流体包裹体研究方法
第三章 流体包裹体

三 淬火法
是测定熔融包体均一温度的基本方法,加 热达到预置温度和恒温时间后→瞬时落 入水中→快速冷却把包体变化固定下来。 (一)LGHC-1型高温淬火炉 操作方便,控温、控时自动化.一次能 同时测定多个样品,测温效率高,最高 使用温度1250℃。
(二)熔融包裹体的均一化现象和温度测定 • 气体的变化包括:气体消失、扩散聚集 和新生气泡等。 • (1)气体发生消失的现象主要见于介质密 度较小的两相熔熔包裹体中,在升温过 程中气泡开始缩小时的温度为包裹体的 初熔温度,气泡消失时的温度为其均一 化温度。
获得成岩成矿的可靠信息 可测T、 P、C、D (密度)、盐度 、同位 素组成 pH Eh粘度 年龄等。 找矿勘探
第二节 包裹体的成因与分类
• 一般认为只有符合均匀体系,封闭 体系和等容体系这三个基本条件的 包裹体才能提供有价值的信息。
•
•
一
均匀捕获和不均匀捕获
•
通常认为包裹体是从均匀介质中捕获 的。如果天然矿物中固相,液相,气 相之间比例稳定,则为均匀捕获。 在单个矿物中,有时会看到一群包裹 体,具有可变的相比例,则为不均匀 捕获。有下列几种情况:
四 石盐子矿物的溶化 • 含石盐包裹体的均一方式有三种 (1)石盐在气泡消失之前溶化 (TsNaCl<Th); (2)石盐与气泡同时消失(TsNaCl=Th); (3)石盐在气泡消失之后溶化(Th <TsNaCl)。
五 CO2和H2O-- CO2流体包裹体测压 • 在已知CO2摩尔百分数和均一温度的条件 下,可以通过H2O、CO2体系的P-X相图 求取均一时的压力,即最小捕获压力。
二 流体等容线+独立的地质温度计
这是上述方法的一个发展,该法使用一个单独 估算的捕获温度来确定源于Th点等容线上的一 特定位置。
流体包裹体测试方法简介1

流体包裹体测试⽅法简介1流体包裹体分析⽅法简介⼀、流体包裹体分析测试意义流体包裹体作为成岩成矿的流体标本,其物质成分是相关地质过程的密码,通过对其进⾏定性或定量分析,可获得古流体的详细资料(如矿物形成和变化的PVTX条件),进⽽为地质过程特别是成矿作⽤的研究提供多⽅⾯信息。
⼆、流体包裹体分析⽅法及步骤简介迄今为⽌,针对流体包裹体所进⾏的单包裹体⾮破坏性分析主要采⽤显微测温法和显微激光拉曼光谱法,间接或直接获得流体包裹体成分。
具体分析测试步骤如下:1、将岩⽯样品制成两⾯抛光的包裹体⽚;2、在岩相学显微镜下对制成的包裹体⽚进⾏观察拍照,镜下观察包裹体的赋存状态,包裹体类型,尺⼨形态,分布特征,以及包裹体中的⽓相百分数,以挑选合适的包裹体进⾏后续的测试分析;3、包裹体⽚的前处理(浸泡,清洗),以适合显微测温和显微激光拉曼光谱分析;4、包裹体显微测温分析,利⽤岩相学显微镜配置Linkam冷热台对流体包裹体样品进⾏显微测温,通过测定包裹体低温相变温度和均⼀温度,获得包裹体流体盐度和包裹体最低估计捕获温度;5、显微激光拉曼光谱测定,利⽤Renishaw RM2000激光拉曼探针分别对样品原位采集拉曼光谱,通过分析识别采集到的特征拉曼光谱,对包裹体成分进⾏鉴定,主要针对⽓相。
三、分析测试报价分析测试项⽬分析费⽤预算包裹体⽚磨制30元/⽚包裹体⽚观察鉴定100元/⽚包裹体⽚前处理20元/⽚砂岩胶结物:1000元/⽚显微测温分析脉岩:800元/⽚包裹体成分:300元/点激光拉曼光谱分析矿物成分:150元/点附注:⼀般三个⽉内可完成⼤约30件样品的分析测试和分析报告。
