《变量与常量》设计教案
初中数学初二数学上册《常量与变量》教案、教学设计

(1)详细讲解常量与变量的定义,强调它们在实际问题中的识别和运用。
(2)通过实例演示,展示如何将实际问题抽象为数学模型,并用方程表示。
(3)引导学生学习构建方程的方法和技巧,讲解线性方程的解法和应用。
(三)学生小组讨论
1.教学活动设计:
在学生小组讨论环节,我设计了两个具有挑战性的问题,要求学生以小组为单位,展开讨论,共同解决问题。
3.探究题:
请学生分组进行探究,选择一个感兴趣的问题,例如:不同商品的价格与数量关系、家庭成员的年龄与时间关系等,收集数据、构建方程并求解,分析结果,形成小组报告。
作业要求:
1.学生在完成作业时,要认真审题,规范书写,注意细节,提高解题的准确性和效率。
2.对于选做题和探究题,鼓励学生积极思考,勇于创新,充分展示自己的数学素养。
2.培养学生的合作精神和团队意识,提高沟通能力。
在课堂教学中,鼓励学生相互讨论、交流,培养学生的合作精神和团队意识,提高沟通能力。
3.培养学生勇于面对挑战,克服困难,增强自信心。
在解决实际问题的过程中,鼓励学生勇于尝试,克服困难,不断调整解题策略。通过解决问题,让学生体验成功的喜悦,增强自信心。
4.培养学生严谨、细致的学习态度,提高数学素养。
(2)拓展课外资源,推荐与本章内容相关的阅读材料,引导学生自主学习,拓宽知识视野。
5.教学反思:
在教学过程中,教师应关注学生的学习反馈,及时调整教学策略,以提高教学效果。同时,教师应不断反思自己的教学方法和手段,探索更符合学生需求的教学模式。
四、教学内容与过程
(一)导入新课
1.教学活动设计:
在导入新课环节,我设计了一个与生活密切相关的情境:一家文具店进行促销活动,购买不同数量的铅笔可以获得不同的优惠。通过这个情境,引导学生关注数量与价格之间的关系,从而引出常量与变量的概念。
人教版八年级数学下册第19章19.1.1变量与常量(教案)

4.引导学生在探索变量与常量过程中,培养严谨的数学态度和逻辑推理的素养。
5.培养学生的团队协作意识,通过小组讨论、互动交流,提升合作探究的能力。
三、教学难点与重点
1.教学重点
-理解变量与常量的定义及表示方法,并能正确区分两者。
-掌握函数概念的基本内涵,了解变量之间关系的表示方式。
在新课讲授的案例分析部分,我选取了一个与学生生活密切相关的例子,这样做的目的是让学生们感受到数学知识在解决实际问题中的应用。通过这个案例,我看到了学生们开始尝试将数学概念与实际情境联系起来,这是一个很好的开始。
实践活动环节,学生们在分组讨论中表现出了很高的热情。他们通过讨论和实验操作,亲身体验了变量与常量的变化过程,这种亲自动手的方式似乎比单纯的讲授更能加深他们的理解。
在小组讨论环节,我发现有的小组在分析问题时还不够深入,可能是因为他们对变量的理解还不够透彻。我适时地介入,提出了几个引导性的问题,帮助学生进一步思考。看到他们在讨论中逐渐找到问题的解决办法,我感到很欣慰。
最后,我发现在总结回顾环节,有些学生仍然对自己的理解不够自信,可能需要在课后进行个别辅导,确保他们能够真正掌握变量与常量这一知识点。此外,我也会在课后反思自己的教学方法,探索更有效的教学策略,以提升学生们的数学核心素养。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了变量与常量的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对变量与常量的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
《变量与常量》教学设计

19.1 变量与常量年级八年级课题课型新授教学媒体多媒体教学目标知识技能1.理解变量、常量的概念及相互间的关系;2.能找出变量间的简单关系,试列简单关系式;过程方法通过对实际问题的讨论引出常量与变量的概念,由熟悉的例子系统地认识常量与变量,有助于理解相关概念之间的联系与区别情感态度积极参与数学活动,对数学产生好奇心和求知欲教学重点认识变量与常量教学难点对变量的判断教学过程设计教学程序及教学内容师生行为设计意图一、情境引入观看视频,感受生活中的变量与常量。
