磷化工艺参数的影响
铝合金磷化工艺的研究

铝合金磷化工艺的研究随着现代工业的快速发展,铝合金作为一种轻质、高强度、耐腐蚀性能优异的材料,被广泛应用于航空航天、汽车制造、建筑工程等领域。
然而,铝合金在实际应用过程中,常常会受到腐蚀的侵蚀,降低了其使用寿命和性能。
为了改善铝合金的抗腐蚀性能,提高其耐用性,研究人员开始探索铝合金磷化工艺。
铝合金磷化工艺是一种通过在铝表面形成磷化物层来提高其抗腐蚀性能的方法。
磷化物层具有较高的硬度、耐磨性和耐腐蚀性,可以有效地保护铝合金表面免受腐蚀的侵蚀。
磷化工艺可以分为化学磷化和电化学磷化两种方式。
化学磷化是将铝合金表面浸泡在含有磷酸盐和其他助剂的溶液中,通过表面化学反应,在铝表面形成一层磷化物覆盖层。
化学磷化工艺简单、成本低廉,可以在常温下进行。
然而,磷化层的厚度和质量受到多种因素的影响,如酸性溶液浓度、温度、浸泡时间等,需要进行严格的工艺控制。
电化学磷化是利用电化学方法,在铝合金表面形成磷化物覆盖层。
通过在溶液中施加电流,使铝表面发生氧化还原反应,生成磷化物层。
电化学磷化可以控制磷化层的厚度和质量,具有较高的工艺可控性。
然而,电化学磷化工艺相对复杂,需要专门的设备和技术支持。
铝合金磷化工艺的研究主要集中在以下几个方面:1. 工艺参数的优化。
磷化工艺的效果受到多种因素的影响,如溶液成分、温度、pH值等。
研究人员通过对不同工艺参数的调整和优化,寻找最佳的磷化工艺条件,以获得最佳的磷化效果。
2. 研究磷化机理。
理解磷化过程中的化学反应机理对于优化磷化工艺具有重要意义。
研究人员通过表面分析技术和材料科学方法,深入探究磷化过程中的物理化学现象,揭示磷化机理,为磷化工艺的改进和控制提供理论依据。
3. 磷化层的性能评价。
磷化层的性能评价是研究铝合金磷化工艺的重要一环。
研究人员通过对磷化层的显微结构、硬度、耐磨性、耐腐蚀性等性能进行测试和分析,评价磷化层的质量和性能,为磷化工艺的应用提供依据。
铝合金磷化工艺的研究对于提高铝合金的耐腐蚀性能,延长其使用寿命具有重要意义。
钢铁零件磷化缺陷原因分析及解决方案

钢铁零件磷化缺陷原因分析及解决方案钢铁零件磷化缺陷是指在钢铁零件表面磷化处理过程中出现的不良现象,主要表现为磷化层厚度不均匀、破碎、脱落、结晶不良等问题。
这些缺陷会降低钢铁零件的使用寿命和耐腐蚀性能,对产品质量带来不良影响。
针对钢铁零件磷化缺陷的原因,可以从工艺参数、磷化液配方、零件准备等方面进行分析,并提出相应的解决方案。
一、工艺参数方面:1. 温度控制不当:磷化过程中,温度过高或过低都会导致磷化层的厚度不均匀或者结晶不良。
解决办法是对磷化槽进行良好的隔热措施,保持磷化槽内温度的稳定。
2. 磷化时间不足:磷化时间过短会导致磷化层厚度不够,易产生薄弱处。
解决办法是根据不同钢铁零件的尺寸和形状,合理调整磷化时间,保证磷化层达到要求的厚度。
3. 搅拌不均匀:搅拌不均匀会使磷化槽内磷化剂和零件接触不均匀,导致磷化层不均匀。
解决办法是改进搅拌装置,提高磷化槽内的搅拌效果,使磷化剂均匀分布。
二、磷化液配方方面:1. 磷化剂浓度过高或过低:磷化剂浓度过高容易导致磷化层结晶不良,过低则会导致磷化层过薄。
解决办法是根据钢铁零件的要求和工艺参数,精确控制磷化剂的浓度。
2. pH值控制不当:pH值过高或过低都会对磷化层的质量产生不良影响。
解决办法是使用pH调节剂控制磷化液的pH值,确保pH值在适宜范围内。
三、零件准备方面:1. 表面污染:钢铁零件表面存在油脂、氧化物等污染物会影响磷化层的质量。
解决办法是在磷化前对零件进行清洗和除污处理,确保零件表面干净。
2. 零件的形状和材质:不同形状和材质的零件可能对磷化过程有不同的要求,需要进行不同的处理和控制。
解决办法是根据不同的零件特点,采取适当的工艺和操作方法,保证磷化层质量。
钢铁零件磷化缺陷的原因主要包括工艺参数、磷化液配方和零件准备等方面。
解决这些问题的关键在于精确控制工艺参数,合理调整磷化液配方,以及对零件进行彻底清洗和除污处理。
只有通过科学的工艺和严格的操作,才能有效地解决钢铁零件磷化缺陷问题,提高产品质量。
影响磷化的工艺因素