砂岩胶结物每⽚视包体发育情况可测~10个包裹体PVT参数;脉岩每⽚可测20-30个包裹体PVT参数.联系⼈:丁俊英博⼠137********,jyding@/doc/bd7c0ef09e31433239689316.html ;吴昌志副教授189********, wucz@/doc/bd7c0ef09e31433239689316.html .个⼈⽹页:/doc/bd7c0ef09e31433239689316.html /Faculty.aspx?Id=126。
流体包裹体研究进展

流体包裹体研究进展1.流体包裹体的分类及区分流体包裹体是成岩成矿流体(含气液的流体或硅酸盐熔融体)在矿物结晶生长过程中,至今尚在主矿物中封存并与主矿物有着明显的相边界的那一部分物质。
1.1流体包裹体的分类流体包裹体成分复杂且成因多样,其分类研究多年来一直是随着测试手段的改进和研究内容的深化而变化。
早期的分类研究主要是以定性描述为主,随着流体包裹体研究水平额度不断发展,出现了以成因、成分、相态和不同包裹体之间的相互关系为主要依据的各种分类。
具有代表性的包括:(1)1953-1976年:最有代表性的是1969年Ermakov提出的分类方案,他根据包裹体的成分和成因,建立了21个类型,并且根据相的相对比例,建立了一种应用很广的分类。
另外一些人也建立了不同的分类方案,例如,许多分类方案是根据仍宜选用的气液比而划分的,然而气液比由于其连续变化而不易精确测定,限定了其广泛应用。
(2)1985-2003年:最有代表的芮宗瑶的分类方案,他根据捕获时的流体特征将包裹体分为由均一体系形成的和由非均一体系形成的。
其中,均一体系形成的包裹体又分为原生包裹体、次生包裹体、假次生包裹体和出溶包裹体;非均一体系形成的包裹体包括液相+固相、液体+气体或液体+蒸气、两种不混溶流体3类。
(3)2003年至今:有些学者在著作及文献中阐述了一些流体包裹体类型的划分方案,多以流体包裹体的物理状态、成因、形成期次等指标为划分依据。
其中,卢焕章等根据包裹体相数的不同,将流体包裹体分为纯液体包裹体、纯气体包裹体、液体包裹体、气体包裹体、含子矿物包裹体、含液体CO2包裹体、含有机质包裹体和油气包裹体等8类。
1.2流体包裹体的区分在流体包裹体的诸多分类中,按捕获时间与主晶矿物形成时间的关系可分为原生和次生流体包裹体。
原生包裹体是矿物形成时包裹周围的流体而形成的,而次生包裹体的形成晚于主晶矿物,一般与后期主晶矿物的改造事件有关。
二者由于形成时间和方式不同而携带了不同的信息。
2 包裹体研究方法

FN2-3-10,2124m,长4+5,油层
FN2-3-8(荧光), 2124m,长4+5,油层
早期油气包裹体(峰2井,水层)
10 μm
35 μm
FN2-4-8,2129m,长4+5,水层
10 μm
FN2-4-7(偏光), 2129m,长4+5,水层
35 μm
FN2-4-3,2129m,长4+5,水层
椭圆型, 随机分布, 串珠状分 布
油气有机质含量 高,早期油气运 移成藏流体的含 油饱和度高
晚期
椭圆型, 不规则状, 串珠状分 布,加大 边。
油气有机质含量 低,晚期油气运 移成藏流体的含 油饱和度低
五、油气包裹体与油气聚集成藏期次
6. 油、水井(层)的油气包裹体特征
油/ 水层 包体 类型 GOI (%) 荧光 产状 包裹类型组合
包体放射性同位素年代分析 含油气包体脉体年代分析 包 体 测 试 均一温度 油气成藏年代学研究
油气包裹体油气成分、成熟度、油源、 运移、期次等研究
冰点温 度
共结点温度
包裹体形成时流体环境条件 (温度\深度\盐度)
包 裹 体 显 微 镜 研 究 流 体 包 裹 体 分 类:
1. 按相态分类: (1) 固体包裹体 (2) 液态包裹体 (3) 气态包裹体 (4) 多相包裹体 2. 按照形成时间分类: (1) 原生包裹体 : 与主矿物同时形成; (2) 次生包裹体 :在矿物形成后,沿裂隙充填 分布,裂隙切穿矿物边缘和多个矿物边界; (3) 假次生包裹体: 在矿物形成后,沿裂隙充 填分布, 裂隙限在矿物内部, 没有穿透矿物边缘,是 早期裂隙,之后矿物又生长裂隙愈合。 3. 按照包裹体形态特征分类
流体包裹体研究进展、地质应用及展望

流体包裹体研究进展、地质应用及展望一、本文概述流体包裹体,作为地球内部流体活动的重要记录者,一直以来都是地质学领域的研究热点。
它们以微小包裹体的形式被固定在矿物晶体中,为我们提供了了解地球内部流体性质、活动历史以及成矿作用的关键信息。
本文旨在综述流体包裹体的研究进展,包括其形成机制、分析方法以及地质应用等方面的内容,并对未来的研究方向进行展望。
通过梳理流体包裹体的研究历程,我们可以更好地理解地球内部流体系统的运作机制,为资源勘探、环境评价等领域提供理论支持和实践指导。
二、流体包裹体的形成与演化流体包裹体,作为地质作用中重要的记录者,其形成与演化过程对于理解地壳内流体活动、物质迁移以及成矿作用等具有重要意义。
包裹体的形成通常与岩浆活动、变质作用、构造活动等地质过程密切相关。
在岩浆活动中,随着岩浆冷却和结晶,其中的挥发分和溶解物被捕获在矿物晶格中,形成原生包裹体。
而在变质作用中,由于温度、压力的变化,原有岩石中的矿物发生重结晶,其中的流体被包裹在新的矿物中,形成次生包裹体。
包裹体的演化过程则是一个复杂的物理化学过程。
随着地质环境的变化,包裹体中的流体可能发生相变、溶解-沉淀、氧化还原等反应,导致其成分、形态、大小等发生变化。
这些变化不仅记录了地质历史中的流体活动信息,也为研究地壳内流体性质、运移路径和成矿机制提供了重要线索。
近年来,随着科学技术的进步,尤其是微区分析技术的发展,使得对流体包裹体进行更加精细的研究成为可能。
例如,通过激光拉曼光谱、电子探针等手段,可以对包裹体中的流体成分进行定性定量分析;而通过显微测温、压力计算等方法,则可以揭示包裹体的形成温度和压力条件。
这些技术的发展为深入研究流体包裹体的形成与演化提供了有力工具。
未来,随着研究方法的不断完善和创新,我们对流体包裹体的认识将更加深入。
通过综合应用多种技术手段,结合地质背景分析,有望揭示更多关于地壳内流体活动、物质迁移和成矿作用的细节信息。
矿床成因研究中的流体包裹体特征分析

矿床成因研究中的流体包裹体特征分析矿床成因研究一直是地球科学领域的热点问题之一。
其中,流体包裹体特征分析作为研究矿床成因的重要手段之一,被广泛应用于地质学、地球化学和矿床学等领域。
本文将围绕流体包裹体特征分析展开讨论,以期加深对矿床形成机制的理解和预测能力。
1. 流体包裹体的定义和类型流体包裹体是指在矿物或岩石中由固体、液体或气体组成的微小空腔。
根据包裹体形成时的环境和过程,流体包裹体可以分为三种类型:熔融包裹体、气液包裹体和固相包裹体。
熔融包裹体主要存在于岩浆矿床中,记录了岩浆的生成和演化过程;气液包裹体主要存在于热液矿床中,记录了流体的成分和温度压力变化;固相包裹体主要存在于变质矿床中,记录了岩石的变质过程和成分变化。
2. 流体包裹体的提取和研究方法为了研究流体包裹体的特征及其对矿床成因的指示作用,研究人员通常需要提取和分析其中的包裹体。
提取包裹体的常用方法包括显微镜下手动或机械切割、高温高压流体爆裂和离子切割等。
提取后的包裹体可以进行各种物理和化学分析,如显微镜观察、热重分析、红外光谱分析、质谱分析等。