二、探究新知1.一辆汽车以60千米/小时的速度行驶,行驶里程为S千米,行驶时间为t小时①根据题意填表t/时 1 2 3 4 5s/千米②思考:这个过程是一个不变的过程还是一个变化的过程?哪个量的值是不变的?哪个量的值是变化的?数值变化的量之间是怎样的关系?2.电影票的售价为10元,如果早场售出150张票,午场售出205张票,晚场售出310张票,则三场电影的票房收入各多少元?设一场电影售出x张票,票房收入为y元,怎样用含x的式子表示y?思考:题中哪个过程是不变的过程?哪个过程是变化的过程?在变化的过程中,哪些量是变化的量?它们之间是怎样变化的?它们之间存在着怎样的对应关系?如何用式子表示出来?3. 什么叫变量?什么叫常量?4.指出上述问题中的变量和常量?三、课堂训练教师提出问题,学生带着问题观看视频多媒体出示问题,学生观察,分析,讨论,写出答案学生观察分析,合作交流后得出结论教师引导学生观察题的答案,归纳定义由实际问题引起学生的好奇心由熟悉的例子感受新知,从不同事物的变化过程中寻找出变化量之间的变化规律加深对变量,常1.写出下列各问题中所满足的关系式,并指出各个关系式中,哪些量是变量?哪些量是常量?(1)用总长为60m 的篱笆围成矩形场地,求矩形的面积S (m 2)与一边长x(m)之间的关系式 (2)购买单价是0.4元的铅笔,总金额y(元)与购买的铅笔的数量n(支)的关系式(3)运动员在400m 一圈的跑道上训练,他跑一圈所用的时间t(s)与跑步的速度v(m/s)的关系式 (4)银行规定:五年期存款的年利率为2.79%,则某人存入x 元本金与所得的本息和y(元)之间的关系式2.例题分析:在一根弹簧的下端悬挂重物,改变并记录重物的质量,观察并记录弹簧长度的变化,探索它们的规律。
常量与变量的教案

【篇一:常量与变量教案】
7.1常量与变量
教学目标:
1、通过实例体验在一个过程中有些量固定不变,有些量不断地变化。
2、了解常量、变量的概念,体验在一个过程中常量与变量相对地存在。
3、会在简单的过程中辨别常量与变量。
重点:常量与变量的概念。
难点:本节的范例。
教学过程:
一、创设情景,引入新课
函数是研究运动变化的重要数学模型,它来源于客观实际,又服务于客观实际。它是函数学习的入门,也为后面引出变量间的单值对应关系进而学习函数的定义做了铺垫。本节课内容不但对培养学生比较、分析、概括的思维能力有作用,而且对培养学生运动变化等辨证唯物主义观点和形成良好的个性品质也有一定的帮助。
教学内容
(人教版)初中数学八年级下册第71页。
(3)若汽车行驶了4小时,则其中常量、变量分别是什么?
常量是4小时;变量是s,v.
(4)从以上3题你发现了什么?
在一个过程中,常量与变量相对地存在。
三、例题讲解:
一家快递公司的收费标准如图,用t表示邮件的质量,p表示每件快递费,n表示快递邮件的件数。课本141页
(1)填写下表
(2)在投寄快递邮件的事项中,t,p,n是常量,还是变量?
生:h、n在改变,110与10不变。
师:当我们用数学来分析现实世界的各种现象时,会遇到各种各样的量,在某一个过程中,有些量固定不变,有些量不断改变,我们今天这节课就来学习这两种量。
二、新课教学
1、常量与变量概念。
在一个过程中,可以取不同数值的量称为变量。如上面公式中h和n、s和r是变量。2、学生练习(小试牛刀)
师:同学们,你知道你的睡眠时间充足吗?根据科学研究表明,一个10岁至50岁的人每天所需睡眠时间(h小时)可用公式h=(110-n)/10计算出来,其中n代表这个人的岁数,请赶紧算算你所需的睡眠时间吧!(出示投影)
八年级数学上册《常量与变量》教案、教学设计

3.小组分享:各小组向全班同学分享自己的讨论成果,展示问题解决过程和数学表达式的建立。
4.互动交流:鼓励学生提问、发表观点,促进全班范围内的互动交流,加深对常量与变量知识的理解。
(四)课堂练习
1.练习设计:根据学生的掌握情况,设计不同难度的练习题,涵盖识别常量与变量、列表达式、数据分析等方面。
二、学情分析
八年级的学生已经具备了一定的数学基础,对数学概念和运算规则有初步的了解。在此基础上,他们对《常量与变量》这一章节的学习将面临以下挑战:
1.抽象思维能力:学生对抽象概念的理解能力尚需提高,需要通过具体实例和形象教学手段帮助他们理解常量与变量的本质区别。
2.问题解决能力:学生在解决实际问题时,可能难以把握问题中的常量和变量,需要教师引导他们学会分析问题、提炼关键信息。
2.教师提问:请同学们思考,在生活中还有哪些类似的现象?这些现象中的常量和变量是什么?
