电磁感应和交变电流
(期末复习学案)第四章 电磁感应 第五章 交变电流

第四、五章 电磁感应与交变电流 期末复习 学案【复习重点提要】1、楞次定律的应用2、法拉第电磁感应定律3、带电粒子在复合场中的运动。
如粒子选择器等。
【复习思路指导】第一步、掌握用楞次定律的判断感应电流的步骤。
第二步、法拉第电磁感应定律的应用(E= nΔΦ/Δt E= BLv Sinθ 第三步、交变电流产生的过程,关于交变电流的物理量。
第四步、理想变压器工作规律和远距离输电【复习方法指导】在复习的过程中要循序渐进,注重基础。
比如,各种磁体磁感线的分布。
【基础自主复习】一、电磁感应1.产生感应电流的条件是_______________________________。
2.在匀强磁场中_________与________磁场方向的面积的乘积叫穿过这个面的磁通量。
单位为______,符号为_____。
磁通量发生变化有如下三种情况:⑴_____________________⑵_____________________⑶________________3.楞次定律:感应电流具有这样的方向,感应电流的磁场总是_____引起感应电流的_____________。
应用楞次定律判断感应电流的方向的具体步骤为(1)明确_____________(2)判断_____________(3)确定_____________的方向(4)利用_____________反推感应电流的方向。
4.导体切割磁感线产生感应电流的方向用__________来判断较为简便。
5.楞次定律中的“阻碍”作用正是_____________________的反映。
愣次定律的另一种表述:感应电流的效果总是反抗引起感应电流的原因。
当问题不涉及感应电流的方向时,用另一种表述判断比较方便。
6.法拉第电磁感应定律: 电路中感应电动势的大小跟_______________________________,表达式为E=__________ 。
当导体在匀强磁场中做切割磁感线的相对运动时E=__________ ,θ是B 与v 之间的夹角。
电磁感应与交变电流

20(楞次定 16(右手 19(扇形 21(落 18(电磁 19(感生与
律分析电 定则, 匀强磁场 线中的E 炮中的安 动生转换)
容器带电 电路电 中的电磁 大小、 培力与电 20(安培力
情况)
流分析) 感应现象 方向)判 磁感应综 与楞次定律
i-t 图) 断
合) 综合)
考查 要点
电磁 感应
出现 频次
2011海南、2009宁夏 典型2
(6)如图,感应电流i与时间t的关系图线可能正 确的是( B )
E
E′
××
i
i
i
i
××
O
O′
××
O
tO
tO
tO
t
××
F
F′
A
B
C
D
(19)电流随ωt变化的图象是( C )
i
i
i
i
ωt
ωt
ωt
ωt
0 π π 3π 2π 0 π π 3π 2π 0 π π 3π 2π 0 π π 3π 2π
2.不要求判断内电 动势,右手定则”内
Ⅱ 路中各点势的高低”容,但已包含在“法
的两点说明。
拉第电磁感应定律”
I 3.不要求用自感系 和“楞次定律”考点
数计算感应电动势 中。
3.难度升高,注意这
几年的变化。
看归纳
全国新课标卷物理电学选择题考点分布
考查 出现 要点 频次
电磁 9 感应
出处及题号
2007年 2008年 2009年 2010年 2011年 2012年
2
2
2
2
2
2
2
2
A
B
电磁感应现象与交变电流频率的关系分析

电磁感应现象与交变电流频率的关系分析近年来,随着科技的快速发展,电磁感应现象正逐渐引起人们的广泛关注。
在电磁学领域中,电磁感应现象是一种重要的现象,它描述了导体受到磁场影响时所产生的电流。
在电磁感应现象的研究中,交变电流频率是一个非常关键的因素。
