示波器实验报告

合集下载

示波器实验报告(共7篇)

示波器实验报告(共7篇)

示波器实验报告(共7篇)一、实验目的1.了解示波器的基本原理和工作原理。

2.掌握示波器在电路测试和故障诊断中的应用。

3.学习示波器的操作方法,掌握各项操作技巧。

二、实验原理示波器是用来观察波形的一种仪器。

它以示波管为核心,通过电子束扫描屏幕,形成比较直观的波形图,实现对信号的观测、测量和分析。

示波器一般有模拟示波器和数字示波器两种,本实验采用数字示波器进行测试。

数字示波器以模拟数字转换技术为基础,是一种精确分析波形的仪器。

它接收被测电路中的信号,经过采样后经过模拟数字转换(ADC)转换成数字信号,同时进行多次采样,得到不同时刻下的波形数据,并将其传输到计算机中进行处理和显示。

数字示波器具有显示快、分辨率高、操作方便等优点,适用于对高频信号进行测量和分析。

三、实验内容1.了解示波器的基本操作方法,包括示波器的输入接口、触发系统、扫描方式、显示控制等内容。

2.使用示波器测量不同频率、振幅的正弦信号,并进行分析。

四、实验步骤与数据分析1.测量正弦波(1)将正弦波信号输入示波器的通道1,选择“正弦波”测量模式。

(2)调整示波器的扫描方式、扫描速率和显示控制,以得到清晰的信号波形。

(3)通过示波器测量正弦波的振幅和频率,得出如下数据:振幅:3V频率:50Hz(4)分析得出,正弦波是具有一定周期性的波形,它的幅度和频率可以通过示波器的测量得到。

在实际电路测试和故障诊断中,正弦波可以用作交流信号的测试,并可以通过触发系统实现高精度数据的采样和分析。

2.测量直流信号电压:5V3.测量矩形波和脉冲信号(3)通过示波器测量矩形波和脉冲信号的各项参数,如上升沿和下降沿时间、占空比等,得到实验数据。

五、实验结果本次实验使用数字示波器测量了不同频率、振幅的正弦信号、直流信号、矩形波信号和脉冲信号。

通过对示波器的操作和分析,得出了对信号波形的各项参数,进一步理解了示波器的原理和工作方式,并掌握了数字示波器的操作和应用技巧。

示波器的使用实验报告

示波器的使用实验报告

示波器的使用实验报告一、实验目的1、了解示波器的基本结构和工作原理。

2、掌握示波器的基本操作方法,包括调节垂直和水平刻度、触发模式等。

3、学会用示波器测量正弦波、方波等信号的电压、频率和周期。

二、实验仪器示波器、信号发生器、探头三、实验原理示波器是一种用于显示电信号波形的电子仪器。

它通过将输入的电信号转换成在屏幕上的光点或线条的运动,从而直观地显示出信号的电压随时间的变化情况。

示波器的主要组成部分包括垂直系统、水平系统和触发系统。

垂直系统用于调节输入信号的幅度,水平系统用于调节扫描速度,触发系统用于稳定显示波形。

四、实验内容与步骤1、熟悉示波器的面板和操作旋钮打开示波器电源,观察示波器的屏幕显示。

了解示波器面板上的垂直刻度调节旋钮、水平刻度调节旋钮、触发模式选择按钮、输入通道选择按钮等的功能和作用。

2、连接示波器和信号发生器将信号发生器的输出端通过探头连接到示波器的输入通道 1(CH1)。

确保连接牢固,避免接触不良影响测量结果。

3、调节示波器显示正弦波打开信号发生器,设置输出正弦波信号,频率为 1kHz,峰峰值为5V。

调节示波器的垂直刻度旋钮,使正弦波的幅度在屏幕上显示合适。

调节示波器的水平刻度旋钮,使正弦波的一个周期在屏幕上显示完整。

4、测量正弦波的电压使用示波器的测量功能,测量正弦波的峰峰值电压。

记录测量结果,并与信号发生器设置的峰峰值电压进行比较。

5、测量正弦波的频率和周期调节示波器的触发模式为自动触发。

使用示波器的测量功能,测量正弦波的频率和周期。

记录测量结果,并与信号发生器设置的频率进行比较。

6、观察方波信号更改信号发生器的输出为方波信号,频率为 2kHz,峰峰值为 3V。

在示波器上观察方波信号的波形。

7、测量方波的电压、频率和周期按照上述方法测量方波的峰峰值电压、频率和周期。

记录测量结果。

五、实验数据与分析1、正弦波测量数据信号发生器设置的频率:1kHz信号发生器设置的峰峰值电压:5V示波器测量的频率:_____kHz示波器测量的峰峰值电压:_____V分析:示波器测量的频率与信号发生器设置的频率相比,存在一定的误差,可能是由于信号发生器的精度、示波器的测量误差以及环境因素等引起的。