3.学生回答:学生分享自己的观察和思考,如温度、降雨量、植物生长等,尝试区分这些现象中的常量和变量。
4.教师引导:根据学生的回答,总结常量与变量的概念,引出本节课的学习主题。
(二)讲授新知
1.教学内容:讲解常量与变量的定义,通过具体实例阐述它们在数学表达中的表示方法。
2.设计丰富多样的例题和练习,培养学生的问题解决能力。
3.加强小组合作指导,提高学生的合作交流能力。
4.结合实际问题,引导学生体会数学知识在生活中的应用,培养数学应用意识。
三、教学重难点和教学设想
(一)教学重点
1.理解并掌握常量与变量的概念,能够区分实际问题中的常量和变量。
2.学会使用变量表示数量关系,并能够根据问题情景列出相应的表达式。
常量与变量教案范文

常量与变量教案范文一、教学目标1.理解常量和变量的概念。
2.掌握定义和使用常量和变量的方法。
3.能够区分常量和变量的特点和用途。
4.能够运用常量和变量解决实际问题。
二、教学重点1.常量与变量的定义和使用。
2.常量与变量的特点和用途。
三、教学难点1.常量与变量的区别及运用。
2.常量和变量的命名规范。
四、教学过程1.导入新知识教师通过举例引入常量和变量的概念,比如:"今天天气很好"中的"天气很好"是一个常量,它的值不会改变;"昨天的温度是20度"中的"温度"是一个变量,它的值可以随时改变。
通过对比,引导学生理解常量和变量的概念:常量是值固定不变的量,变量是值可以改变的量。
2.常量的定义和使用教师介绍常量的定义和使用方法:(1) 在程序中定义常量使用关键字"final",表示该变量的值不能修改。
(2)常量的命名规范一般使用大写字母,多个单词之间使用下划线连接。
(3) 常量的赋值一般在声明时进行,例如:final int MAX_VALUE = 100;3.变量的定义和使用教师介绍变量的定义和使用方法:(1) 在程序中定义变量使用关键字"int"等,表示该变量的值可以改变。
(2)变量的命名规范一般使用小写字母,多个单词之间使用驼峰命名法。
(3)变量的赋值可以在声明时进行,也可以在程序中的任意位置进行。
4.常量和变量的区别教师总结常量和变量的区别:(1)常量的值不可改变,变量的值可以改变。
(2)常量一般在声明时赋值,变量可以在任意位置赋值。
(3)常量的命名一般使用大写字母,变量的命名一般使用小写字母。
(4)常量的作用是用来表示固定的值,变量的作用是用来存储和修改数据。
5.案例分析与讨论教师提供一个案例,让学生运用常量和变量解决实际问题。
案例:"学生的学号、姓名和成绩是常量还是变量?"教师引导学生思考,并与学生共同讨论解答,最后得出结论:学生的学号和姓名是常量,它们是固定的,不会改变;而学生的成绩是变量,它是可以随时改变的。
浙教版数学八年级上《常量和变量》精品教案
教案名称:常量和变量教学目标:1.了解常量和变量的概念2.能够区分常量和变量3.能够灵活运用常量和变量教学重点:1.常量和变量的概念2.区分常量和变量3.运用常量和变量解决问题教学难点:如何正确运用常量和变量解决问题教学准备:1.教材:浙教版数学八年级上册2.多媒体教学设备教学过程:Step 1 导入新课通过引入一个实际生活中的例子,帮助学生理解常量和变量的概念。
比如:小明每天花在网吧上网的时间是固定的,这个时间就是常量;而他花在网吧的费用却是每次不同的,这就是变量。
请同学们来举一些其他的例子。
Step 2 常量和变量的概念在板书上写下“常量”和“变量”两个词,让学生试着解释这两个概念。
通过讨论,让学生梳理出常量和变量的特点和区别。
Step 3 区分常量和变量给学生出示几个含有常量和变量的数学表达式,请学生梳理出其中的常量和变量。
比如:2x+3y=10,x和y是变量,而2和3是常量。
Step 4 运用常量和变量解决问题通过一些实际问题,让学生运用常量和变量来解决。