交变电流是指在指定时间内,电流方向和大小都不断变化的电流。
频率则表示在一秒钟内变化的次数。
因此,交流电的频率是描述交替方向的快慢程度,频率越高,方向变化的速度越快。
交变电流频率对电磁感应现象有着重要的影响。
首先,交变电流频率的改变会对电磁感应产生不同的效果。
根据法拉第电磁感应定律,磁场的变化会产生感应电流。
当交变电流频率较低时,磁场的变化较为缓慢,感应电流产生的速度相对较慢。
随着频率的增加,磁场的变化速度也会加快,因此感应电流产生的速度也会增加。
这一现象使得电磁感应现象在不同频率下具有不同的特性。
其次,交变电流频率对电磁感应的产生和传导也有一定的影响。
电磁感应现象的产生需要磁场和导体之间的相对运动。
当交变电流频率较低时,导体与磁场的相对运动相对较慢,因此电磁感应现象的传导速度相对较慢。
随着频率的增加,相对运动速度也随之增加,从而加快了电磁感应现象的传导速度。
这一特性在电磁感应技术中具有重要的应用价值。
交变电流频率还会对电磁感应现象的强度产生一定的影响。
根据法拉第电磁感应定律,感应电动势与导体中感应电流的大小成正比。
当交变电流频率较低时,感应电流产生的速度相对较慢,因此感应电动势较小。
当频率增加时,感应电流产生的速度加快,从而使得感应电动势增大。
因此,随着频率的增加,电磁感应的强度也会增大。
此外,在实际应用中,交变电流频率还会对传输和利用电能的效率产生一定的影响。
交变电流的频率越高,电能的传输效率也越高。
这是因为高频交流电在导线中的传输损耗较低,能更有效地传输电能。
因此,现代电力系统中采用的交流电频率通常为几十到几百赫兹,以及低于一千赫兹范围内。
总结起来,电磁感应现象与交变电流频率之间存在紧密的关系。
电磁感应交变电流习题

a b 电磁感应交变电流习题1. 用电阻为18Ω的均匀导线弯成图中直径D=0.80m 的封闭金属圆环,环上AB 弧所对圆心角为60°。
将圆环垂直于磁感线方向固定在磁感应强度B =0.50T 的匀强磁场中,磁场方向垂直于纸面向里。
一根每米电阻为1.25Ω的直导线PQ ,沿圆环平面向左以3.0m /s 的速度匀速滑行(速度方向与PQ 垂直),滑行中直导线与圆环紧密接触(忽略接触处电阻),当它通过环上AB 位置时,求:(1)直导线AB 段产生的感应电动势,并指明该段直导线中电流的方向. (2)此时圆环上发热损耗的电功率.2. 如图,一个边长为l 的正方形虚线框内有垂直于纸面向里的匀强磁场; 一个边长也为l 的正方形导线框所在平面与磁场方向垂直;虚线框对角线ab 与导线框的一条边垂直,ba 的延长线平分导线框。
在t=0时,使导线框从图示位置开始以恒定速度沿ab 方向移动,直到整个导线框离开磁场区域。
以i 表示导线框中感应电流的强度,取逆时针方向为正。
下列表示i -t 关系的选项中,可能正确的是( )3. 如图所示,在PQ 、QR 区域中存在着磁感应强度大小相等、方向相反的匀强磁场,磁场方向均垂直于纸面。
一导线框abcdef 位于纸面内,各邻边都相互垂直,bc 边与磁场的边界P 重合。
导线框与磁场区域的尺寸如图所示。
从t =0时刻开始,线框匀速横穿两个磁场区域。
以a →b →c →d →e →f 为线框中的电动势E 的正方向,以下四个E -t 关系示意图中正确的是( )A B CD4. 如图所示,EOF 和E ′O ′F ′为空间一匀强磁场的边界,其中EO ∥E ′O ′,FO ∥F ′O ′,且EO ⊥OF ;OO ′为∠EOF 的角平分线,OO ′ 间的距离为l ;磁场方向垂直于纸面向里。
一边长为l 的正方形导线框沿OO ′方向匀速通过磁场,t =0时刻恰好位于图示位置。
规定导线框中感应电流沿逆时针方向时为正,则感应电流i 与时间t 的关系图线可能正确的是( )5. 矩形导线框abcd 放在匀强磁场中,在外力控制下处于静止状态,如图甲所示,磁感线方向与导线框所在平面垂直,磁感应强度B 随时间变化的图象如图乙所示。