通过对这些分析结果的综合研究,可以了解到包裹体中流体的成分、密度、温度、压力等参数,进而推断矿床形成的环境和过程。
3. 流体包裹体特征的解读和示意研究过程中,根据流体包裹体内部的特征和组成,我们可以获得一些关键信息,有助于揭示矿床的成因和形成机制。
比如,通过测量流体包裹体中的真密度和盐度,可以初步判断矿床形成的温度范围和成因类型。
此外,通过固相包裹体中的矿物组成和显微结构分析,可以推测矿床形成过程中的热力学条件和物质交换机制。
而气液包裹体中的气体组分和稳定同位素分析,则可以揭示矿床的流体来源和演化路径。
4. 流体包裹体在矿床成因研究中的应用案例流体包裹体特征分析方法在矿床成因研究中已经得到广泛应用,并取得了一些重要的突破。
例如,通过对矿物中包裹体的研究,科学家们发现了一种新型金属矿床形成的机制,即“岩浆–热液-岩浆”相互作用过程。
流体包裹体的研究方法及获取的信息

SR XRF spectrum of a natural brine inclusions (pegmatite). Dotted line: blank = quartz spectrum.
Estimated concentration in ppm: Mn: 1031; Fe: 5710; Cu: 105; Zn: 1613; As: 42; Br: 76; Rb: 421; Sn: 28; Sb: 155; Cs: 886
Heinrich et al., 2003
Analysis of the ionic content of fluid inclusion Laser Ablation – Inductively Coupled Plasma –Mass Spectrometry (LA-ICP-MS)
detector: time of flight spectrometer => quasi simultaneous detection of 68 isotopes
Accceleration of electron => X Ray emission 8 to 30 keV; focus of X-ray => matter interaction
1) ionization of deep electronic orbital (K, L or M => Z > 11)
Spectrometry (LA-ICP-MS)
Heinrich et al., 2003
6 to 8 orders of magnitude in concentration depending on the detector: (TOF, quadrupole, MC)
应用流体包裹体研究油气成藏以塔中奥陶系储集层为例

应用流体包裹体研究油气成藏以塔中奥陶系储集层为例1. 本文概述随着全球能源需求的不断增长,对油气资源的勘探与开发显得尤为重要。
在我国,塔里木盆地作为重要的油气生产基地,其奥陶系储集层的研究对于理解油气成藏机制、提高油气勘探成功率具有重要意义。
本文旨在通过应用流体包裹体技术,对塔中奥陶系储集层油气成藏过程进行深入研究,以期为该区域的油气勘探提供科学依据。
流体包裹体作为地质流体活动的直接记录者,能够提供油气藏形成和演化的重要信息。
本文首先对流体包裹体的基本概念、形成机制及其在油气成藏研究中的应用进行概述。
接着,详细介绍了塔中奥陶系储集层的地质背景、流体包裹体的岩相学特征及其在油气成藏过程中的作用。
通过分析流体包裹体的显微测温数据,探讨了油气成藏的温度、压力条件及其演化历史。
结合区域地质资料,建立了塔中奥陶系储集层油气成藏的动力学模型,并对油气勘探前景进行了评价。