示波器使用大学物理实验报告1

示波器使用大学物理实验报告1

示波器使用大学物理实验报告1一、实验目的1、了解示波器的基本结构和工作原理。

2、掌握示波器的基本操作方法,包括示波器的调节、信号的输入与显示等。

3、学会使用示波器测量正弦波、方波等信号的电压、频率和周期等参数。

二、实验仪器示波器、函数信号发生器、探头、连接线等。

三、实验原理示波器是一种用于显示电信号波形的电子仪器。

它通过将输入的电信号转换为光信号,并在荧光屏上显示出来,从而使我们能够观察到信号的变化情况。

示波器主要由电子枪、偏转系统和荧光屏三部分组成。

电子枪产生高速电子束,经过偏转系统的作用,使电子束在荧光屏上按照输入信号的变化规律进行偏转,从而形成信号的波形。

示波器的显示原理是基于电子束在电场和磁场中的偏转。

当在垂直偏转板和水平偏转板上分别加上适当的电压时,电子束就会在垂直和水平方向上发生偏转,从而在荧光屏上显示出相应的波形。

四、实验内容及步骤1、示波器的调节(1)打开示波器电源,预热一段时间。

(2)调节辉度和聚焦旋钮,使荧光屏上的亮点清晰可见。

(3)调节水平和垂直位移旋钮,将亮点移至屏幕的中心位置。

(4)选择适当的触发方式和触发电平,使示波器能够稳定地显示输入信号的波形。

2、正弦波信号的测量(1)将函数信号发生器的输出端与示波器的输入端连接,设置函数信号发生器输出正弦波信号,频率为 1kHz,峰峰值为 5V。

(2)调节示波器的垂直灵敏度和水平扫描速度,使正弦波的波形在屏幕上显示完整且清晰。

(3)测量正弦波的峰峰值、有效值、频率和周期。

峰峰值:通过示波器的垂直刻度读取正弦波的峰峰值。

有效值:根据公式 U 有效值= U 峰峰值/√2 计算正弦波的有效值。

频率:根据示波器水平刻度上一个周期所对应的时间,计算出正弦波的频率。

周期:直接从示波器上读取正弦波的周期。

3、方波信号的测量(1)设置函数信号发生器输出方波信号,频率为 500Hz,峰峰值为 3V。

(2)按照上述方法测量方波信号的峰峰值、频率和周期。

示波器实验报告

示波器实验报告

示例器实验报告一、引言示波器是一种用于显示电压波形的仪器,广泛应用于电子电路实验和故障诊断中。

本次实验旨在通过示波器观察不同信号的波形特征,掌握示波器的基本操作方法,并对电路进行分析和测试。

二、实验目的1.了解示波器的基本原理和工作方式。

2.掌握示波器的使用方法和操作技巧。

3.观察不同信号的波形特征,分析信号的频率、幅度等参数。

4.熟悉示波器在电路实验中的应用。

三、实验仪器本次实验所用仪器设备包括: - 示波器 - 信号发生器 - 示波器探头 - 电路板及元器件四、实验步骤1.首先连接示波器、信号发生器和电路板,调节示波器和信号发生器的参数。