电磁感应

电源电动势 (electromotive force of electric source )
电源迫使正电荷dq从负极经电源内部移动到正 电源迫使正电荷 从负极经电源内部移动到正 电动势为 极所做的功为dW,电源的电动势 极所做的功为 ,电源的电动势为
dW ε= dq dq
电源的电动势等于把单位正电荷从负极经内电 电源的电动势等于把单位正电荷从负极经内电 单位正电荷 路移动到正极时所做的功,单位为伏特。 路移动到正极时所做的功,单位为伏特。 电源的电动势的方向规定: 电源的电动势的方向规定:自负极经内电路指 方向规定 向正极。 向正极。
设闭合导体回路中的总电阻为R,由全电路欧姆 定律得回路中的感应电流为: 定律得回路中的感应电流为:
1 dΦ Ii = = − R R dt
i
ε
设在时刻t1到t2时间内,通过闭合导体回路的磁 时间内, 通量由 Φ1 变到 Φ2 那么,对上式积分,就可以求得 。那么,对上式积分, 在这段时间内通过回路导体任一截面的总电量q , 这个电量称为感应电量。 这个电量称为感应电量。即:
进一步推广:无论空间是否存在导体回路, 进一步推广:无论空间是否存在导体回路,变化磁场总 要在空间激发感生电场,若有导体回路, 要在空间激发感生电场,若有导体回路,则感生电场推 动导体中自由电荷运动,从而产生感生电流。 动导体中自由电荷运动,从而产生感生电流。
r r r r r dφ m d ∂B r ∫l Ek ⋅ dl = − dt = − dt ( ∫SB ⋅ dS ) = − ∫S ∂t ⋅dS
一、动生电动势
1、从法拉第电磁感应定律导出 l 动生电动势公式
a b
均匀磁场
r v
⊗
r
Φ = BS = Blx
高三物理一轮复习第9章电磁感应交变电流实验14探究感应电流方向的规律课件

图3
【解析】 (1)探究电磁感应现象的实验电路分两部分,电源、开关、滑动 变阻器、原线圈组成闭合电路,检流计与副线圈组成另一个闭合电路;电路图 如图所示;
(2)在实验过程中,除了查清流入检流计电流方向与指针偏转方向之间的关 系之外,还应查清原线圈 L1 与副线圈 L2 的绕制方向.由电路图可知,闭合开关 之前,应将滑动变阻器的滑动头 P 处于右端,此时滑动变阻器接入电路的阻值 最大.
精选最新中小学教学课件
20
尖子生好方法:听课时应该始终跟着老师的节奏,要善于抓住老师讲解中的关键词,构建自己的知识结构。利用老师讲课的间隙,猜想老师还会讲什么,会怎样讲, 怎样讲会更好,如果让我来讲,我会怎样讲。这种方法适合于听课容易分心的同学。
2019/5/21
精选最新中小学教学课件
19
thank
you!
2019/5/21
二、同步听课法
有些同学在听课的过程中常碰到这样的问题,比如老师讲到一道很难的题目时,同学们听课的思路就“卡壳“了,无法再跟上老师的思路。这时候该怎么办呢?
如果“卡壳”的内容是老师讲的某一句话或某一个具体问题,同学们应马上举手提问,争取让老师解释得在透彻些、明白些。
如果“卡壳”的内容是公式、定理、定律,而接下去就要用它去解决问题,这种情况下大家应当先承认老师给出的结论(公式或定律)并非继续听下去,先把问题记 下来,到课后再慢慢弄懂它。
【导学号:81370351】
图4 A.如果磁铁的下端是 N 极,则磁铁正在远离线圈 B.如果磁铁的下端是 S 极,则磁铁正在远离线圈 C.如果磁铁的下端是 N 极,则磁铁正在靠近线圈 D.如果磁铁的下端是 S 极,则磁铁正在靠近线圈
AD [根据题图甲,可以知道电流表的指针向电流流入的方向偏转,螺线管 相当于一个电源,电源的正极在上端.根据安培定则,螺线管上端是 S 极.如 果磁铁的下端是 N 板,则磁铁正在远离线圈;如果磁铁的下端是 S 极,则磁铁 正在靠近线圈,故 A、D 正确.]
