有理数的运算基础测试题含答案

合集下载

有理数加减乘除混合运算基础试题(含答案)

有理数加减乘除混合运算基础试题(含答案)

有理数加减乘除混合运算基础试题(含答案)1. 小明去商店买了一本书,价格为15.5元。

他还买了两包饼干,每包饼干的价格分别为3.2元和2.8元。

请计算小明的总花费。

解答:小明购买书的花费为15.5元,两包饼干的总花费为3.2元 +2.8元 = 6元。

所以小明的总花费为15.5元 + 6元 = 21.5元。

2. 小红在超市买了一条围巾,价格为25.8元。

她付了一张50元的钞票,收到了零钱后她又决定买一盒巧克力,价格为8.5元。

请问小红收到了多少零钱?解答:小红付了50元的钞票,然后购买围巾的价格为25.8元,剩下的钱为50元 - 25.8元 = 24.2元。

小红再买巧克力花费了8.5元,所以最后收到的零钱为24.2元 - 8.5元 = 15.7元。

3. 某电商网站在活动期间推出了一款手机,原价为2399元。

今天是双11,该手机享受8折优惠。

请计算该手机的最终价格。

解答:该手机原价为2399元,打8折后的价格为2399元 * 0.8 = 1919.2元。

所以该手机的最终价格为1919.2元。

4. 甲和乙两个人一起合作完成了一项工程,工程的总付款为8400元。

根据他们的实际贡献,甲应得到总付款的3/5,那么乙应得到多少钱?解答:甲应得到的付款额为8400元 * 3/5 = 5040元。

乙应得到的付款额为总付款减去甲的付款额,即8400元 - 5040元 = 3360元。

所以乙应得到3360元。

5. 一家餐馆购买了10箱鸡蛋,每箱鸡蛋有36个。

餐馆决定将这些鸡蛋平均分给4个厨师,还剩下多少个鸡蛋?解答:这家餐馆购买的鸡蛋总数为10箱 * 36个/箱 = 360个鸡蛋。

如果要平均分给4个厨师,每个厨师得到的鸡蛋数量为360个鸡蛋 / 4 = 90个鸡蛋。

所以剩下的鸡蛋数量为360个鸡蛋 - 90个鸡蛋 * 4 = 360个鸡蛋 - 360个鸡蛋 = 0个鸡蛋。

总结:以上是关于有理数加减乘除混合运算的基础试题及其答案。

有理数的加减乘除乘方混合运算专题训练(带答案)

有理数的加减乘除乘方混合运算专题训练(带答案)

1. 先乘方,再乘除,最后加减;2. 同级运算,从左到右进行;3. 如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

1、12411 ()()()23523+-++-+-2、4(81)( 2.25)()169-÷-⨯-÷3、11(22)3(11)+--⨯-4、31(12)()15(1)45+⨯--⨯-5、2232[3()2]23-⨯-⨯--6、 33102(4)8-÷--7、)]21)21[(122--÷ 8、121)]3()2[(2⨯-⨯-9、)6(]32)5.0[(22-⨯-- 10、23533||()14714-⨯-÷223 3 222113、199711(1)(10.5)()312----⨯÷- 14、33514(1)(8)(3)[(2)5]217---⨯+-÷-+15、-10 + 8÷(-2 )2 -(-4 )×(-3 ) 16、-49 + 2×(-3 )2 + (-6 )÷(-91)17、-14 + ( 1-0.5 )×31×[2×(-3)2] 18、(-2)2-2×[(-21)2-3×43]÷51.19、)8()4()6(52-÷---⨯ 20、0)132()43(2⨯+-+-35722523、)23232(21)21(2--⨯+- 24、[][]332)2(3)5(6)7(4-÷--+÷-⨯-25、6-(-12)÷2)2(- 26、(-48)÷ 8 -(-5)÷2)21(-27、42×)43()32(-+-÷ 0.25 28、()23)9181(-÷-29、()()333232÷---⨯- 30、(-5)×6+(-125) ÷(-5)331、)251(4)5(25.0-⨯⨯-⨯-- 32、22)3(61)2132(1-+÷-+-1、【基础题】计算:(1)618-÷)(-)(-312⨯; (2))(-+51232⨯;(3))(-)(-49⨯+)(-60÷12; (4)23)(-×[ )+(--9532 ].(1))(-)+(-2382⨯; (2)100÷22)(--)(-2÷)(-32;(3))(-4÷)(-)(-343⨯; (4))(-31÷231)(--3214)(-⨯.(1)36×23121)-(; (2)12.7÷)(-1980⨯;(3)6342+)(-⨯; (4))(-43×)-+(-31328;(5)1323-)(-÷)(-21; (6)320-÷34)(-81-;(7)236.15.02)-(-)(-⨯÷22)(-; (8))(-23×[ 2322-)(- ];(9)[ 2253)-(-)(- ]÷)(-2; (10)16÷)(-)-(-)(-48123⨯.(1)11+(-22)-3×(-11); (2)0313243⨯⨯)-(-)(-;(3)2332-)(-; (4)23÷[ )-(-)(-423];(5))-(8743÷)(-87; (6))+()(-654360⨯;(7)-27+2×()23-+(-6)÷()231-; (8))(-)-+-(-4151275420361⨯⨯.