本文的研究成果不仅有助于深化对塔中奥陶系储集层油气成藏机制的认识,而且对于指导我国类似盆地的油气勘探具有重要的实践意义。
2. 塔中奥陶系储集层地质概况塔中地区位于中国塔里木盆地中央隆起带的东部,是一个典型的油气富集区。
该地区的奥陶系储集层是塔里木盆地内重要的油气储层之一,其发育和分布对于油气成藏具有重要的控制作用。
奥陶系储集层主要由碳酸盐岩组成,包括石灰岩、白云岩和泥质灰岩等。
这些碳酸盐岩在沉积过程中经历了多期构造运动和成岩作用,形成了复杂的储集空间系统。
储集空间主要包括溶蚀孔洞、裂缝和晶间孔等,其中溶蚀孔洞是最主要的储集空间类型。
这些储集空间的形成与分布受到了多种因素的控制,包括沉积环境、成岩作用、构造运动以及流体活动等。
在地质历史上,塔中地区经历了多期的构造运动和热液活动,这些活动对于奥陶系储集层的形成和演化产生了重要影响。
构造运动导致了储集层的褶皱和断裂,形成了有利于油气运移和聚集的构造格局。
热液活动则提供了丰富的流体来源和能量,促进了储集空间的溶蚀和扩大,同时也为油气的生成和运移提供了有利条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
固体颗粒与包裹体中子晶的区别在于固体颗 粒仅在部分包裹体中出现,而且在量上变 化很大,而子矿物相对其它相倾向于以稳 定的比例出现。
不混溶包裹体
镜下整体呈现出个体较大,体壁较厚,散乱的分布的特点。均 一温度很高,一般大于200℃,也有一部分不均一。 该类包裹体可进一步 分为两类。第一类个 体大,一般大于10 μm ,形状多为次棱角状 。气相部分为黑色, 液相部分则为浅灰色 ,气泡并不来回跳动 ,孤立状产出。
2、不混溶
是指冷却收缩过程中,均一相流体转为气/液两相, 或固/气/液3相的过程。
如果包裹体流体是100℃的纯水,气泡将是一种低密 度(0.0006g/cm3)的蒸气,如果温度是379℃,则蒸 气的密度约为0.2g/cm3。
在度体富(。含31C.1O℃2的)时气,相会中出,现当液温相度C低O于2和纯气C相OC2的O临2两界种温流
第二章 流体包裹体研究 及其初步应用
主讲人:
第一节 流体包裹体概述
一、一般特征 1、流体包裹体的概念 1)流体包裹体指矿物生长过程中,因晶体发
生缺陷而捕获的至今尚在矿物中存在并处 于封闭系统的成矿介质,是成岩成矿流体 或熔体的样品。 2)流体包裹体是指矿物晶体中捕获的显微级 液态/气态的封闭流体体系。
原生、次生、假次生包裹体的可能分布
石英
萤石
成因类型包裹体的判别标志:
原生成因的标志:①包裹体平行于生长带或晶面; ②包裹体在三维空间中随机分布;③包裹体是孤 立存在的,相邻包裹体间的距离大于5倍包裹体直 径(Shepherd,1985);④形态简单,个体相对较大。
次生成因的标志:①包裹体呈面群状沿愈合裂隙的 轮廓发育,具有明显定向排列,直抵矿物边缘; ②呈薄的、扁平的及不规则的形态。
A点代表流体包裹体被 捕获时的温压条件。 如果包裹体遭受降温, 由于宿主矿物和其包 裹的流体收缩系数不 同,在B点出现气泡。 继续降温,流体包裹 体分裂成含有气泡和 没有气泡的小型包裹 体。随着温度的继续 降低,从C点到D点, 这些小型包裹体最后 也发生变化,形成更 小的包裹体。这些小 型的包裹体与最初未 发生变化的包裹体成 份明显不同。
如果天然产出的包裹体中固相、液相和气相之间的 比例稳定,则它们很可能是从均匀流体中捕获的。
在单个矿物中,如果一群包裹体具有可变的相比例, 表明它们从不均匀体系中捕获的。
几种非均匀流体相
1、液体+固体