电磁感应与交变电流

Ff=μ FN
FN=mg
F0 解得μ = 2mg
(2)根据功能关系可知导体棒MN克服安培力做功将 机械能转化为电能,在电路中电能转化为电热,电路 1 F0 中的总电热Q总=x 2 设导体棒的电阻值为r,根据电路串联关系可知
r Q总 Q R Q总
解得r=R(1-
(3)两位同学画的图线都不正确. 设导体棒运动的速度大小为v,产生的感应电动势为E, 感应电流为I F安=BIl I= E=Blv
电磁感应中能量转化问题
例3 (2009·徐州市第三次调研)如图6-1-8所示,
正方形线框abcd放在光滑绝缘的
水平面上,其边长L=0.5m、质量m =0.5kg、电阻R=0.5Ω ,M、N分别 为线框ad、bc边的中点.图示两个 图6-1-8 虚线区域内分别有竖直向下和向上的匀强磁场,磁感
应强度均为B=1T,PQ为其分界线,线框从图示位置以
1 2 mvm +Q1+Q2 mgLsinθ = 2 解得vm=4m/s
(2分) (1分)
(3)棒到底端时回路中产生的感应电流
Bdvm Im= =2A Rr
(1分)
根据牛顿第二定律有mgsinθ -BImd=ma
解得a=3m/s2 答案 (1)0.6V (2)4m/s (3)3m/s2
(1分)
(1分)
3.线圈穿越方向相反的两磁场时,要注意有两条
边都切割磁感线产生感应电动势.
预测演练1 如图6-1-3所示,在MM′、NN′区域中 存在垂直纸面向里,宽为2L的匀 强磁场.一导线框abcdefg位于纸 面内,总电阻为R,其中ab、bc、
de、ga四边长度均为L,fg、cd 图6-1-3 1 边长度为 L ,ab边与磁场边界MM′重合.从t=0时 2 刻开始,线框以速度v匀速穿过磁场区域,以逆时针方
电磁感应与交变电流

十二、电磁感应1.★电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流. (1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即ΔΦ≠0.(2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势.产生感应电动势的那部分导体相当于电源.(2)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流.2.磁通量(1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:Φ=BS.如果面积S与B不垂直,应以B乘以在垂直于磁场方向上的投影面积S′,即Φ=BS′,国际单位:Wb求磁通量时应该是穿过某一面积的磁感线的净条数.任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过该面的磁通量为正.反之,磁通量为负.所求磁通量为正、反两面穿入的磁感线的代数和.3.★楞次定律(1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化.楞次定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便.(2)对楞次定律的理解①谁阻碍谁———感应电流的磁通量阻碍产生感应电流的磁通量.②阻碍什么———阻碍的是穿过回路的磁通量的变化,而不是磁通量本身.③如何阻碍———原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即“增反减同”.④阻碍的结果———阻碍并不是阻止,结果是增加的还增加,减少的还减少.(3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种: ①阻碍原磁通量的变化;②阻碍物体间的相对运动;③阻碍原电流的变化(自感).★★★★ 4.