比如:问题1:一个矩形的面积是12平方米,长边是3米,请问宽是多少?问题2:一道数学题的答案是10,比答案小5的数是多少?请学生用变量表示未知数,解决以上问题。
Step 5 合作探究将学生分成小组,每个小组给出一个问题,让其他小组运用常量和变量来解决。
鼓励学生通过合作来思考解决问题的不同方法。
Step 6 讲解总结对学生提出的问题进行总结,并给予解答。
总结常量和变量的特点和运用方法。
Step 7 练习巩固通过一些练习题来巩固学生对常量和变量的理解和运用能力。
教学拓展:1.给学生出示一些数学公式,让学生找出其中的常量和变量。
2.引导学生思考常量和变量在实际生活中的其他应用。
教学反思:本课设计通过引入实际例子和问题,让学生理解常量和变量的概念,并能灵活运用。
在教学过程中,教师需要注意引导学生的思考和合作探究,培养学生的数学思维能力和团队合作能力。
初中变量和常量的概念教案
初中变量和常量的概念教案1. 让学生理解变量和常量的概念,掌握它们之间的区别和联系。
2. 培养学生从实际问题中抽象出变量和常量的能力,感受数学与生活的紧密联系。
3. 培养学生运用变量和常量解决实际问题的能力,提高学生的数学应用意识。
二、教学内容1. 变量和常量的定义及其区别和联系。
2. 实际问题中变量和常量的应用。
三、教学重难点1. 掌握变量和常量的概念,能够从实际问题中识别变量和常量。
2. 理解变量和常量在实际问题中的作用,能够运用它们解决实际问题。
四、教学方法1. 采用情境教学法,让学生在实际问题中感受变量和常量的存在。
2. 采用合作学习法,让学生通过讨论、交流,共同探讨变量和常量的特点和应用。
3. 采用引导发现法,引导学生从实际问题中发现变量和常量,培养学生的问题意识。
五、教学过程1. 导入:通过展示一幅图,让学生观察图中的变化,引出变量和常量的概念。
2. 新课:介绍变量和常量的定义,讲解它们之间的区别和联系。
3. 实例分析:给出几个实际问题,让学生识别其中的变量和常量,并探讨它们的运用。
4. 小组讨论:让学生分组讨论,总结变量和常量的特点,以及如何运用它们解决实际问题。
5. 总结:对变量和常量的概念进行归纳总结,强调它们在数学和生活中的重要性。
6. 练习:布置一些练习题,让学生巩固所学内容,提高运用变量和常量解决实际问题的能力。
七、教学反思通过本节课的教学,学生应该能够理解变量和常量的概念,掌握它们之间的区别和联系。
在实际问题中,学生应能够识别变量和常量,并运用它们解决实际问题。
同时,学生应感受到数学与生活的紧密联系,提高数学应用意识。
在教学过程中,教师应关注学生的学习情况,及时解答学生的疑问,引导学生从实际问题中发现变量和常量。
此外,教师还应注重培养学生的合作学习能力,鼓励学生积极参与讨论,提高问题意识。
总之,本节课的教学目标是让学生掌握变量和常量的概念,培养学生运用它们解决实际问题的能力。
《变量与常量》教学设计
《变量与常量》教学设计【教材分析】《变量与常量》是冀教版八年级数学下册第二十章内容,属于数与代数领域的重要部分。
本节课研究的内容是了解变量与常量,理解函数概念以及函数值。
本课题是在学生已有的生活经验和掌握了部分数量关系的基础上,继续通过对变量间关系的考察,让学生对初中函数有初步的认识;是学习一次函数、二次函数、三角函数等知识的基础。
【课标要求】《初中数学新课程标准》对这一部分的要求是:通过简单实例,了解常量、变量的意义。
能结合实例,了解函数的概念,能举出函数的实例。
能对简单实际问题中的函数关系进行分析。
【策略分析】“变量与函数”较为抽象,学生初次接触函数的概念,难以理解定义中“唯一确定”的准确含义.在本节教学中,我试图从学生较为熟悉的现实情景谈话导入,引导学生自主发现变量和函数的存在,体会变量之间的互相依存关系和变化规律;通过自学,交流,比较和概括等一系列活动,让学生初步理解函数的概念,使其学习积极主动性有所提高,锻炼动手动脑能力。