(1))-(-258÷)(-5; (2)-33121)(--⨯;(3)223232)-(-)(-⨯⨯; (4)0132432⨯⨯)+(-)(-;(5))(-+51262⨯; (6)-10+8÷()22--4×3;(7)-51-()()[]55.24.0-⨯-; (8)()251--(1-0.5)×31;(1)(-8)×5-40; (2)(-1.2)÷(-13)-(-2);(3)-20÷5×14+5×(-3)÷15; (4)-3[-5+(1-0.2÷35)÷(-2)];(5)-23÷153×(-131)2÷(132)2; (6)-52+(1276185+-)×(-2.4)参考答案1、-1/52、-13、224、95、96、 07、-488、-19、-15 10、-15/34311、-24 12、-89 13、3 14、2 15、-20 16、23 17、2 18、24 19、-28 20、9/16 21、1 22、10 23、-1/12 24、104/3 25、9 26、14 27、-31 28、-81又1/81 29、-9 30、-29 31、-1/5 32、91、【答案】 (1)17; (2)511; (3)31; (4)-112、【答案】 (1)-10; (2)22; (3)-16; (4)-253、【答案】 (1)1; (2)0; (3)42; (4)423; (5)18; (6)0; (7)-4.64;(8)37; (9)8; (10)-25.4、【答案】 (1)22; (2)0; (3)-17; (4)-423; (5)71; (6)-95; (7)-85;(8)6 .5、【答案】 (1)3; (2)1; (3)-54; (4)0; (5)526; (6)-20; (7)-2; (8)-67. 6、【答案】(1)-80; (2)5.6; (3)-2; (4)16; (5)-516; (6)-2.9复习 有理数的乘除、乘方运算测试题一、填空题(每小题3分,共30分) 1.3×(-2)=________,(-6)×(-31)=________. 2.(-3)2的底数是________,结果是________;-32的底数是________,结果是________.3.(-61)÷(+23)=________;-493÷(-176)=________;(+8)÷(-41)=________.4.23×(-41)3=________;(-91)÷(+34)2=________.5.(-32)×________=1;(-32)×________=-16.-65×(-2.4)×(-53)=________.7.-32×(-5)2÷(-21)3=________.8.我国台湾省的面积约为3600平方公里,用科学记数法表示为________. 9.+121的倒数是________;________的倒数是-54. 10.用“>”“<”填空: ①23________22②(21)2________(21)3③32________22④(-2)3________(-2)2二、判断题(每小题1分,共5分) 11.零除以任何数都得零( )12.互为相反数的两个数的积为负数( ) 13.如果ab >0,则a >0且b >0( )14.1除以一个非零数的商叫做这个数的倒数( )15.(-3)5表示5个-3相乘( )三、选择题(每小题3分,共21分) 16.下列说法,其中错误的有①一个数与1相乘得原数;②一个数乘以-1得原数的相反数;③0乘以任何数得0;④同号两数相乘,符号不变.A .1个B .2个C .3个D .4个17.下列各对数:①1与1;②-1与1;③a -b 与b -a ;④-1与-1;⑤-5与|6|,其中互为倒数的是A .①②③B .①③⑤C .①③④D .①④ 18.下列各题中两个式子的值相等的是A .-23与(-2)3B .32与23C .(-2)2与 -22D .|-2|与-|-2| 19.下列结论中,其中正确的个数为①0的倒数是0;②一个不等于0的数的倒数的相反数与这个数的相反数的倒数相等;③其倒数等于自身的数是±1;④若a ,b 互为倒数,则-ab=-1.A .4B .3C .2D .1 20.下列各式中结果大于0的是A .1-910×3B .(1-910)×3C .1-(9×3)10D .(1-9)10×3 21.下列说法中正确的是 A .一个数的平方必为正数B .一个数的平方必小于这个数的绝对值C .一个数的平方必大于这个数D .一个数的平方不可能为负数22.用科学记数法表示的数2.89×104,原来是A .2890B .2890000C .28900D .289000四、计算题(共35分)23.(3分)(-3)×(-5)×(+12)×(-21) 24.(3分)-6÷(+3)÷(-4)×(+2) 25.(3分)-5-6÷(-3)26.(3分)(-81)÷241×91÷(-16)27.(3分)-22×(-3)÷5428.(3分)(-1)2000×(-1)2001×(-1)2002÷(-1)200329.(3分)(-2)×(-2001)×[-21-(-21)]×1-200230.(3分)-)45()45(5222-÷-⨯⨯31.(3分)(-5)2÷5×632.(3分)(-2.5)÷(-310)×(-3)33.(5分)30×(21-31+53-109)五、解答题(9分)34.已知A=a+a 2+a 3+……+a 2000(1)若a =1,求A 的值.(2)若a =-1,求A 的值.参考答案一、1.-6 2 2.-3 9 3 -9 3.-91 913 -32 4.-81 -161 5.-23 23 6.-1.2 7.1800 8.3.6×103平方公里 9.32 -141 10.> > > < 二、11.× 12.× 13.× 14.√ 15.√三、16.A 17.D 18.A 19.B 20.D 21.D 22.C四、23.-90 24.1 25.-3 26.41 27.15 28.1 29.-2002 30.1 31.30 32.-49 33.-4 五、34.(1)2000 (2)0。