法拉第电磁感应定律电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.表达式 E=nΔΦ/Δt当导体做切割磁感线运动时,其感应电动势的计算公式为E=BLvsinθ.当B、L、v三者两两垂直时,感应电动势E=BLv.(1)两个公式的选用方法E=nΔΦ/Δt 计算的是在Δt时间内的平均电动势,只有当磁通量的变化率是恒定不变时,它算出的才是瞬时电动势.E=BLvsin θ中的v若为瞬时速度,则算出的就是瞬时电动势:若v为平均速度,算出的就是平均电动势.(2)公式的变形①当线圈垂直磁场方向放置,线圈的面积S保持不变,只是磁场的磁感强度均匀变化时,感应电动势:E=nSΔB/Δt .②如果磁感强度不变,而线圈面积均匀变化时,感应电动势E=Nbδs/Δt .5.自感现象(1)自感现象:由于导体本身的电流发生变化而产生的电磁感应现象.(2)自感电动势:在自感现象中产生的感应电动势叫自感电动势.自感电动势的大小取决于线圈自感系数和本身电流变化的快慢,自感电动势方向总是阻碍电流的变化.6.日光灯工作原理(1)起动器的作用:利用动触片和静触片的接通与断开起一个自动开关的作用,起动的关键就在于断开的瞬间.(2)镇流器的作用:日光灯点燃时,利用自感现象产生瞬时高压;日光灯正常发光时,利用自感现象,对灯管起到降压限流作用.7.电磁感应中的电路问题在电磁感应中,切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,该导体或回路就相当于电源,将它们接上电容器,便可使电容器充电;将它们接上电阻等用电器,便可对用电器供电,在回路中形成电流.因此,电磁感应问题往往与电路问题联系在一起.解决与电路相联系的电磁感应问题的基本方法是:(1)用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向. (2)画等效电路. (3)运用全电路欧姆定律,串并联电路性质,电功率等公式联立求解.8.电磁感应现象中的力学问题(1)通过导体的感应电流在磁场中将受到安培力作用,电磁感应问题往往和力学问题联系在一起,基本方法是:①用法拉第电磁感应定律和楞次定律求感应电动势的大小和方向.②求回路中电流强度.③分析研究导体受力情况(包含安培力,用左手定则确定其方向).④列动力学方程或平衡方程求解.(2)电磁感应力学问题中,要抓好受力情况,运动情况的动态分析,导体受力运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化→周而复始地循环,循环结束时,加速度等于零,导体达稳定运动状态,抓住a=0时,速度v达最大值的特点.9.电磁感应中能量转化问题导体切割磁感线或闭合回路中磁通量发生变化,在回路中产生感应电流,机械能或其他形式能量便转化为电能,具有感应电流的导体在磁场中受安培力作用或通过电阻发热,又可使电能转化为机械能或电阻的内能,因此,电磁感应过程总是伴随着能量转化,用能量转化观点研究电磁感应问题常是导体的稳定运动(匀速直线运动或匀速转动),对应的受力特点是合外力为零,能量转化过程常常是机械能转化为内能,解决这类问题的基本方法是:(1)用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向.(2)画出等效电路,求出回路中电阻消耗电功率表达式.(3)分析导体机械能的变化,用能量守恒关系得到机械功率的改变与回路中电功率的改变所满足的方程.10.电磁感应中图像问题电磁感应现象中图像问题的分析,要抓住磁通量的变化是否均匀,从而推知感应电动势(电流)大小是否恒定.用楞次定律判断出感应电动势(或电流)的方向,从而确定其正负,以及在坐标中的范围.另外,要正确解决图像问题,必须能根据图像的意义把图像反映的规律对应到实际过程中去,又能根据实际过程的抽象规律对应到图像中去,最终根据实际过程的物理规律进行判断.十三、交变电流1.