2.使用示波器探头连接到电路中的相应位置,调节示波器的触发模式和触发电平。

3.发出不同频率的信号,观察示波器显示的波形。

4.改变信号幅度和波形形状,记录下示波器显示的波形特征。

5.对比不同信号波形,分析其频率、周期、幅度等参数。

五、实验数据及分析通过示波器观察到的波形数据如下: - 正弦波:频率为100Hz,幅度为5V,波形平滑连续。

- 方波:频率为1kHz,幅度为3.3V,波形具有明显的上升和下降沿。

- 脉冲波:频率为500Hz,幅度为2V,波形具有较短的脉冲宽度。

根据实验数据分析,不同信号波形在示波器上显示出不同的特征,可以通过观察波形参数来判断信号性质。

六、实验总结通过本次实验,我们掌握了示波器的基本原理和操作方法,能够准确观察和分析不同信号的波形特征。

示波器在电子电路实验中具有重要作用,可以帮助我们快速、准确地了解电路工作状态,有效提高电路设计和调试效率。

七、参考资料•《电子技术基础》•《示波器使用手册》以上为本次示波器实验报告内容。

希望这份示波器实验报告符合您的要求。

示波器使用实验报告范文2篇

示波器使用实验报告范文2篇

示波器使用实验报告范文示波器使用实验报告范文精选2篇〔一〕示波器使用实验报告1.熟悉示波器的功能和使用方法,掌握示波器的使用技巧;2.理解示波器的原理和构造,掌握示波器的根本性能参数;3.理解示波器在电子测量中的应用,掌握示波器的使用考前须知。

1.示波器;2.信号发生器;3.变压器;4.电阻箱、电容箱、电感箱;5.电缆、插头、连接线等。

1.示波器的根本原理示波器是一种电子测量仪器,可将电信号的波形显示在示波器屏幕上,以便进展分析和测量。

示波器由垂直放大系统和程度扫描系统组成。

当待测信号经过垂直放大系统放大后,送入程度扫描系统,再以一定速度左右扫描,并将扫描的信号通过屏幕显示出来,形成一条连续的波形。

不同的波形形态可以反映出电路中的不同参数和特性。

2.示波器的构造及性能参数示波器通常由示波管、放大器、扫描器、触发电路、时间基准电路、校准电路等局部组成。

其中,示波管是示波器的核心局部,扫描器和时间基准电路决定了示波器的工作特性和测量精度。

示波器的性能参数包括带宽、灵敏度、扫描速度和垂直放大倍数等。

3.示波器的应用在实际电子测量中,示波器被广泛应用于电路测试、信号分析、波形显示等领域。

通过示波器,可以准确地测量电路中的电压、电流、频率、相位等参数,并可以分析电路的稳定性、干扰特性和响应速度等。

1.示波器的根本操作(3) 调节垂直和程度放大系数,以显示信号的适宜波形;(4) 调节触发电路,使信号可以稳定地显示在屏幕上。

2.示波器的性能测试(4) 测量示波器的垂直放大倍数,并记录测试结果。

3.示波器的应用实验(1) 测量电路中的电压、电流、频率等参数,并用示波器显示;(3) 测量电路中的噪声和干扰等参数,并进展分析和处理。

1.示波器的性能测试(1) 带宽测试结果为30MHz,符合示波器的规格要求;(2) 灵敏度测试结果为1mV/Div,符合示波器的规格要求;(3) 扫描速度测试结果为1us/Div,符合示波器的规格要求;(4) 垂直放大倍数测试结果为5F/Div,符合示波器的规格要求。