有理数的运算经典测试题附解析

有理数的运算经典测试题附解析

有理数的运算经典测试题附解析一、选择题1.设n 是自然数,则n n 1(1)(1)2+-+-的值为( ) A .0B .1C .﹣1D .1或﹣1 【答案】A【解析】试题分析:当n 为奇数时,(n +1)为偶数, n n 1(1)(1)2+-+-=(1)12-+=0; 当n 为偶数时,(n +1)为奇数,n n 1(1)(1)2+-+-=1(1)2+-=0. 故选A .点睛:本题考查有理数乘方,解答本题的关键是明确有理数乘方的计算方法,利用分类讨论的数学思想解答.2.已知一天有86400秒,一年按365天计算共有31536000秒,用科学记数法表示31536000正确的是( )A .63.153610⨯B .73.153610⨯C .631.53610⨯D .80.3153610⨯ 【答案】B【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】将31536000用科学记数法表示为73.153610⨯.故选B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1<10a ≤,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.据央视网报道,2019年1~4月份我国社会物流总额为88.9万亿元人民币,“88.9万亿”用科学记数法表示为( )A .138.8910⨯B .128.8910⨯C .1288.910⨯D .118.8910⨯【解析】【分析】利用科学记数法的表示形式进行解答即可【详解】4.广西北部湾经济区包括南宁、北海、钦州、防城港、玉林、崇左六个市,户籍人口约2400万,该经济区户籍人口用科学记数法可表示为( )A .2.4×103B .2.4×105C .2.4×107D .2.4×109【答案】C【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】将2400万用科学记数法表示为:2.4×107.故选C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.5.在数轴上,实数a ,b 对应的点的位置如图所示,且这两个点到原点的距离相等,下列结论中,正确的是( )A .0a b +=B .0a b -=C .a b <D .0ab >【答案】A【解析】由题意可知a<0<1<b ,a=-b ,∴a+b=0,a-b=2a<0,|a|=|b|,ab<0,∴选项A 正确,选项B 、C 、D 错误,故选A.6.现在网购是人们喜爱的一种消费方式,2018年天猫“双11”全球狂欢节某网店的总交易额超过1207000元,1207000用科学记数法表示为( )A .61.20710⨯B .70.120710⨯C .512.0710⨯D .51.20710⨯【答案】A【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】1207000=1.207×106,故选A .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.7.如图是张小亮的答卷,他的得分应是( )A .40分B .60分C .80分D .100分【答案】A【解析】【分析】 根据绝对值、倒数、相反数、立方以及平均数进行计算即可.【详解】解:①若ab=1,则a 与b 互为倒数,②(-1)3=-1,③-12=-1,④|-1|=-1,⑤若a+b=0,则a 与b 互为相反数,故选A .【点睛】本题考查了实数,掌握绝对值、倒数、相反数、立方根以及平均数的定义是解题的关键.8.为应对疫情,许多企业跨界抗疫,生产口罩.截至2月29日,全国口罩日产量达到116000000只.将116000000用科学记数法表示应为( )A .611610⨯B .711.610⨯C .71.1610⨯D .81.1610⨯【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】将116000000用科学记数法表示应为1.16×108.故选:D .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.9.若2(1)210x y -++=,则x +y 的值为( ).A .12B .12-C .32D .32- 【答案】A【解析】解:由题意得:x -1=0,2y +1=0,解得:x =1,y =12-,∴x +y =11122-=.故选A . 点睛:本题考查了非负数的性质.几个非负数的和为0,则每个非负数都为0.10.地球上海洋面积约为361000000平方公里,361000000用科学记数法可表示为( ) A .90.36110⨯B .73.6110⨯C .83.6110⨯D .736110⨯【答案】C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】 361000000=83.6110⨯,故选:C .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.11.-2的倒数是( )A.-2 B.12-C.12D.2【答案】B【解析】【分析】根据倒数的定义求解.【详解】-2的倒数是-1 2故选B【点睛】本题难度较低,主要考查学生对倒数相反数等知识点的掌握12.大量事实证明,治理垃圾污染刻不容缓.据统计,全球每分钟约有8500000吨污水排入江河湖海,这个排污量用科学记数法表示为()A.8.5×105 B.8.5×106C.85×105 D.85×106【答案】B【解析】【分析】根据科学记数法的表示形式:a×10n,其中1≤|a|<10,n为整数.解答即可.【详解】8500000=8.5×106,故选B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.去年端午节假期第一天,国内游客人数达3050万人次,将数据“3050万”用科学记数法表示为()A.63.0510⨯B.630.510⨯C.73.0510⨯D.83.0510⨯【答案】C【解析】【分析】根据科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】3050万=30500000=73.0510⨯,故选:C .【点睛】此题考查科学记数法的表示方法.解题关键在于掌握科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.14.根据制定中的通州区总体规划,将通过控制人口总量上限的方式,努力让副中心远离“城市病”.预计到2035年,副中心的常住人口规模将控制在130万人以内,初步建成国际一流的和谐宜居现代化城区.130万用科学记数法表示为( )A .61.310⨯B .413010⨯C .51310⨯D .51.310⨯【答案】A【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值是易错点,由于130万有7位,所以可以确定n=7-1=6.【详解】130万=1 300 000=1.3×106.故选A .【点睛】此题考查科学记数法表示较大的数的方法,准确确定a 与n 值是关键.15.将数47300000用科学记数法表示为( )A .547310⨯B .647.310⨯C .74.7310⨯D .54.7310⨯【答案】C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:将47300000用科学记数法表示为74.7310⨯,故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.16.2019年3月3日至3月15日,中国进入“两会时间”,根据数据统计显示,2019年全国两会热点传播总量达829.8万条,其中数据“829.8万”用科学记数法表示为( ) A .8.298×107 B .82.98×105 C .8.298×106 D .0.8298×107【答案】C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】数据“829.8万”用科学记数法表示为8.298×106.故选C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.17.如果a+b >0,ab >0,那么( )A .a >0,b >0B .a <0,b <0C .a >0,b <0D .a <0,b >0【答案】A【解析】解:因为ab >0,可知ab 同号,又因为a +b >0,可知a >0,b >0.故选A .18.2018年4月8日11-日,博鳌亚洲论坛2018年年会在海南博鳌句型,本次年会的主题为“开放创新的亚洲,繁荣发展的世界”.开幕式上,博鳌亚洲论坛副理事长周小川致辞中提到:“一带一路”区域基础设施投资缺口每年超过6000亿美元.6000亿用科学计数法可以表示为( )A .3610⨯亿B .4610⨯亿C .30.610⨯亿D .40.610⨯亿 【答案】A【解析】【分析】科学计数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】解:6000亿3610=⨯⨯亿,故选A .【点睛】此题考查科学计数法的表示方法.科学计数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.19.如图,是一个计算流程图.当16x =时,y 的值是( )A2B.2C.2±D.2±【答案】A【解析】【分析】观察流程图的箭头指向,根据判断语句,当结果是无理数时输出,当结果是有理数时重复上述步骤,即可得到答案.【详解】x=后,取算术平方根的结果为2,判断2不是无理数,再取2的算术平方根解:输入1622是无理数,数出结果.故A为答案.【点睛】本题主要考查流程图的知识点、无理数的基本概念(无限不循环小数)、算术平方根的基本概念,看懂流程图是做题的关键,注意算术平方根只有正数.20.x是最大的负整数,y是最小的正整数,则x-y的值为( )A.0 B.2 C.-2 D.±2【答案】C【解析】【分析】根据有理数的概念求出x、y,再根据减去一个数等于加上这个数的相反数进行计算即可得解.【详解】∵x是最大的负整数,y是最小的正整数,∴x=-1,y=1,∴x-y=-1-1=-2.故选C.【点睛】本题考查了有理数的减法,熟记有理数的概念求出a、b的值是解题的关键.。

有理数加减乘除混合运算基础试题(含答案)

有理数加减乘除混合运算基础试题(含答案)

有理数加减乘除混合运算基础试题(含答案)数学练(一)有理数加减法运算练一、加减法法则、运算律的复A。

同号两数相加,取相同的符号,并把绝对值相加。

例如:(–3)+(–9)=(–12),85+(+15)=100.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

例如:(–45) +(+23)=–22,(–1.35)+6.35=5.一个数同相加,仍得这个数。

例如:(–9)+ 0=–9,0 +(+15)=15.B。

加法交换律:a + b = b + a,加法结合律:(a + b) + c = a + (b + c)。

例如:(–1.76)+(–19.15)+ (–8.24)=-29.15,23+(–17)+(+7)+(–13)=0.3)+(–2)+5+(–8)=–2,(–4)+(+5)=1.C。

有理数的减法可以转化为正数来进行,转化的“桥梁”是减号(正号可以省略)或是加上被减数的相反数。

例如:a–b=a+(-b)。

即(–3)–(–5)=2,3–13–(–1)+(–5)=6.D。

加减混合运算可以统一为加法运算。

即a + b–c = a + b +(-c)。

例如:(–3)–(+5)+(–4)–(–10)=–2,1–4 + 3–5=–5,2.4 + 3.5–4.6 + 3.5=4.8,3–2+5–8=–2.二、综合提高题。