问题2:已知每斤油桃售价2.5元,如果要买x斤的话,需问题3:用10米长的绳子围一个矩形,当矩形的一边长为x,它的邻边长y为多少?(请写出相应的关系式)师生活动:学生思考后说出答案,老师写。
【设计意图】让学生利用已掌握的知识解答问题,同时感知量与量之间的微妙关系,为解答思考问题铺垫。
思考:(1)上面问题中哪些是不变的量,哪些是变化的量?(2)前面的每个问题中,各有几个变量?同一问题中的变量之间有什么联系?(试用一句话表述)(3)分组讨论教科书中第73页的两个思考师生活动:学生四人一组,分组讨论,教师做好板书准备后巡视检查学生自学情况,深入学生之间交流,掌握学情。
【设计意图】本环节中设置三个问题,希望学生通过观察、思考、交流、对比、归纳等活动,理解变量和常量的的概念,并能区分具体问题中的常量和变量;探究提纲中问题逐步深化,使学生在经历从具体到抽象地认识过程中,感知变量之间的互相依存关系和变化规律,从而理解函数的概念。
变量与常量教学设计(精品课)
第1课时 变量与常量
Ⅰ.教学任务分析
教
学 目
标 知识与技能
1.了解常量、变量的概念.
2.会写出简单问题中的数量关系,并辨别其中的常量和变量. 过程与方法 1.通过实例体验在一个过程中有些量固定不变,有些量不断变化. 2.体验在一个过程中常量与变量的相对存在.
情感与态度
1.感受“数学中有生活,生活中有数学”,培养学习数学的兴趣.
2.体验矛盾事物的对立统一的辩证唯物主义思想.
教学重点 会识别常量和变量. 教学难点 常量与变量的相对存在.
Ⅱ.教学过程设计
问题及师生行为
设计意图 一、创设问题,激发兴趣
导语:“万物皆变”
这种一个量随另一个量的变化而变化的现象,在大千世界中,在我们的生产和生活中大量存在.
比如,学校组织学生秋游,现知道景点的门票为80元/人,学生按半价(即40元/人),若前往的学生人数为x 人,学生需付门票为y 元,则y 与x 的关系式为:_________.
请学生回答:x y 40 .其中变化的是人数x 和门票费y ,而40保持不变.
通过图片,展示一个量随另一个量的变化而变化的现象,希望能吸引学生的注意力,激
发学习兴趣,同时,为学习新知识作好铺垫.
x
人的身高随年龄而变化
行星在宇宙中的位置随时间而变化
汽车行驶里程随时间而变化
气温随海拔而变化
,怎样用含x的式子表示S?
Ⅲ.课堂过关检测。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变量与函数
第1课时 变量与常量
学习目标
1 了解变量与常量的意义.(重点) 2 在实际问题中,会区分常量与变量,能够建立
变量之间的关系式.(难点)
新课导入
万物皆变,大到天体、小到分子都处在不停的 运动变化之中,如何从数学的角度来刻画这些运动变 化并寻找规律呢?
知识讲解
问题一
变量与常量
例2 阅读并完成下面的问题: ⒈某人持续以a米/分的速度用t分钟时间跑了s米, 其中常量是 a ,变量是 t,s .
⒉一段s米的路程,某人的速度为a米/分,跑完需 用的时间为t分钟,其中常量是 s ,变量是a,t . 3.根据上面的叙述,写出一句关于常量与变量的结 论: 在不同的条件下,常量与变量是相对的 .
4.表格列出了一项实验的统计数据,表示小球从高度x(单位: m)落下时弹跳高度y(单位:m)与下落高的关系,据表可 以写出的一个关系式是 y=0.5 .
x
课堂小结
常量与变量的概
{念
常量与变量
常量:数值始
{ 终不变的量 变量:数值发 生变化的量
列出变量之间的关系 式
这个问题反映了匀速行驶的汽车所行驶的 路程__s__随行驶时间__t _的变化过程.