示波器的使用实验报告

示波器的使用实验报告

示波器的使用实验报告一、实验目的本实验旨在掌握示波器的使用方法,通过观察不同信号的波形,加深对电子信号的理解。

具体目标如下:1. 掌握示波器的操作方法;2. 能够正确使用示波器观察信号波形;3. 通过对不同信号的观察,提高对电子信号的理解。

二、实验设备与工具1. 示波器;2. 电源适配器;3. 接地线;4. 信号发生器;5. 镊子;6. 纸笔。

三、实验步骤与操作方法1. 打开示波器,并将电源适配器插入电源插座,确保接地线正确接地。

2. 将示波器的探头插孔与信号发生器的输出端连接,确保连接稳定。

3. 将示波器的通道选择开关置于合适的通道,以便观察不同信号的波形。

4. 使用镊子调整信号发生器的输出幅度和频率,观察示波器上的波形变化。

可以通过示波器上的垂直和水平旋钮进行放大和移动,以便更清晰地观察波形。

5. 在观察过程中,需要记录不同信号的波形特点,并做好相关记录。

6. 实验完成后,断开信号发生器与示波器的连接,关闭示波器。

四、实验结果与分析1. 实验结果展示:示波器上的波形图(请在此处插入示波器上的波形图)通过观察示波器上的波形图,可以发现不同信号的波形特点。

例如,正弦波、方波、脉冲波等。

同时,可以通过调整信号发生器的输出幅度和频率,观察示波器上波形的变化情况。

2. 实验结果分析:示波器的使用原理示波器是一种常用的电子测量仪器,通过显示电子信号的波形来分析电路性能。

示波器利用高速电子枪射出的电子束打到荧光屏上,从而在荧光屏上产生对应的图像。

通过调节垂直和水平轴的旋钮,可以放大和移动波形,以便更清晰地观察和分析。

示波器的波形显示具有较高的分辨率和灵敏度,可以用于测量电压、频率、时间等参数。

五、实验总结与思考通过本次实验,我们掌握了示波器的使用方法,并观察了不同信号的波形特点。

通过对比和分析,加深了对电子信号的理解。

在实验过程中,需要注意探头的使用方法、信号发生器的输出幅度和频率的调整以及实验后的清理工作。

大学物理实验示波器实验报告

大学物理实验示波器实验报告

了解信号发生器的功能和 使用方法。
注意示波器的探头选择和 使用方法,避免损坏设备 或影响测量结果。
02
示波器操作指南
示波器面板功能介绍
显示屏幕
用于显示波形图像,可调整屏幕亮度、 对比度等参数。
垂直控制
包括通道选择、垂直位移、垂直灵敏度 等调节旋钮,用于调整波形的垂直显示 位置及幅度。
水平控制
包括时基选择、水平位移等调节旋钮, 用于调整波形的水平显示宽度及位置。
改进建议提
仪器校准
定期对示波器进行校准和维护,确 保其精度和稳定性。
环境控制
在实验过程中,尽量控制环境因素 对实验结果的影响,如保持恒温、 恒湿等。
操作规范
提高操作人员的熟练程度和规范性, 减少操作误差的产生。
实验方案优化
根据实验结果和讨论,对实验方案 进行优化和改进,提高实验的准确 性和可靠性。
触发控制
包括触发源选择、触发方式选择、触发 电平等调节旋钮,用于设置触发条件, 确保波形稳定显示。
信号发生器使用方法
频率设置
通过调节频率旋钮或按键,设置所需信
号频率。
波形选择
根据需要选择正弦波、方波、三角波等 不同波形。
幅度设置
通过调节幅度旋钮或按键,设置所需信 号幅度。
输出连接
将信号发生器输出端与示波器输入端正 确连接,确保信号正常传输。
解决方案
根据排查结果采取相应的 解决方案,如更换损坏的 部件、调整设置参数等, 以确保实验顺利进行。
04
实验数据分析与讨论
数据处理过程展示
数据采集
详细记录了示波器的各项参数,包括 电压、频率、相位等,确保数据的准 确性和完整性。
图表绘制
根据处理后的数据,绘制了相应的图 表,如波形图、相位图等,以便更直 观地展示数据特征。

示波器 实验报告

示波器 实验报告

示波器实验报告实验报告:示波器实验一、实验目的1. 了解示波器的基本原理及使用方法。

2. 学习观察、分析信号波形。

3. 掌握示波器在电子测量中的应用。

二、实验原理示波器是一种常用的电子测量仪器,主要用于观察和分析电信号波形。

它通过一个电子束在CRT(阴极射线管)上扫描,将信号以图形的形式显示出来。

当电子束打到CRT的荧光物质上时,会激发出荧光,形成一个亮点。

当信号电压加到示波器的垂直偏转板上时,电子束将产生垂直方向的偏移,使得亮点在垂直方向上移动。

同理,当信号电压加到水平偏转板上时,亮点将产生水平方向的移动。

通过调整示波器的垂直灵敏度和扫描速率,可以将信号波形准确地显示在屏幕上。

三、实验步骤1. 连接示波器与信号源将示波器与信号源正确连接,确保电源线和信号线连接无误。

2. 开启示波器打开示波器的电源开关,等待示波器启动完成。

3. 校准示波器按照示波器的操作说明,进行垂直灵敏度、水平扫描速率等参数的校准,以确保示波器处于最佳工作状态。

4. 观察信号波形将信号源接入示波器,观察信号波形在屏幕上的显示。

调整垂直灵敏度和扫描速率,使信号波形清晰可见。

5. 分析信号波形根据观察到的信号波形,分析信号的频率、幅度、相位等参数。

6. 记录实验数据将实验过程中测量的数据记录在实验报告中。

7. 清理实验现场实验结束后,断开示波器和信号源的连接,整理实验器材和导线。

四、实验结果与分析1. 实验结果(请在此处插入信号波形图)(请在此处插入信号参数表格)2. 结果分析根据实验结果,可以得出以下结论:(1)信号的频率为XX Hz,幅度为XX V,相位为XX度。