A XXX their blood pressure once a day in the afternoon。

The table below XXX blood pressure was 160 units last Sunday。

What is the XXX Friday?XXXXXX blood pressure (compared to us day) +30 units -20 units +17 units +18 units -20 unitsXXX: 160 + 30 - 20 + 17 + 18 - 20 = 185 units.Math Exercise 2: XXXA。

有理数的乘除法练习题(含答案)

有理数的乘除法练习题(含答案)

第一章有理数1.4 有理数的乘除法1.计算12–12×3的结果是A.0 B.1 C.–2 D.–1 2.若等式–2□(–2)=4成立,则“□”内的运算符号是A.+ B.–C.×D.÷3.计算1–(–2)×(–2)÷4的结果为A.2 B.54C.0 D.34-4.|–13|的倒数是A.13B.3 C.–13D.–35.–0.3的倒数是A.10.3B.−10.3C.103D.−1036.2×(–3)=__________.7.计算:523()12 1234+-⨯.8.计算:22 (7)()7-⨯-.9.计算:34(7)(2) 25-÷-⨯+.10.计算:236(3)2(4)-⨯-+⨯-.11.12()2⨯-的结果是A.–4 B.–1 C.14-D.3212.计算:740(16) 2.54÷--÷=A.–1.1 B.–1.8 C.–3.2 D.–3.9 13.下列各数中,与–2的积为1的是A.12B.–12C.2 D.–214.计算11(6)()666⨯-÷-⨯的值为A.1 B.36 C.1-D.+615.计算(1+14+56−12)×12时,下列可以使运算简便的是A.运用乘法交换律B.运用加法交换律C.运用乘法分配律D.运用乘法结合律16.在–3,–2,–1,4,5中取出三个数,把三个数相乘,所得到的最大乘积是__________.17.有三个互不相等的整数a、b、c,如果abc=9,那么a+b+c=__________.18.计算:5 (8)[7(3 1.2)]6-⨯-+-⨯.19.计算:11336()964⨯--.20.计算:11 (1)(9)()32-⨯-÷-.21.(–0.25)×(–79)×4×(–18).22.计算:12112 ()() 3031065-÷-+-.23.计算:(14+512–56)×(–60).24.阅读后回答问题:计算(–52)÷(–15)×(–115)解:原式=–52÷[(–15)×(–115)]①=–52÷1②=–52③(1)上述的解法是否正确?答:__________;若有错误,在哪一步?答:__________;(填代号)错误的原因是:__________;(2)这个计算题的正确答案应该是:25.(2018•陕西)–711的倒数是A.711B.−711C.117D.−11726.(2018•吉林)计算(–1)×(–2)的结果是A.2 B.1 C.–2 D.–3 27.(2018•遂宁)–2×(–5)的值是A.–7 B.7 C.–10 D.10 1.【答案】D【解析】111323===122222-⨯---,故选D.2.【答案】C【解析】–2×(–2)=4.故选C.3.【答案】C【解析】1–(–2)×(–2)÷4=1–4÷4=1–1=0,故选C.4.【答案】B【解析】|–13|=13,13的倒数是3,故选B.5.【答案】D【解析】–0.3=–310,故–0.3的倒数是−103.故选D.6.【答案】–6【解析】根据有理数的乘法法则可得2×(–3)=–6.9.【答案】3 5【解析】3431143(7)(2)()252755-÷-⨯+=-⨯-⨯=.10.【答案】33【解析】236(3)2(4)-⨯-+⨯-2318833=+-=.11.【答案】B【解析】2×(–12)=–(2×12)=–1.故选B.12.【答案】C【解析】原式=575242--÷=572245--⨯=2571010--=3210-=–3.2,故选C.13.【答案】B【解析】∵–2×12=–1,–2×(–12)=1,–2×2=–4,–2×(–2)=4,∴与–2的积为1的是–12.故选B.14.【答案】B【解析】首先确定积的符号,然后将除法转化为乘法再进行计算.原式=16×6×6×6=36.15.【答案】C【解析】∵算式符合乘法分配律的形式,∴运用乘法分配律可以使运算简便.故选C.16.【答案】30【解析】正数大于一切负数,同号得正,异号得负,找出乘积是正数绝对值最大的三个数相乘即可.最大乘积是:(–3)×(–2)×5=3×2×5=30.故答案为:30.19.【答案】–29【解析】11311336()363636462729 964964⨯--=⨯-⨯-⨯=--=-.20.【答案】–24【解析】114(1)(9)()9224323-⨯-÷-=-⨯⨯=-.21.【答案】【解析】原式=–(14×79×4×18)=–14.22.【答案】1 10 -【解析】原式=14114()()30661010-÷+--=151()()3062-÷-=11()()303-÷=1()330-⨯=110-.23.【答案】10【解析】原式=14×(–60)+512×(–60)–56×(–60)=–15+(–25)+50=–40+50=10.24.【答案】(1)不正确;①;运算顺序不对,或者是同级运算中,没有按照从左到右的顺序进行;(2)190.【解析】(1);不正确;错误在第①步;运算顺序不对,或者是同级运算中,没有按照从左到右的顺序进行;25.【答案】D【解析】–711的倒数是–117,故选D.26.【答案】A【解析】(–1)×(–2)=2.故选A.27.【答案】D【解析】(–2)×(–5)=+2×5=10,故选D.。