交变电流:大小和方向都随时间作周期性变化的电流,叫做交变电流.按正弦规律变化的电动势、电流称为正弦交流电.2.正弦交流电 ----(1)函数式:e=E m sinωt (其中★E m =NBSω)(2)线圈平面与中性面重合时,磁通量最大,电动势为零,磁通量的变化率为零,线圈平面与中心面垂直时,磁通量为零,电动势最大,磁通量的变化率最大.(3)若从线圈平面和磁场方向平行时开始计时,交变电流的变化规律为i=I m cosωt.. (4)图像:正弦交流电的电动势e、电流i、和电压u,其变化规律可用函数图像描述。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁感应1. 感应电流产生的条件是( )A.导体必须做切割磁力线运动B.导体回路必须闭合,且回路所包围面积内的磁通量发生变化C.无论导体回路是否闭合,只要它包围或扫过的面积内的磁通量发生变化D.导体回路产生了感应电动势2. 如图1所示为一交流电的电流随时间变化的图象.此交流电流的有效值是( )A.B.5AC.D.3.5A3. 在图3所示的电路中,两个相同的电流表G 1和G 2的零点在刻度盘中央,当电流从“+”接线柱流入时,指针向右摆;当电流从“—”接线柱流入时,指针向左摆.在电路接通后再断开开关K 的瞬间,下列说法中正确的是( )A.G 1指针向右摆,G 2指针向左摆B.G 1指针向左摆,G 2指针向右摆C.两表指针都向右摆D.两表指针都向左摆4. 下列关于感应电动势的说法正确的是( ) A.穿过闭合电路的磁通量越大,感应电动势越大B.穿过闭合电路的磁通量变化越大,感应电动势越大C.只有发生磁通量变化的电路时闭合的,电路中才有感应电运动势D.感应电动势的大小和穿过闭合电路的磁通量变化快慢有关5. 如图2所示的电路中,一个N 极朝下的条形磁铁竖直下落,恰能穿过水平放置的方形导线框,下列判断正确的是 ( )A.磁铁经过位置1和2时,感应电流都沿abcd 方向B.磁铁经过位置1和2时,感应电流都沿adcb 方向C.磁铁经过图中位置1时,线框中感应电流沿abcd 方向,经过位置2时沿adcb 方向D.磁铁经过图中位置1时,线框中感应电流沿adcb 方向,经过位置2时沿abcd 方向6. 如图3所示,一个环形线圈放在均匀磁场中,设在第一秒内磁感线垂直于线圈平面向里,如图(a ),磁感应强度B 随时间t 而变化的关系如图(b ),那么在第二秒内线圈中感应电流的大小和方向是( )A.逐渐增加,逆时针方向B.逐渐减小,顺时针方向C.大小恒定,顺时针方向D.大小恒定,逆时针方向7. 一台理想变压器的原线圈输入220V 交变电压,副线圈接上一个滑动变阻器,当变阻器的阻值变大时( ) A.副线圈的电流变小,原线圈的电流变大B.副线圈的电功率变小,原线圈的电功率也变小C.副线圈的电功率变小,原线圈的电功率不变D.副线圈的电压变大,原线圈的电压也变大8. 在变电站里,经常要用交流电表去监测电网上的强电流,所用的器材叫电流互感器。
如图2所示的四个图中,能正确反应其工作原理的是 ( )图2A. B. C. D.9. 在图所示的电路中,如果交变电流的频率增大,1、2和3灯的亮度变化情况是 A .1、2两灯均变亮,3灯变暗 B .1灯变亮,2、3两灯均变暗 C .1、2灯均变暗,3灯亮度不变 D .1灯变暗,2灯变亮,3灯亮度不变10. 如图所示电路,电感线圈L 的自感系数足够大,其直流电阻忽略不计,L A 、L B 是两个相同的灯泡,则 A .S 闭合瞬间,L A 不亮,L B 很亮;S 断开瞬间,L A 、L B 立即熄灭B .S 闭合瞬间,L A 很亮,L B 逐渐亮;S 断开瞬间,L A 逐渐熄灭,L B 立即熄灭C .S 闭合瞬间,L A 、L B 同时亮,然后L A 熄灭,L B 亮度不变;S 断开瞬间,L A 亮一下才熄灭,L B 立即熄灭;D .S 闭合瞬间.A 、B 同时亮,然后A 逐渐变暗到熄灭,B 变得更亮;S 断开瞬间,A 亮一下才熄灭,B 立即熄灭11. 