(2)信号波形呈现了周期性的变化,每个周期的持续时间为XX秒。

(3)通过示波器可以清晰地观察到信号的细节和变化趋势,有助于进一步分析信号的特征和性质。

五、实验结论与展望1. 实验结论通过本次实验,我们掌握了示波器的基本原理和使用方法,学会了观察和分析信号波形。

实验结果表明,示波器能够准确地显示信号的频率、幅度和相位等参数,为电子测量和信号处理提供了重要的工具。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

示波器实验报告不少朋友都不会写示波器实验报告,那么,今天,给大家介绍的是示波器实验报告,希望对大家有帮助。

示波器实验报告【实验题目】示波器的原理和使用【实验目的】1.了解示波器的基本机构和工作原理,掌握使用示波器和信号发生器的基本方法。

2.学会使用示波器观测电信号波形和电压副值以及频率。

3.学会使用示波器观察李萨如图并测频率。

【实验原理】1.示波器都包括几个基本组成部分:示波管(阴极射线管)、垂直放大电路(Y放大)、水平放大电路(X放大)、扫描信号电路(锯齿波发生器)、同步电路、电源等。

2.李萨如图形的原理:如果示波器的X和Y输入时频率相同或成简单整数比的两个正弦电压,则荧光屏上将呈现特殊的光点轨迹,这种轨迹图称为李萨如图形。

如果作一个限制光点x、y方向变化范围的假想方框,则图形与此框相切时,横边上的切点数nx与竖边上的切点数ny之比恰好等于Y与X输入的两正弦信号的频率之比,即fy:fx=nx:ny。

【实验仪器】示波器×1,信号发生器×2,信号线×2。

【实验内容】1.基础操作:了解示波器工作原理的基础上阅读所用机器的说明书,了解每个旋钮的作用。

其中最主要也是经常使用的旋钮为横向和纵向两个。

横向旋钮是控制扫描时间的旋钮,调节时表现为荧光屏上显示波形发生横向的压缩或展开;纵向旋钮是调节垂直放大电路的旋钮,调节时表现为荧光屏上显示波形发生纵向的展开或压缩,次旋钮为两个,分别控制示波器的两个输入信号。