有理数基础测试题含答案

有理数基础测试题含答案

有理数基础测试题含答案一、选择题1.数轴上的A、B、C三点所表示的数分别为a、b、1,且|a﹣1|+|b﹣1|=|a﹣b|,则下列选项中,满足A、B、C三点位置关系的数轴为()A.B.C.D.【答案】A【解析】【分析】根据绝对值的意义,在四个答案中分别去掉绝对值进行化简,等式成立的即为答案;【详解】A中a<1<b,∴|a﹣1|+|b﹣1|=1﹣a+b﹣1=b﹣a,|a﹣b|=b﹣a,∴A正确;B中a<b<1,∴|a﹣1|+|b﹣1|=1﹣a+1﹣b=2﹣b﹣a,|a﹣b|=b﹣a,∴B不正确;C中b<a<1,∴|a﹣1|+|b﹣1|=1﹣a+1﹣b=2﹣b﹣a,|a﹣b|=a﹣b,∴C不正确;D中1<a<b,∴|a﹣1|+|b﹣1|=a﹣1+b﹣1=﹣2+b+a,|a﹣b|=b﹣a,∴D不正确;故选:A.【点睛】本题考查数轴和绝对值的意义;熟练掌握绝对值的意义是解题的关键.2.数轴上表示数a和数b的两点之间的距离为6,若a的相反数为2,则b为()A.4 B.4-C.8-D.4或8-【答案】D【解析】【分析】根据相反数的性质求出a的值,再根据两点距离公式求出b的值即可.【详解】∵a的相反数为2a+=∴20a=-解得2∵数轴上表示数a 和数b 的两点之间的距离为6 ∴6a b -=解得4b =或8-故答案为:D .【点睛】本题考查了数轴上表示的数的问题,掌握相反数的性质、两点距离公式是解题的关键.3.如图是一个22⨯的方阵,其中每行,每列的两数和相等,则a 可以是( )A .tan 60︒B .()20191-C .0D .()20201-【答案】D【解析】【分析】 根据题意列出等式,直接利用零指数幂的性质以及绝对值的性质和立方根的性质分别化简得出答案.【详解】解:由题意可得:03282a +-=+,则23a +=,解得:1a =, Q 3tan 60︒=,()201911-=-,()202011-= 故a 可以是2020(1)-.故选:D .【点睛】 此题考查了零指数幂、绝对值的性质、立方根的性质和实数的运算,理解题意并列出等式是解题关键.4.如果实数a ,b 在数轴上的对应点的位置如图所示,那么下列结论正确的是( )A .a b <B .a b >-C .2a >-D .b a >【答案】D【解析】【分析】根据数轴可以发现a <b ,且-3<a <-2,1<b <2,由此即可判断以上选项正确与否.【详解】∵-3<a <-2,1<b <2,∴|a|>|b|,∴答案A 错误;∵a <0<b ,且|a|>|b|,∴a+b <0,∴a <-b ,∴答案B 错误;∵-3<a <-2,∴答案C 错误;∵a <0<b ,∴b >a ,∴答案D 正确.故选:D .【点睛】本题考查的是数轴与实数的大小比较等相关内容,会利用数轴比较实数的大小是解决问题的关键.5.下列等式一定成立的是( )A .945-=B .1331-=-C .93=±D .32166--=-【答案】B【解析】【分析】根据算术平方根、立方根、绝对值的性质逐项判断即可.【详解】A. 94321-=-=,故错误;B. 1331-=-,故正确;C. 93=, 故错误;D. ()321666--=--=,故错误;故答案为:B.【点睛】本题考查了算术平方根的概念、立方根的概念、绝对值的性质,解题的关键是熟练掌握其定义和性质.6.实数在数轴上的对应点的位置如图所示,若,则下列结论中错误的是( )A .B .C .D .【答案】A【解析】【分析】根据,确定原点的位置,根据实数与数轴即可解答. 【详解】解:,原点在a,b的中间,如图,由图可得:,,,,,故选项A错误,故选:A.【点睛】本题考查了实数与数轴,解决本题的关键是确定原点的位置.7.若︱2a︱=-2a,则a一定是( )A.正数B.负数C.正数或零D.负数或零【答案】D【解析】试题分析:根据绝对值的意义,一个正数的绝对值是本身,0的绝对值是0,一个负数的绝对值是其相反数,可知a一定是一个负数或0.故选D8.如图是张小亮的答卷,他的得分应是()A.40分B.60分C.80分D.100分【答案】A【解析】【分析】根据绝对值、倒数、相反数、立方以及平均数进行计算即可.【详解】解:①若ab=1,则a与b互为倒数,②(-1)3=-1,③-12=-1,④|-1|=-1,⑤若a+b=0,则a与b互为相反数,故选A.【点睛】本题考查了实数,掌握绝对值、倒数、相反数、立方根以及平均数的定义是解题的关键.9.若a 为有理数,且|a |=2,那么a 是( )A .2B .﹣2C .2或﹣2D .4【答案】C【解析】【分析】利用绝对值的代数意义求出a 的值即可.【详解】若a 为有理数,且|a|=2,那么a 是2或﹣2,故选C .【点睛】此题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.10.在-3,-1,0,3这四个数中,比-2小的数是( )A .-3B .-1C .0D .3【答案】A【解析】【分析】根据两个负数比较大小,绝对值较大的数反而小,正数比负数大,逐个判断与-2的大小关系即可.【详解】解:∵-32103<-<-<<∴比-2小的数是-3故选:A【点睛】本题考查有理数的大小比较,掌握负数比较大小的方法是关键.11.已知a 、b 、c 都是不等于0的数,求a b c abc a b c abc+++的所有可能的值有( )个.A .1B .2C .3D .4【答案】C【解析】【分析】根据a b c 、、的符号分情况讨论,再根据绝对值运算进行化简即可得.【详解】由题意,分以下四种情况:①当a b c 、、全为正数时,原式11114=+++=②当a b c 、、中两个正数、一个负数时,原式11110=+--=③当a b c 、、中一个正数、两个负数时,原式11110=--+=④当a b c 、、全为负数时,原式11114=----=-综上所述,所求式子的所有可能的值有3个故选:C .【点睛】本题考查了绝对值运算,依据题意,正确分情况讨论是解题关键.12.2019的倒数的相反数是( )A .-2019B .12019-C .12019D .2019 【答案】B【解析】【分析】先求2019的倒数,再求倒数的相反数即可.【详解】2019的倒数是12019, 12019的相反数为12019-, 所以2019的倒数的相反数是12019-, 故选B .【点睛】本题考查了倒数和相反数,熟练掌握倒数和相反数的求法是解题的关键.13.已知实数a 、b 在数轴上的位置如图所示,化简|a +b |-2()b a -,其结果是( )A .2a -B .2aC .2bD .2b -【答案】A【解析】【分析】2a ,再结合绝对值的性质去绝对值符号,再合并同类项即可.【详解】解:由数轴知b <0<a ,且|a|<|b|,则a+b <0,b-a <0,∴原式=-(a+b )+(b-a )=-a-b+b-a=-2a ,故选A .【点睛】 此题主要考查了二次根式的性质和绝对值的性质,关键是掌握2a =|a|.14.12的相反数与﹣7的绝对值的和是( )A .5B .19C .﹣17D .﹣5 【答案】D【解析】【分析】根据绝对值和相反数的定义进行选择即可.【详解】-12+|-7|=-12+7=-5,故选D .【点睛】本题考查了绝对值和相反数的定义,掌握绝对值和相反数的求法是解题的关键.15.如图,数轴上有三个点A 、B 、C ,若点A 、B 表示的数互为相反数,则图中点C 对应的数是( )A .﹣2B .0C .1D .4【答案】C【解析】【分析】首先确定原点位置,进而可得C 点对应的数.【详解】∵点A 、B 表示的数互为相反数,AB=6∴原点在线段AB 的中点处,点B 对应的数为3,点A 对应的数为-3,又∵BC=2,点C 在点B 的左边,∴点C 对应的数是1,故选C .【点睛】本题主要考查了数轴,关键是正确确定原点位置.16.有理数,a b 在数轴上的位置如图所示,以下说法正确的是( )A .0a b +=B .0a b ->C .0ab >D .b a <【答案】D【解析】【分析】由图可判断a、b的正负性,a、b的绝对值的大小,即可解答.【详解】根据数轴可知:-2<a<-1,0<b<1,∴a+b<0,|a|>|b|,ab<0,a-b<0.所以只有选项D成立.故选:D.【点睛】此题考查了数轴的有关知识,利用数形结合思想,可以解决此类问题.数轴上,原点左边的点表示的数是负数,原点右边的点表示的数是正数.17.小麦做这样一道题“计算()3-+W”、其中“□”是被墨水污染看不清的一个数,他翻开后面的答案,得知该题计算结果是8,那么”□”表示的数是( )A.5 B.-5 C.11 D.-5或11【答案】D【解析】【分析】根据绝对值的性质求得结果,采用排除法判定正确选项.【详解】解:设”□”表示的数是x,则|(-3)+x|=8,∴-3+x=-8或-3+x=8,∴x=-5或11.故选:D.【点睛】本题考查了绝对值的运算,掌握:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.18.1是0.01的算术平方根,③错误;在同一平面内,过定点有且只有一条直线与已知直线垂直,④错误故选:A【点睛】本题考查概念的理解,解题关键是注意概念的限定性,如④中,必须有限定条件:在同一平面内,过定点,才有且只有一条直线与已知直线垂直.19.不论a取什么值,下列代数式的值总是正数的是()A .1a +B .1a +C .2aD .2(1)a +【答案】B【解析】【分析】 直接利用绝对值的性质以及偶次方的性质分别分析得出答案.【详解】A 、|a+1|≥0,故此选项错误;B 、|a|+1>0,故此选项正确;C 、a 2≥0,故此选项错误;D 、(a+1)2≥0,故此选项错误;故选B .【点睛】此题主要考查了偶次方的性质以及绝对值的性质,正确把握相关定义是解题关键.20.在有理数2,-1,0,-5中,最大的数是( )A .2B .C .0D .【答案】A【解析】【分析】正数都大于0,负数都小于0,正数大于一切负数,两个负数绝对值大的反而小,据此判断即可.【详解】根据有理数比较大小的方法可得:-5<-1<0<2,所以最大数是2.故选A.【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.。