在许多矿物结晶历史上的某些时期,其生长 介质中存在着呈悬浮状态的固体颗粒,它 们可能被圈闭在当时形成的流体包裹体中, 形成液体+固体流体相。
➢含石盐子晶的两
相包裹体:由石盐
子晶和盐水溶液组成。
➢含石盐子晶的三相包裹体
由石盐子晶、盐水溶液和气态烃组成。
斜方硫中的流体包裹体
均一温度:95~105℃
5、亚稳定性
室温下,流体包裹体不能形成新核而呈稳定相存在, 这种现象称为亚稳定性。
自然界中,流体如果在低于或等于室温的条件下被 均匀捕获,其在室温下常呈单一相存在;如果在 较高温度被捕获,室温下应有气泡出现。但有时 气泡并不出现,这是由原来均匀的包裹体冷却到 室温时气泡和子矿物均不能成核所致。气泡不能 成核是亚稳定性的主要特征。
扩散); (2)通过晶体中的缺陷(如位错或裂隙)
三、包裹体成因分类和状态分类 (一)成因分类:包裹体成因分类是按照同一矿物中
包裹体形成的先后及其与母液的成因联系而划分的。 通常分为原生、次生、假次生3类。 1、原生包裹体 是在矿物结晶过程中形成的,它所捕获的流体是形成 该矿物的介质,能真实地矿物形成时体系的物理化 学条件。 2、次生包裹体 是在矿物形成后,因外力因素(如构造)使晶体产生 裂隙,由晚期溶液灌入裂隙后通过主矿物的溶解和 再结晶而愈合而成。因此次生包裹体只反映主矿物 形成后晚期热液的物理化学性质、不能说明主矿物 的形成条件。 3、假次生包裹体 是在矿物结晶过程中先结晶的部分因应力作用发生破 裂,在继续结晶过程中裂隙愈合捕获成矿介质。
4、包裹体的形态多种多样,在矿物中的分布倾向于 呈束状和面状,或曲面状。曲面状通常是受结晶 习性控制(如生长面或解理方向)。
石英中普遍发育流体包裹体,主要呈裂隙状、串珠状、面状孤立状等。 大小为几~十几微米,气液比大多为10~15%,少量达25%。
苏16 山西组 陕199 H6
陕138 H9 榆15 H8
1、流体包裹体在矿物中的分布非常普遍,几乎所有 的矿物中均含有包裹体,而且数量非常多。如乳 白色石英中包裹体数量可达109个/cm3。
2、包裹体通常都很小,多数小于0.1mm,很少大于 1mm,一般介于2~20μm;其总体体积很少大于 已知晶体体积的0.1%。
3、通常用于研究包裹体的矿物为数不多,大约10种 左右。如石英、萤石、石盐、方解石、磷灰石、 白云母、闪锌矿、重晶石、黄玉、锡石、锆石等。
如:据报道钟乳石所测均匀温度150-200℃,这与钟 乳石形成于几十度的温度相矛盾,说明其流体为非 均匀捕获。
如果流体中存在CO2,尤其是在低温下其有限的溶解 度经常产生不混溶。
4、沸腾包裹体
液体+气体的非均匀体系可以是流体沸腾的 结果,当压力释放或温度升高时均匀的流 体会分离出稠密的液相和稀薄的气相两种 液体。此时捕获的包裹体,一种为充满气 体的包裹体,另一种为充满液体的包裹体, 第三种为密度介于前两者之间的包裹体。 前两种为单一均匀相包裹体,分别捕获了 密度小的气体和密度大的液体,后一种为 非均匀相包裹体,以不同的比例同时捕获 了气体和液体,此类称为沸腾包裹体。
二、研究历史与现状
矿物包裹体研究工作在国外开展较早。
➢ 19世纪初,引入化学方法研究包裹体成分
➢ 中期,随着光学显微镜的发展,认识到矿物中的 气液包裹体被捕获时呈均匀状态,冷却后才出现 气泡,变成非均匀状态,使非均匀状态变成均匀 状态的温度代表结晶时的最低温度,该温度称为 均一温度。
➢ 20世纪初期,用包裹体解决了美国密西西比河谷 型铅锌矿长期争论不休的矿床成因以后,包裹体 研究才进入了实用阶段。
分布在火山岩、 次火山岩的斑晶 矿物中,代表了 火山岩的标型特 征。
2、液体+液体