如图5左所示是某种型号的电热毯的电路图,电热毯接在交变电源上,通过装置 P 使加在电热丝上的电压的波形如图5右所示.此时接在电热丝两端的交流电压表的读数为A .110VB .156VC .220VD .311V12. 如图7所示,长L 1宽L 2的矩形线圈电阻为R ,处于磁感应强度为B 的匀强磁场边缘,线圈与磁感线垂直.将线圈以向右的速度v 匀速拉出磁场,则A.拉力F 大小为R VL B 212地线火线地线C.线圈中产生的电热RV L L B 1222D.通过线圈某一截面的电荷量RL BL 21213. 某信号源中有直流成分、交流高频成分和交流低频成分,为了使放大器只得到交流低频成分,如图所示,电路中可行的是( )14. 如图所示,把矩形闭合线圈放在匀强磁场中,线圈平面与磁感线平行,下面能使线圈产生感应电流的是 ( )A .线圈以ab 边为轴做匀速转动B .线圈以bc 边为轴做匀速转动C .线圈沿磁感线方向做匀加速运动D .线圈沿垂直磁感线方向做匀速运动15. 如图所示,要使金属环C 向线圈A 运动,导线ab 在金属导轨上应( )A 、向右做匀速运动B 、向左做减速运动C 、向右做加速运动D 、向左做匀速运动16. 某线圈在匀强磁场中匀速转动,穿过它的磁通量φ随时间的变化规律可用右图表示,那么在图中 ( )A .t 1和t 2时刻,穿过线圈磁通量的变化率最大B .t 2时刻,穿过线圈的磁通量变化率为零C .t 3时刻,线圈中的感应电动势为零D .t 4时刻,是电流发生变化的时刻17. 如图所示,匀强磁场存在于虚线框内,矩形线圈竖直下落。
如果线圈中受到的磁场力总小于其重力,则它在1、2、3、4位置 时的加速度关系为 ( )A .a 1>a 2>a 3>a 4B .a 1 = a 2 = a 3 = a 4C .a 1 = a 3>a 2>a 4D .a 4 = a 2>a 3>a 118. 如图所示,理想变压器原线圈接在交流电源上,副线圈向电阻R 1、R 2和R 3供电, A 为交流电流表,V 为交流电压表,开关S 闭合后与闭合前相比( )A 、V 示数变大,A 示数变小R 1消耗的电功率变大B 、V 示数变大,A 示数变大,R 1消耗的电功率大C 、V 示数变小,A 示数变小,R 1消耗的电功率变小D 、V 示数变小,A 示数变大,R 1消耗的电功率变小19. 一个矩形线圈匀速地从无磁场的空间先进入磁感应强度为B 1的匀强磁场,然后再进入磁感应强度为B 2的匀强磁场,最后进入没有磁场的右边空间,如图6所示。
若B 1=2B 2,方向均始终和线圈平面垂直,则在图6所示ABCD 四图中能定性表示线圈中感应电流i 随时间t 变化关系的是(电流以逆时针方向为正)( )9.如图7所示,交变电压为311sin(314)V6u t π=+ ,电阻的阻值为220Ω,则( )A.电压表读数为3llVB.电流表读数为1.41AC.电阻R 的热功率为220WD.在2s 内电阻R 上产生的焦耳热是88J 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40.如图11所示,线圈有100匝,穿过线圈的磁通量为0.04Wb ,匀强磁场的方向向左,垂直于线圈的截面,现将磁场方向在2s 内改为与原方向相反,并且磁通量增大到0.08Wb ,则在这2s 内,线圈产生的平均感应电动势为 ,如线圈电阻是1Ω,则感应电流是 A. 图6如图所示,abcd 是金属矩形框,OO ′是金属导体,可沿框无摩擦地滑动,整个框放在与框平面垂直的匀强磁场中,磁感应强度为B ,OO ′长为L ,电阻为R ,ab 、cd 电阻均为2R ,ad 、bc 的电阻忽略不计,当OO ′向右以速度v 匀速滑动时,作用在OO ′上的外力大小为________N ,滑动过程中,金属导体OO ′两端的电压大小是________V 。