有理数计算题单(含答案)

有理数计算题单(含答案)

有理数计算题单(含答案)篇一:50道初一数学有理数计算题含答案第二部分:有理数及其运算单元试题(含答案)有理数及其运算单元测试题全名一、判断题:1.如果a和B是对等的,那么?11ab??0()222.x+5一定比x-5大。

()3.1111? (?)? (?)? ()32234.+(―3)既是正数,又是负数.()5.数字轴上原点两侧的数字是相反的数字。

()6.任意两个有理数都可以相减.()7.有绝对值最小的数字,但没有绝对值最大的数字。

()8.a是有理数,―a一定是负数.()9.任何正数都大于其倒数10.大于0的数一定是正数,a2一定是大于0的数.()二、填空:1.、2.白天温度为零上10°C,记录为午夜温度比白天温度低15°C,因此午夜温度记录为°C3.平方得9的有理数是?4.比例?有理数1是273的倒数,小于2的数是25.5与―12的和的绝对值是6.倒数等于自身的数为7.若aA.1,然后是A0;如果a??1,则a0.8.在数字轴上,从点1.5向左移动2个单位以获得点a,然后从点a向右移动4个单位以获得点B,则点a表示的数字为,点B表示的数字为9.大于-5的负整数是,绝对值小于5而大于2的非负整数是10.? 倒数3的倒数是,倒数-5的绝对值是411.如果x<0,那么-|x|=|-x|=|-3|,那么.12.如果A2+| b-1 |=0,则3a-4b=13.若a?2b,2b?a?.14.(2a?1)?最小值1为15.已知a<2,则|a-2|=4,则a的值是2三、多项选择题:1.下列说法错误的是()(a)整数的对立面必须是整数(b)。

所有整数都有倒数(c)相反数与本身相等的数只有0(d)绝对值大于1而不大于2的整数有±22.如图所示,数字轴上的两点分别代表数字m和N,那么| m-N |是()(a)m-n(b)n-m(c)±(m-n)(d)m+n3.计算(-3)2-(-2)3-22+(-2)2,结果为()(a)17(b)-18(c)-36(d)184.如果两个有理数之和为负,那么这两个有理数()(a)都为负(b)一个为零,另一个为负(c)至少有一个为负(d)异号5.. 如果是?b、然后()33(a)a?b(b)a?b.(c)a?b?0(d)a??b.22334? (?)? (?), 结果是()4433344(a)?(b)(c)?(d)43436.计算?7.以下结论是正确的()(a)一个有理数的平方不可能为负数(b)一个有理数的平方必为正数(c)一个数字的平方等于它的绝对值。

有理数及其运算单元测试题(含答案)

有理数及其运算单元测试题(含答案)