明确操作步骤及注意事项后,接通示波器电源开关。

先找到扫描线并调至清晰。

2.观测李萨如图形:向CH1、CH2分别输入两个信号源的正弦波,"扫描时间"的"粗调"旋钮置于"X-Y"方式(即使两路信号进行合成)。

调出不同比值的李萨如图形来,画出草图,并分析图形的特点与两个信号频率之间的关系。

绘出所观察到的各种频率比的李萨如图形。

设fx=1000Hz为约定真值,依次求出另一信号发生器的输出频率fy,并与该信号发生器读数值frime;y进行比较,一一求出它们的相对误差。

【实验数据】【实验结果】【误差分析】1.两台信号发生器不协调。

2.桌面振动造成的影响。

3.示波器上显示的荧光线较粗,取电压值时的荧光线间宽度不准,使电压值不准。

4.取正弦周期时肉眼调节两荧光线间宽度不准,导致周期不准。

5.机器系统存在系统误差。

6.fy选取时上下跳动,可能取值不准。

相关知识1 示波器工作原理示波器是利用电子示波管的特性,将人眼无法直接观测的交变电信号转换成图像,显示在荧光屏上以便测量的电子测量仪器。

它是观察数字电路实验现象、分析实验中的问题、测量实验结果必不可少的重要仪器。

示波器由示波管和电源系统、同步系统、X轴偏转系统、Y轴偏转系统、延迟扫描系统、标准信号源组成。

1.1 示波管阴极射线管(CRT)简称示波管,是示波器的核心。

它将电信号转换为光信号。

正如图1所示,电子枪、偏转系统和荧光屏三部分密封在一个真空玻璃壳内,构成了一个完整的示波管。

1.荧光屏现在的示波管屏面通常是矩形平面,内表面沉积一层磷光材料构成荧光膜。

在荧光膜上常又增加一层蒸发铝膜。

高速电子穿过铝膜,撞击荧光粉而发光形成亮点。

铝膜具有内反射作用,有利于提高亮点的辉度。

铝膜还有散热等其他作用。

当电子停止轰击后,亮点不能立即消失而要保留一段时间。

亮点辉度下降到原始值的10%所经过的时间叫做"余辉时间"。

余辉时间短于10u;s为极短余辉,10u;s—1ms为短余辉,1ms—0.1s为中余辉,0.1s-1s为长余辉,大于1s为极长余辉。

一般的示波器配备中余辉示波管,高频示波器选用短余辉,低频示波器选用长余辉。

由于所用磷光材料不同,荧光屏上能发出不同颜色的光。

一般示波器多采用发绿光的示波管,以保护人的眼睛。

2.电子枪及聚焦电子枪由灯丝(F)、阴极(K)、栅极(G1)、前加速极(G2)(或称第二栅极)、第一阳极(A1)和第二阳极(A2)组成。

它的作用是发射电子并形成很细的高速电子束。

灯丝通电加热阴极,阴极受热发射电子。

栅极是一个顶部有小孔的金属园筒,套在阴极外面。

由于栅极电位比阴极低,对阴极发射的电子起控制作用,一般只有运动初速度大的少量电子,在阳极电压的作用下能穿过栅极小孔,奔向荧光屏。

初速度小的电子仍返回阴极。

如果栅极电位过低,则全部电子返回阴极,即管子截止。

调节电路中的W1电位器,可以改变栅极电位,控制射向荧光屏的电子流密度,从而达到调节亮点的辉度。

第一阳极、第二阳极和前加速极都是与阴极在同一条轴线上的三个金属圆筒。

前加速极G2与A2相连,所加电位比A1高。

G2的正电位对阴极电子奔向荧光屏起加速作用。

电子束从阴极奔向荧光屏的过程中,经过两次聚焦过程。

第一次聚焦由K、G1、G2完成,K、K、G1、G2叫做示波管的第一电子透镜。

第二次聚焦发生在G2、A1、A2区域,调节第二阳极A2的电位,能使电子束正好会聚于荧光屏上的一点,这是第二次聚焦。

A1上的电压叫做聚焦电压,A1又被叫做聚焦极。

有时调节A1电压仍不能满足良好聚焦,需微调第二阳极A2的电压,A2又叫做辅助聚焦极。

3.偏转系统偏转系统控制电子射线方向,使荧光屏上的光点随外加信号的变化描绘出被测信号的波形。

图8.1中,Y1、Y2和Xl、X2两对互相垂直的偏转板组成偏转系统。

Y轴偏转板在前,X轴偏转板在后,因此Y轴灵敏度高(被测信号经处理后加到Y轴)。

两对偏转板分别加上电压,使两对偏转板间各自形成电场,分别控制电子束在垂直方向和水平方向偏转。

4.示波管的电源为使示波管正常工作,对电源供给有一定要求。

规定第二阳极与偏转板之间电位相近,偏转板的平均电位为零或接近为零。

阴极必须工作在负电位上。

栅极G1相对阴极为负电位(—30V~—100V),而且可调,以实现辉度调节。

第一阳极为正电位(约+100V~+600V),也应可调,用作聚焦调节。

第二阳极与前加速极相连,对阴极为正高压(约+1000V),相对于地电位的可调范围为±50V。

由于示波管各电极电流很小,可以用公共高压经电阻分压器供电。

1.2 示波器的基本组成从上一小节可以看出,只要控制X轴偏转板和Y轴偏转板上的电压,就能控制示波管显示的图形形状。

我们知道,一个电子信号是时间的函数f(t),它随时间的变化而变化。

因此,只要在示波管的X轴偏转板上加一个与时间变量成正比的电压,在y轴加上被测信号(经过比例放大或者缩小),示波管屏幕上就会显示出被测信号随时间变化的图形。

电信号中,在一段时间内与时间变量成正比的信号是锯齿波。

示波器的基本组成框图如图2所示。

它由示波管、Y轴系统、X 轴系统、Z轴系统和电源等五部分组成。

被测信号①接到"Y"输入端,经Y轴衰减器适当衰减后送至Y1放大器(前置放大),推挽输出信号②和③。

经延迟级延迟Г1时间,到Y2放大器。

放大后产生足够大的信号④和⑤,加到示波管的Y轴偏转板上。

为了在屏幕上显示出完整的稳定波形,将Y轴的被测信号③引入X轴系统的触发电路,在引入信号的正(或者负)极性的某一电平值产生触发脉冲⑥,启动锯齿波扫描电路(时基发生器),产生扫描电压⑦。