19. 一架飞机以720km/h 的速度在北半球上空沿水平方向飞行,该处地磁场垂直分量为T 5100.5-⨯,飞机的翼展为12m ,则飞机机翼两端电势差为 V ,顺着飞机飞行方向看,机翼的 端电势高。
20. 17.一个额定电压是220V ,额定功率为800W 的用电器,接入t u π100sin 2110=(V )的电路中,通过的电流为 A ;用电器的实际功率为__ __W .18.发电机产生的交流电压为220V ,输送106W 的电功率到用电区,用电区的电压为200V ,输送线路电阻为16Ω,损失的功率为输送功率的4%,那么输电线上损失的功率为_ W ,输送电压应为 _V ,升压变压器的电压比为 ,降压变压器的匝数之比为 。
19. 如图,导线全部为裸导线,半径为R 的圆内有垂直于圆平面的匀强磁场,磁感强度为B 。
一根长度大于2R 的导线MN 以速度 v 在圆环上无摩擦地自左端滑到右端,电路的固定电阻为 r ,其余电阻忽略不计。
在MN 滑动过程中,通过电阻r 上的电流强度的平均值为__ __,当MN 自圆环的左端滑到右端时通过 r 的电量为___ _。
21. 22. 23. 24. 25. 26.27. 如图所示,AB 、CD 是两根足够长的固定平行金属导轨,两导轨间的距离为L ,导轨平面与水平面的夹角为θ,在整个导轨平面内都有垂直于导轨平面斜向上方的匀强磁场,磁感应强度为B ,在导轨的 AC 端连接一个阻值为 R 的电阻,一根质量为m 、垂直于导轨放置的金属棒ab ,从静止开始沿导轨下滑,求此过程中ab 棒的最大速度。
(已知ab 与导轨间的动摩擦因数为μ,导轨和金属棒的电阻都不计。
)如图所示,理想变压器原线圈中输入电压U1=3300V,副线圈两端电压U2为220V,输出端连有完全相同的两个灯泡L1和L2,绕过铁芯的导线所接的电压表V的示数U=2V,求:(1)原线圈n1等于多少匝?(2)当开关S断开时,表A2的示数I 2=5A,则表A1的示数I 1为多少? (3)当开关S闭合时,表A1的示数I 1′等于多少?15.如图12所示,长 L 1宽 L 2的矩形线圈电阻为R ,处于磁感应强度为B 的匀强磁场边缘,线圈与磁感线垂直.求:将线圈以向右的速度V 匀速拉出磁场的过程中,⑴拉力F 大小;⑵拉力的功率P ;⑶拉力做的功W ;⑷线圈中产生的电热Q ;⑸通过线圈某一截面的电荷量q .如图11所示,线圈abcd 的面积是0.05m 2,共100匝;线圈电阻为1Ω,外接电阻R =9Ω,匀强磁场的磁感强度为B =1πT ,当线圈以300r/min 的转速匀速转动时,求:⑴若从线圈处于中性面开始计时,写出线圈中感应电动势的瞬时值表达式;⑵线圈转过1/30s 时电动势的瞬时值多大?⑶线圈从中性面转过180O过程中,磁通量得变化是多少?流过电阻R 上得电量是多少?⑷电路中电压表和电流表的示数各是多大?如图所示,水平U 形光滑金属框架,宽度为1m ,电阻忽略不计,导体ab 质量是0.2kg ,电阻是0.1Ω,匀强磁场的磁感应强度B =0.1T ,方向垂直框架向上,现用1N 的外力F 由静止拉动ab 杆,当ab 的速度达到1m/s 时,求:(1)此时刻ab 杆产生的感应电动势的大小;(2)此时刻ab 杆的加速度的大小;(3)ab杆所能达到的最大速度是多少?16.如图13所示,处于匀强磁场中的两根足够长.电阻不计的平行金属导轨相距lm,导轨平面与水平面成θ=37°角,下端连接阻值为尺的电阻.匀强磁场方向与导轨平面垂直.质量为0.2kg.电阻不计的金属棒放在两导轨上,棒与导轨垂直并保持良好接触,它们之间的动摩擦因数为0.25.求:(1)求金属棒沿导轨由静止开始下滑时的加速度大小;(2)当金属棒下滑速度达到稳定时,电阻尺消耗的功率为8W,求该速度的大小;(3)在上问中,若R=2Ω,金属棒中的电流方向由a到b,求磁感应强度的大小与方向.(g=10rn/s2,sin37°=0.6,cos37°=0.8) (05上海)。