用问题1求容积的高,问题2求大拖拉机的工作效率是小拖拉机的工作效率的多少倍,这两个引例所得到的容积的高是,大拖拉机的工作效率是小拖拉机的工作效率的倍.引出了分式的乘除法的实际存在的意义,进一步引出p14[观察]从分数的乘除法引导学生类比出分式的乘除法的法则.但分析题意、列式子时,不易耽误太多时间.2.p14例1应用分式的乘除法法则进行计算,注意计算的结果如能约分,应化简到最简.3.p14例2是较复杂的分式乘除,分式的分子、分母是多项式,应先把多项式分解因式,再进行约分.4.p14例3是应用题,题意也比较容易理解,式子也比较容易列出来,但要注意根据问题的实际意义可知a 1,因此(a-1)2=a2-2a+1 a2-2+1,即(a-1)2 a2-1.这一点要给学生讲清楚,才能分析清楚“丰收2号”单位面积产量高.(或用求差法比较两代数式的大小)四、课堂引入1.出示p13本节的引入的问题1求容积的高,问题2求大拖拉机的工作效率是小拖拉机的工作效率的倍.[引入]从上面的问题可知,有时需要分式运算的乘除.本节我们就讨论数量关系需要进行分式的乘除运算.我们先从分数的乘除入手,类比出分式的乘除法法则.1.p14[观察] 从上面的算式可以看到分式的乘除法法则.3.[提问] p14[思考]类比分数的乘除法法则,你能说出分式的乘除法法则?类似分数的乘除法法则得到分式的乘除法法则的结论.五、例题讲解p14例1.[分析]这道例题就是直接应用分式的乘除法法则进行运算.应该注意的是运算结果应约分到最简,还应注意在计算时跟整式运算一样,先判断运算符号,在计算结果.p15例2.[分析] 这道例题的分式的分子、分母是多项式,应先把多项式分解因式,再进行约分.结果的分母如果不是单一的多项式,而是多个多项式相乘是不必把它们展开.p15例.六、随堂练习计算(1)(2)(3)(4)-8xy (5) (6)七、课后练习计算(1)(2)(3)(4)(5)(6)八、答案:六、(1)ab (2)(3)(4)-20x2 (5)(6)七、(1)(2)(3)(4)(5)(6)16.2.1分式的乘除(二)一、教学目标:熟练地进行分式乘除法的混合运算.二、重点、难点1.重点:熟练地进行分式乘除法的混合运算.2.难点:熟练地进行分式乘除法的混合运算.3.认知难点与突破方法:紧紧抓住分式乘除法的混合运算先统一成为乘法运算这一点,然后利用上节课分式乘法运算的基础,达到熟练地进行分式乘除法的混合运算的目的.课堂练习以学生自己讨论为主,教师可组织学生对所做的题目作自我评价,关键是点拨运算符号问题、变号法则.三、例、习题的意图分析1. p17页例4是分式乘除法的混合运算. 分式乘除法的混合运算先把除法统一成乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的结果要是最简分式或整式.教材p17例4只把运算统一乘法,而没有把25x2-9分解因式,就得出了最后的结果,教师在见解是不要跳步太快,以免学习有困难的学生理解不了,造成新的疑点.2, p17页例4中没有涉及到符号问题,可运算符号问题、变号法则是学生学习中重点,也是难点,故补充例题,突破符号问题.四、课堂引入计算(1) (2)五、例题讲解(p17)例4.计算[分析] 是分式乘除法的混合运算. 分式乘除法的混合运算先统一成为乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的计算结果要是最简的.(补充)例.计算(1)= (先把除法统一成乘法运算)= (判断运算的符号)= (约分到最简分式)(2)= (先把除法统一成乘法运算)= (分子、分母中的多项式分解因式)==六、随堂练习计算(1) (2)(3)(4)七、课后练习计算(1) (2)(3) (4)八、答案:六.(1)(2)(3)(4)-y七. (1) (2) (3)(4)16.2.1分式的乘除(三)一、教学目标:理解分式乘方的运算法则,熟练地进行分式乘方的运算.二、重点、难点1.重点:熟练地进行分式乘方的运算.2.难点:熟练地进行分式乘、除、乘方的混合运算.3.认知难点与突破方法讲解分式乘方的运算法则之前,根据乘方的意义和分式乘法的法则,计算 = = = , = = = ,……顺其自然地推导可得:= = = ,即 = . (n为正整数)归纳出分式乘方的法则:分式乘方要把分子、分母分别乘方.三、例、习题的意图分析1. p17例5第(1)题是分式的乘方运算,它与整式的乘方一样应先判断乘方的结果的符号,在分别把分子、分母乘方.第(2)题是分式的乘除与乘方的混合运算,应对学生强调运算顺序:先做乘方,再做乘除..2.教材p17例5中象第(1)题这样的分式的乘方运算只有一题,对于初学者来说,练习的量显然少了些,故教师应作适当的补充练习.同样象第(2)题这样的分式的乘除与乘方的混合运算,也应相应的增加几题为好.