圈闭两种不混溶的流体并不是罕见的。如沉积岩经常 见到油/水不混溶,火山岩中如硅酸盐/硅酸盐不混 溶、硅酸盐/硫化物不混溶、热液/岩浆熔体不混溶 等。
3、液体+气体
液体+气体的不混溶与均匀捕获冷却后出现的气液两 相包裹体很难区分,但是气/液不混溶却是经常出 现的。
亚稳定性可以引起实验工作中的某些重大实际问题。 冷冻包裹体,冰不能成核形成新的稳定使得某些 观测(如冰点)实际上不能进行,对于水石盐或CO2 水合物等,这种现象更明显。
6、颈缩(卡脖子)
流体包裹体被捕获后所发生的形状变化称为 颈缩(Goldstein,2001)。流体包裹体形 状的变化趋势是从不规则到圆球或负晶形, 以达到最低表面能的状态。任何矿物中, 较大的流体包裹体都有可能收缩成多个较 小包裹体。如果一个两相流体包裹体发生 颈缩,会产生两个较小的流体包裹体。其 中带有气泡的那个流体包裹体的密度小于 原来包裹体的密度,未带气泡的流体包裹 体密度则大于最初的包裹体密度。高温条 件下捕获的流体包裹体更易发生颈缩。
沸腾流体包裹体的形成
二、捕获后的变化
今天在室温下见到的包裹体与其捕获时相比,其形 态、物理化学性质均发生了很大的改变。
1、收缩
流体包裹体唯一最显著的特征是出现“蒸气相”, 即气泡。
大多数矿物的热膨胀系数比水低一至三个数量级, 当从捕获温度冷却到室温时,包裹体腔壁的收缩 小于所包含的流体。因此,一旦包裹体中的压力 (内压)在某种温度条件下跌落到复成分流体的 总蒸气压之下,流体的体积小于包裹体的容积时, 就有气泡形成和生长。流体包裹体均一温度就是 根据气泡消失来确定的。
透射光下颜色较
深,与其低的折
射率对应。均一
温度较低,约
30℃左右。
含CO2包裹体
含CO2包裹体
3、再结晶作用
大多数固体物质都有随着温度升高溶解度增大的性 质,较高温度条件下捕获的包裹体在天然冷却过 程中,由于捕获时的流体相对于主矿物是饱和的, 必定会出现主矿物的再结晶作用。这种结晶作用 通常出现在矿物的腔壁上,形成一种衬膜 (coating),而不是成为分离的晶体。
➢ 在油气勘探与开发成藏成矿研究中流体包裹体也 正发挥越来越重要的作用。主要表现在如下几个 方面
(1)油气充注史与成藏史研究
(2)盆地热演化史恢复
(3)古流体性质与成分的研究
(4)流体包裹体P-V-T模拟研究
第二节 包裹体成因与分类
包裹体的成因和捕获后的变化是非常复杂的,从而 决定了并不是所有的包裹体都是有效的和可靠的。 只有均匀捕获的包裹体,而且捕获后没有发生物 质泄漏和渗入,以及体积没有发生变化,即符合 均匀体系、封闭体系和等容体系这3个基本条件的 包裹体才能提供有用的信息。
➢ 国内包裹体研究开展较晚。60年代引入,70年代 进展较快,80年代取得了长足进展。
三、研究目的及意义
➢ 矿物包裹体是迄今保留下来的最完整和最直接的 原始成矿流体(或熔体),对其进行详细研究可 获得有关成岩成矿作用的可靠信息。借助某些物 理-化学方法,可测出成矿流体的温度、压力、 密度、成分(包括盐度和稳定同位素),以及pH、 Eh、粘度和成岩成矿年龄等参数。
岩浆包裹体可因不混溶作用形成几种流体相。饱和 了的铁硫化物的硅酸盐熔体,除产生气体不混溶 外,还产生硫化物熔体的不混溶,形成硫化物小 球。富水的硅酸盐熔体在降温过程中可因不混溶 作用分离出盐水溶液。
含CO2包裹体
含CO2包裹体呈 三相,由CO2气 体、液态CO2、 盐水溶液组成。
分布于石英加大
边,个体较大。
不可逆变化指包裹体体积发生的重大的永久性变化, 最明显的情况是包裹体的裂开。造成包裹体裂开 的机制有:(1)主晶在刚性包裹体周围的收缩; (2)包裹体内含有高内压的流体。