问题二 电影票的售价为10元/张,第一场售出150张
票,第二场售出205张票,第三场售出310张票, 三场电影的票房收入各多少元?设一场电影售出 x 张票,票房收入为 y 元,y的值随x的值的变化 而变化吗?怎样用含 x 的式子表示 y ?
一边长x(m) 3
3.5
4 4.5
x
邻边长y(m) 2
1.
1 0.5 5-x
2.这个过程中,变化的量是_5矩__形__的__一__边__x_、__邻__边__y ,
不变化的量是_周__长__1_0_ .
3.试用含x的式子表示y:y= __5_-_x__.
D
C
这个问题反映了矩形的_周____ 不变, __一__边__y___ 随__邻__边__x_ 的长变化过程.
上的高h(cm)的关系式
5
S
5h 2
中,其中常量
是 2 ,变量是 S, h .
练一练
指出下列事件过程中的变量和常量: (1)汽油的价格是7.4元/升,加油 x 升,车主加 油付油费为 y 元; (2)小明看一本200 页的小说,看完这本小说需 要t 天,平均每天所看的页数为 n; (3)用长为40 cm 的绳子围矩形,围成的矩形一 边长为 x cm,其面积为 S cm2.
圆面积S与圆的半径r之间的关系式 是——S=——πr—2 —; 其中变化的量是—S—,——r—; 不变化的量是——π——.
这个问题反映了圆__的__面__积__S_随__半__径__r__的变化过程.
问题四
用10m长的绳子围一个矩形,当矩形的一边长x分别 为3m,3.5m,4m,4.5m时,它的邻边长y分别为多少? y的值 随x的值的变化而变化吗?怎样变化? 1.填写下表:
1.第一场票房收入 = 10×150 = 1500(元) 第二场票房收入 =10×205 = 2050 (元) 第三场票房收入 =10×310 = 3100 (元) 请说明道理:票房收入 =售价×售票张数
2.在上面这个过程中,变化的量是 __售__票__张__数__x_、__票__房__收__入__y___,
例1 指出下列事件过程中的常量与变量. (1)某水果店橘子的注定单的意价数:为,π是5是元一常/个量千确克,买a千克橘子的 总价为m元,其中常量是 5 ,变量是 a,m ;
(2)周长C与圆的半径r之间的关系式是C=2πr, 其中常量是 2,π ,变量是 C, r ;
(3)三角形的一边长5cm,它的面积S(cm2)与这边
汽车以60km/h的速度匀速行驶,行驶路程为
s km,行驶时间为 t h,填下面的表:
60
120
180
请说明道理: 路程 =__速__度__×__时__间__
240
300
1.在上面这个过程中,变化的量是_时__间__t_、_ __路__程__s___.不变化的量是_速__度__6_0_k_m_/_h___. 2.试用含t的式子表示s:s=__6_0__t__.
不变化的量是_售__价__1_0_元__. 3.试用含x的式子表示y :y=___1_0_x____.
这个问题反映了票房收入__y__随售票张数 ___x__的变化过程.
问题三
如图所示,圆形水波慢慢地扩大,在这一过程中, 当圆的半径r 分别为10 cm,20cm,30 cm 时,圆的 面积S 分别为多少? S的值随r的值的变化而变化吗? 怎样用半径r来表示面积S ?
随堂训练
1.若球体体积为V,半径为R,则V= 4πR3 ,其
中变量是 V
、
R
,常量是
43,π
3
.
2.计划购买50元的乒乓球,所能购买的总数n(个)
与单价 a(元)的关系式是
n 50 a
,其中变量
是 a ,n ,常量是 50 .
3.汽车开始行使时油箱内有油40升,如果每小时耗油5升,则 油箱内余油量Q(升)与行使时间t(小时)的关系是Q=40-5t ,其 中的常量是 40,5,变量是 Q,t .
y A xB
思考归纳 上述运动变化过程中出现的数量,你认为
可以怎样分类?
数值发生变化的量
变量
数值始终不变的量
常量
变量:在一个变化过程中,数值发生变化的量为变中,理解变量与常量的关键词: 发生变化和始终不变.
S = 60t y = 10x S=πr2 y=5–x 请指出上面各个变化过程中的常量、变量.