分式的乘除与乘方的混合运算是学生学习中重点,也是难点,故补充例题,强调运算顺序,不要盲目地跳步计算,提高正确率,突破这个难点.四、课堂引入计算下列各题:(1) = =() (2) = =()(3) = =()[提问]由以上计算的结果你能推出(n为正整数)的结果吗?五、例题讲解(p17)例5.计算[分析]第(1)题是分式的乘方运算,它与整式的乘方一样应先判断乘方的结果的符号,再分别把分子、分母乘方.第(2)题是分式的乘除与乘方的混合运算,应对学生强调运算顺序:先做乘方,再做乘除.六、随堂练习1.判断下列各式是否成立,并改正.(1) = (2) =(3) = (4) =2.计算(1) (2)(3)(4) 5)(6)七、课后练习计算(1) (2)(3) (4)八、答案:六、1. (1)不成立, = (2)不成立, =(3)不成立, = (4)不成立, =2. (1)(2)(3)(4)(5) (6)七、(1) (2) (3)(4)16.2.2分式的加减(一)一、教学目标:(1)熟练地进行同分母的分式加减法的运算.(2)会把异分母的分式通分,转化成同分母的分式相加减.二、重点、难点1.重点:熟练地进行异分母的分式加减法的运算.2.难点:熟练地进行异分母的分式加减法的运算.3.认知难点与突破方法进行异分母的分式加减法的运算是难点,异分母的分式加减法的运算,必须转化为同分母的分式加减法,,然后按同分母的分式加减法的法则计算,转化的关键是通分,通分的关键是正确确定几个分式的最简公分母,确定最简公分母的一般步骤:(1)取各分母系数的最小公倍数;(2)所出现的字母(或含字母的式子)为底的幂的因式都要取;(3)相同字母(或含字母的式子)的幂的因式取指数最大的.在求出最简公分母后,还要确定分子、分母应乘的因式,这个因式就是最简公分母除以原分母所得的商.异分母的分式加减法的一般步骤:(1)通分,将异分母的分式化成同分母的分式;(2)写成“分母不便,分子相加减”的形式;(3)分子去括号,合并同类项;(4)分子、分母约分,将结果化成最简分式或整式.三、例、习题的意图分析1. p18问题3是一个工程问题,题意比较简单,只是用字母n天来表示甲工程队完成一项工程的时间,乙工程队完成这一项工程的时间可表示为n+3天,两队共同工作一天完成这项工程的 .这样引出分式的加减法的实际背景,问题4的目的与问题3一样,从上面两个问题可知,在讨论实际问题的数量关系时,需要进行分式的加减法运算.2. p19[观察]是为了让学生回忆分数的加减法法则,类比分数的加减法,分式的加减法的实质与分数的加减法相同,让学生自己说出分式的加减法法则.3.p20例6计算应用分式的加减法法则.第(1)题是同分母的分式减法的运算,第二个分式的分子式个单项式,不涉及到分子变号的问题,比较简单,所以要补充分子是多项式的例题,教师要强调分子相减时第二个多项式注意变号;第(2)题是异分母的分式加法的运算,最简公分母就是两个分母的乘积,没有涉及分母要因式分解的题型.例6的练习的题量明显不足,题型也过于简单,教师应适当补充一些题,以供学生练习,巩固分式的加减法法则.(4)p21例7是一道物理的电路题,学生首先要有并联电路总电阻r与各支路电阻r1, r2, …, rn的关系为 .若知道这个公式,就比较容易地用含有r1的式子表示r2,列出,下面的计算就是异分母的分式加法的运算了,得到,再利用倒数的概念得到r的结果.这道题的数学计算并不难,但是物理的知识若不熟悉,就为数学计算设置了难点.鉴于以上分析,教师在讲这道题时要根据学生的物理知识掌握的情况,以及学生的具体掌握异分母的分式加法的运算的情况,可以考虑是否放在例8之后讲.四、课堂堂引入1.出示p18问题3、问题4,教师引导学生列出答案.引语:从上面两个问题可知,在讨论实际问题的数量关系时,需要进行分式的加减法运算.2.下面我们先观察分数的加减法运算,请你说出分数的加减法运算的法则吗?3. 分式的加减法的实质与分数的加减法相同,你能说出分式的加减法法则?4.请同学们说出的最简公分母是什么?你能说出最简公分母的确定方法吗?五、例题讲解(p20)例6.计算[分析] 第(1)题是同分母的分式减法的运算,分母不变,只把分子相减,第二个分式的分子式个单项式,不涉及到分子是多项式时,第二个多项式要变号的问题,比较简单;第(2)题是异分母的分式加法的运算,最简公分母就是两个分母的乘积.(补充)例.计算(1)[分析] 第(1)题是同分母的分式加减法的运算,强调分子为多项式时,应把多项事看作一个整体加上括号参加运算,结果也要约分化成最简分式.解:====(2)[分析] 第(2)题是异分母的分式加减法的运算,先把分母进行因式分解,再确定最简公分母,进行通分,结果要化为最简分式.解:=====六、随堂练习计算(1) (2)(3)(4)七、课后练习计算(1) (2)(3) (4)八、答案:四.(1)(2)(3)(4)1五.(1) (2) (3)1 (4)文章来源k j.com相关教案:没有相关教案。

相关文档
最新文档