有理数及其运算单元测试题姓名一、判断题:1.若a 、b 互为倒数,则02121=+-ab ( ) 2.x+5一定比x -5大。

( )3.31)21()21(31÷-=-÷ ( ) 4.+(—3)既是正数,又是负数. ( )5.数轴上原点两旁的数是相反数. ( )6.任意两个有理数都可以相减. ( )7.有绝对值最小的数,没有绝对值最大的数. ( )8.a 是有理数,—a 一定是负数. ( )9.任何正数都大于它的倒数. ( )10.大于0的数一定是正数,a 2一定是大于0的数. ( )二、填空题:1. 、 统称有理数.2.白天的温度是零上10°C 记作 ,午夜的温度比白天低15°,那么午夜的温度记作 °C .3.平方得9的有理数是 ,立方得271-的有理数是 . 4.比23-的倒数小2的数是 . 5.5与—12的和的绝对值是 ,它们绝对值的差是 .6.倒数与它本身相等的数是 .7.若1=a a,则a 0;若1-=a a,则a 0.8.在数轴上,从1.5的点向左移动2个单位得到点A ,再从A 点向右平移4个单位得到点B ,则点A 表示的数为 ,点B 表示的数为 .9.大于-5的负整数是 ,绝对值小于5而大于2的非负整数是 .10.43-的相反数的倒数是 ,-(-5)的倒数的绝对值是 . 11.如果x <0,那么-|x |= ,如果|-x |=|-3|,那么x= .12.如果a 2+|b -1|=0,则3a -4b = .13.若=->a b b a 2,2则 .14.112(2-+)a 的最小值是 .15.已知a <2,则|a -2|=4,则a 的值是 .三、选择题:1.下列说法错误的是( )(A ) 整数的相反数一定是整数 (B ) 所有的整数都有倒数(C ) 相反数与本身相等的数只有0 (D ) 绝对值大于1而不大于2 的整数有±22.如图所示,数轴上两点分别表示数m 、n ,则|m -n|为( )(A )m -n (B )n -m (C )±(m -n ) (D ) m +n3.计算(-3)2-(-2)3-22+(-2)2,其结果是( )(A )17 (B )-18 (C )-36 (D )184.若两个有理数的和为负,那么这两个有理数( )(A )都为负 (B )一个为零,另一个为负 (C )至少有一个为负 (D ) 异号5..若22b a =,则( )(A )b a = (B )33b a = . (C )0==b a (D )b a -= . 6.计算34()43(43-⨯-÷-,其结果是( ) (A )43- (B )43 (C )34- (D )34 7.下列结论正确的是( )(A )一个有理数的平方不可能为负数 (B ) 一个有理数的平方必为正数(C ) 一个数的平方与它的绝对值相等 (D ) 一个数的平方一定大于这个数8.若a为有理数,则下列各式的值一定为正数的是( )(A)a3+1 (B)a3 (C)a2+1 (D)(a+1)29.计算(-2)2004+(-2)2005所得的结果是( )(A )22004 (B )-22004 (C )(-2)2004 (D )-210.如果0<x <1,那么下列各式正确的是( )(A )21x x x >> (B )x x x 12>> (C )x x x >>12 (D )21x xx >> 四、把下列各数填入它相应所属的集合内:-1, (-2)2,0,-[+(-3.4)],-32, ∙-3.0,0.1010010001…,-(-5),—32,-(-2)3正整数集合{ …}; 分数集合 { …}负数集合 { …};有理数集合{ …} 五、把下列各数在数轴上表示出来,并用“<”号将各数从小到大排列起来:.4,—1+,0,—(—3.5),—211-.六、计算:1. )6.2(2.4)5.3()3(0-----+- 2.32432131+--3. )6(363528-⨯ 4.)2(8325.0-÷÷-5.911)325.0(321÷-⨯- 6.])2()6.0511(41[222-÷⨯-+---7.8)211(125.0)412(2311)32(3)211(4222⨯-⨯-⨯-÷-⨯+-⨯-七、求值:.1. 已知x =-2,y =1,z =-3,求x 4-(x 2y 2-y 2)-z 3-7的值.2. 已知|a |=3,|b|=5,|a -b|=b -a ,且ab <0,求a +b 与a -b 的值.3. 已知a 、b 互为相反数,c 、d 互为倒数,x 的绝对值是2 .试求代数式x 2-(a +b +cd )x +(a +b )2004+(-cd )2003的值.4. 已知a =222)31()6()3(27-÷-+-⨯+-;221223163-÷⨯-=b ; c =2)5.0()751()72(436818-+-÷--⨯;d =342)21(41])1()32(3[211-÷+---⨯-, 试确定ab —cd 的符号.5※.三个有理数0,0,,,>++<c b a abc c b a .当c cb ba ax ++=时,求x 19-92x +2的值.答案一. 判断题:1. [ √ ] 2. [ √ ] 3. [ × ] 4. [ × ] 5. [ × ] 6. [ √ ] 7. [ √ ]8. [× ] 9. [ × ] 10. [ × ]二、填空题1.[整数、分数] 2. [+10°C] 3. [±3,31-] 4. [322-] 5. [7,-7] 6. [±1] 7. [>,<=] 8. [-0.5,3.5] 9.[-4、-3、-2、-1,3、4] 10.[51,34] 11.[x ,±3] 12. [-4] 13. [a-2a] 14. [-1] 15. [-2]三、选择题:1.[B] 2.[B] 3.[A] 4.[C] 5.[A] 6.[C] 7.[A] 8.[C] 9.[B] 10.[A] 四、把下列各数填入它相应所属的集合内:[(-2)2、,-(-5),-(-2)3],[-[+(-3.4)],-32,∙-3.0],[-1,-32,—32,],[-1, (-2)2,0,-[+(-3.4)],-32, ∙-3.0,0.1010010001…,-(-5),—32,-(-2)3 ]五、把下列各数在数轴上表示出来,并用“<”号将各数从小到大排列起来:. [4)5.3(01211<--<<+-<--] 六、计算: 1. [-1.1] 2. []41- 3.[65173-] 4.[31] 5.[41] 6.[100397-] 7.[-914] 七、求值:. 5. [33]6. [2,-8]7. [当x=2时,原式=1;当x=-2时,原式=5]8. [a=-85,b=4,c=43,d=67-,原式=-81339] 5. [a 、b 、c 三数只能是二正一负,所以x=1,原式=-89]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