由于从触发到启动扫描有一时间延迟Г2,为保证Y轴信号到达荧光屏之前X轴开始扫描,Y轴的延迟时间Г1应稍大于X轴的延迟时间Г2。

扫描电压⑦经X轴放大器放大,产生推挽输出⑨和⑩,加到示波管的X轴偏转板上。

z轴系统用于放大扫描电压正程,并且变成正向矩形波,送到示波管栅极。

这使得在扫描正程显示的波形有某一固定辉度,而在扫描回程进行抹迹。

以上是示波器的基本工作原理。

双踪显示则是利用电子开关将Y 轴输入的两个不同的被测信号分别显示在荧光屏上。

由于人眼的视觉暂留作用,当转换频率高到一定程度后,看到的是两个稳定的、清晰的信号波形。

示波器中往往有一个精确稳定的方波信号发生器,供校验示波器用。

2 示波器使用本节介绍示波器的使用方法。

示波器种类、型号很多,功能也不同。

数字电路实验中使用较多的是20MHz或者40MHz的双踪示波器。

这些示波器用法大同小异。

本节不针对某一型号的示波器,只是从概念上介绍示波器在数字电路实验中的常用功能。

2.1 荧光屏荧光屏是示波管的显示部分。

屏上水平方向和垂直方向各有多条刻度线,指示出信号波形的电压和时间之间的关系。

水平方向指示时间,垂直方向指示电压。

水平方向分为10格,垂直方向分为8格,每格又分为5份。

垂直方向标有0%,10%,90%,100%等标志,水平方向标有10%,90%标志,供测直流电平、交流信号幅度、延迟时间等参数使用。

根据被测信号在屏幕上占的格数乘以适当的比例常数(V/DIV,TIME/DIV)能得出电压值与时间值。

2.2 示波管和电源系统1.电源(Power)示波器主电源开关。

当此开关按下时,电源指示灯亮,表示电源接通。

2.辉度(Intensity)旋转此旋钮能改变光点和扫描线的亮度。

观察低频信号时可小些,高频信号时大些。

一般不应太亮,以保护荧光屏。

3.聚焦(Focus)聚焦旋钮调节电子束截面大小,将扫描线聚焦成最清晰状态。

4.标尺亮度(Illuminance)此旋钮调节荧光屏后面的照明灯亮度。

正常室内光线下,照明灯暗一些好。

室内光线不足的环境中,可适当调亮照明灯。

2.3 垂直偏转因数和水平偏转因数1.垂直偏转因数选择(VOLTS/DIV)和微调在单位输入信号作用下,光点在屏幕上偏移的距离称为偏移灵敏度,这一定义对X轴和Y轴都适用。

灵敏度的倒数称为偏转因数。

垂直灵敏度的单位是为cm/V,cm/mV或者DIV/mV,DIV/V,垂直偏转因数的单位是V/cm,mV/cm或者V/DIV,mV/DIV。

实际上因习惯用法和测量电压读数的方便,有时也把偏转因数当灵敏度。

踪示波器中每个通道各有一个垂直偏转因数选择波段开关。

一般按1,2,5方式从5mV/DIV到5V/DIV分为10档。

波段开关指示的值代表荧光屏上垂直方向一格的电压值。

例如波段开关置于1V/DIV 档时,如果屏幕上信号光点移动一格,则代表输入信号电压变化1V。

每个波段开关上往往还有一个小旋钮,微调每档垂直偏转因数。

将它沿顺时针方向旋到底,处于"校准"位置,此时垂直偏转因数值与波段开关所指示的值一致。

逆时针旋转此旋钮,能够微调垂直偏转因数。

垂直偏转因数微调后,会造成与波段开关的指示值不一致,这点应引起注意。

许多示波器具有垂直扩展功能,当微调旋钮被拉出时,垂直灵敏度扩大若干倍(偏转因数缩小若干倍)。

例如,如果波段开关指示的偏转因数是1V/DIV,采用×5扩展状态时,垂直偏转因数是0.2V/DIV。

在做数字电路实验时,在屏幕上被测信号的垂直移动距离与+5V 信号的垂直移动距离之比常被用于判断被测信号的电压值。

相关文档
最新文档