13.一根 1m 长的小棒,第一次截去它的 1 ,第二次截去剩下的 1 ,如此截下去,第五次
2

后剩下的小棒的长度是( )
A. 1 m 2
1 B. 5 m
C. 1 m 16
D. 1 m 32
【答案】D 【解析】
【分析】
根据题意和乘方的定义可以解答本题.
【详解】
解:第一次是
1 2
m,第二次是
1 2
1 2
用科学记数法表示为( )
A. 8.891013
B. 8.891012
C. 88.91012
D. 8.891011
【答案】A
【解析】
【分析】 利用科学记数法的表示形式进行解答即可 【详解】
4.在数轴上,实数 a,b 对应的点的位置如图所示,且这两个点到原点的距离相等,下列 结论中,正确的是( )
A. a b 0
率,通过化简,用科学计数法表示即可.
【详解】
解:由题干条件可得,5G 网络峰值速率:100Mbps×204.8=20480 Mbps=2.048×104 Mbps,
故选 D.
【点睛】
本题考查了文字语言转化为数学语言的能力,灵活理解题干的内容并化简是解题的关键.
17.“山西八分钟,惊艳全世界”.2019 年 2 月 25 日下午,在外交部蓝厅隆重举行山西全球
B. a b 0
【答案】A 【解析】
由题意可知 a<0<1<b,a=-b, ∴a+b=0,a-b=2a<0,|a|=|b|,ab<0, ∴选项 A 正确,选项 B、C、D 错误, 故选 A.
C. a b
D. ab 0
5.在运算速度上,已连续多次取得世界第一的神威太湖之光超级计算机,其峰值性能为
对值>10 时,n 是正数;当原数的绝对值<1 时,n 是负数.
【详解】
将 7038000 用科学记数法表示为:7.038×106.
故选:C. 【点睛】 此题考查科学记数法的表示方法.解题关键在于掌握科学记数法的表示形式为 a×10n 的形 式,其中 1≤|a|<10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值.
网络在理想状态下,峰值速率约是 100Mbps,未来 5G 网络峰值速率是 4G 网络的 204.8
倍,那么未来 5G 网络峰值速率约为( )
A.1×102 Mbps
B.2.048×102 Mbps
C.2.048×103 Mbps
D.2.048×104 Mbps
【答案】D
【解析】
【分析】
已知 4G 网络的峰值速率,5G 网络峰值速率是 4G 网络的 204.8 倍,可得 5G 网络峰值速
人,创历史新低.数据 47000 用科学记数法表示为( )
A. 4.7104
B. 47103
C. 4.7 104
D. 0.47105
【答案】A
【解析】
【分析】
科学记数法的表示形式为 a×10n 的形式,其中 1≤|a|<10,n 为整数.确定 n 的值时,要看
把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝 对值>1 时,n 是正数;当原数的绝对值<1 时,n 是负数. 【详解】 解:将 47000 用科学记数法表示为:4.7×104. 故选 A. 【点睛】 本题主要考查科学记数法的表示方法,科学记数法的表示形式为 a×10n 的形式,其中 1≤|a| <10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值.
B.-2019
C. 1 2019
D. 1 2019
先利用绝对值的定义求出 2019 ,再利用倒数的定义即可得出结果.
【详解】
2019 =2019,2019 的倒数为 1 2019
故选 C 【点睛】 本题考查了绝对值和倒数的定义,熟练掌握相关知识点是解题关键.
3.据央视网报道,2019 年 1~4 月份我国社会物流总额为 88.9 万亿元人民币,“88.9 万亿”
“城市病”.预计到 2035 年,副中心的常住人口规模将控制在 130 万人以内,初步建成国际
一流的和谐宜居现代化城区.130 万用科学记数法表示为( )
A. 1.3 106
B.130 104
C.13105
D.1.3105
【答案】A
【解析】
【分析】
科学记数法的表示形式为 a×10n 的形式,其中 1≤|a|<10,n 为整数.确定 n 的值是易错
361000000 = 3.61108 ,
故选:C. 【点睛】
本题考查科学记数法的表示方法.科学记数法的表示形式为 a×10n 的形式,其中 1≤|a|<
10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值.
9.若 (x 1)2 2 y 1 0 ,则 x+y 的值为( ).
A. 1 2
【答案】A 【解析】
B. 1 2
C. 3 2
D. 3 2
解:由题意得:x-1=0,2y+1=0,解得:x=1,y= 1 ,∴x+y=1 1 1 .故选 A.
2
22
点睛:本题考查了非负数的性质.几个非负数的和为 0,则每个非负数都为 0.
10.下列语句正确的是( ) A.近似数 0.010 精确到百分位 B.|x-y|=|y-x| C.如果两个角互补,那么一个是锐角,一个是钝角 D.若线段 AP=BP,则 P 一定是 AB 中点 【答案】B 【解析】 【分析】 A 中,近似数精确位数是看小数点后最后一位;B 中,相反数的绝对值相等;C 中,互补性质的考 查;D 中,点 P 若不在直线 AB 上则不成立 【详解】 A 中,小数点最后一位是千分位,故精确到千分位,错误; B 中,x-y 与 y-x 互为相反数,相反数的绝对值相等,正确; C 中,若两个角都是直角,也互补,错误; D 中,若点 P 不在 AB 这条直线上,则不成立,错误 故选:B
科学记数法表示为( )
A. 70.38105
B. 7.038106
C. 7.038106
D. 0.7038106
【答案】C
【解析】
【分析】
科学记数法的表示形式为 a×10n 的形式,其中 1≤|a|<10,n 为整数.确定 n 的值时,要看
把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝
7.根据如图的程序运算:
当输入 x=50 时,输出的结果是 101;当输入 x=20 时,输出的结果是 167.如果当输入 x
的值是正整数,输出的结果是 127,那么满足条件的 x 的值最多有( )
A.3 个
B.4 个
C.5 个
D.6 个
【答案】D
【解析】
【分析】
根据程序中的运算法则计算即可求出所求.
解:输入 x 16 后,取算术平方根的结果为 2,判断 2 不是无理数,再取 2 的算术平方根
为 2 , 2 是无理数,数出结果.
故 A 为答案.
【点睛】
本题主要考查流程图的知识点、无理数的基本概念(无限不循环小数)、算术平方根的基
本概念,看懂流程图是做题的关键,注意算术平方根只有正数.
12.据报道,2019 年元旦小长假云南省红河州共接待游客约为 7038000 人,将 7038000 用
C.0.384× 10 6 km D.3.84 ×10 6 km
【答案】B
【解析】
【分析】
科学记数法的表示形式为 a×10n 的形式,其中 1≤|a|<10,n 为整数.确定 n 的值时,要看
把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝
对值>10 时,n 是正数;当原数的绝对值<1 时,n 是负数.
故选 A.
【点睛】
本题考查了科学记数法的表示方法.科学记数法的表示形式为 a×10n 的形式,其中 1≤|a|<
10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值.
16.北京市将在 2019 年北京世园会园区、北京新机场、2022 年冬奥会场馆等地,率先开
展 5G 网络的商用示范.目前,北京市已经在怀柔试验场对 5G 进行相应的试验工作.现在 4G
12.5 亿亿次/秒.这个数据以亿次/秒为单位用科学计数法可以表示为( )亿次/秒
A.1.25108
B.1.25109
C.1.251010
D.12.5108
【答案】B
【解析】
【分析】
科学记数法的表示形式为 a×10n 的形式,其中 1≤|a|<10,n 为整数.确定 n 的值时,要看
把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.
一个符号一样,融入到人们的日常生活当中.2018 年京东在双十一期间(11 月 1 日﹣11 月
11 日)累计下单金额达 1598 亿元人民币.用科学记数法表示数 1598 亿是( )
A.1.598×1011
B.15.98×1010
C.1.598×1010
D.1.598×108
【答案】A
【解析】
【分析】
【点睛】 概念的考查,此类题型,若能够举出反例来,则这个选项是错误的
11.如图,是一个计算流程图.当 x 16 时, y 的值是( )
A. 2
B. 2
C. 2
D. 2
【答案】A
【解析】
【分析】
观察流程图的箭头指向,根据判断语句,当结果是无理数时输出,当结果是有理数时重复
上述步骤,即可得到答案.
【详解】
科学记数法的表示形式为 a×10n 的形式,其中 1≤|a|<10,n 为整数.确定 n 的值时,要看
把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝
相关文档
最新文档