影响磷化的工艺因素基材1基材化学成分碳原子的影响由于钢材含碳量不同,或受热处理温度影响而造成碳的表面富集,表面含碳量高,对磷化膜的耐蚀性和附着力有极坏的影响,晶粒粗大。
利用电子能谱分析可以看出,钢板表面含碳量低时容易磷化,结晶致密,耐蚀性好,颜色浅;反之、表面含碳量高,不易磷化,膜薄,颜色深,易产生色斑,缺陷较多。
合金元素的影响Cr原子。
合金钢中含Cr<2%时,可形成均匀磷化膜;含Cr> 8%时,形成磷化膜困难。
可采用快速磷化(催化磷化)或强腐蚀、抛丸等,部分解决合金钢难以形成磷化膜的问题。
Si原子。
含Si量高则不易磷化,膜层粗化。
Mn原子。
Mn偏析在磷化过程中可均匀分布到结晶组织,从而使磷化膜致密,膜层颜色深(酸洗时易形成黑膜,便于黑色磷化,附着力强)。
Ni原子。
含Ni材质经热处理后,合金组织发生变化,磷化困难,且易出现缺陷。
活性冷轧钢板的活性大小对磷化效果产生不同的影响。
即活性小的冷轧钢板磷化效果好;而活性大的磷化效果差。
生产表明,几种冷轧钢板的活性大小顺序:宝钢板2030>日本板>宝钢1550。
需要钢板生产厂家,降低钢板活性。
表面状态粗糙度在相同磷化条件下,磷化工件表面光洁度越高,磷化过程进行越缓慢,获得的膜层薄而致密,且颜色浅。
反之,表面粗糙,磷化反应快,膜层厚而疏松,均匀性差,颜色深。
可以解释为:光洁度高的表面比粗糙的表面电位正,基体表面在磷化液中不易被酸蚀所致。
所以,光洁度高的工件,磷化前必须进行充分预处理(抛丸或酸蚀)。
锈蚀度。
锈蚀钢板会影响磷化质量(无论采用何种涂锈方法,其磷化膜耐蚀性差)。
况且由于酸洗造成工件表面黑白不均匀,同样影响磷化效果(白色部位较难磷化)。
因此,尽量不要选用锈蚀的钢板加工工件。
特别要防止采用不同厂家、不同批次的钢板来加工同一工件(如汽车车身等)。
否则。
因钢板的差异而造成磷化质量不一样。
同时要注意加工过程中尽量不要破坏钢板防锈膜和加工后长时间存放(采取防锈措施)。
磷化膜与工艺参数的关系

磷化膜质量与工艺参数的关系磷化膜的质量与磷化剂的质量有直接关系,也与磷化过程中的工艺参数变化有密切的关系。
磷化膜厚度与磷化时间和温度的关系一般情况下,磷化时间越长,温度越高,所生成的磷化膜越厚。
这一规律只适用于一定范围内,当磷化膜达到一定厚度时,孔隙减少,磷化工作液已不能与基体金属接触而发生磷化反应,再延长磷化时间也不能增加磷化膜的厚度。
磷化温度更不能大高,如温度过高,会导致磷化膜粗糙、多孔,耐蚀性能下降,更严重的是使工作液中的大量有效成分变为沉渣,打破磷化工作液的平衡,并可能使磷化膜表面产生大量的挂灰。
游离酸度和总酸度对磷化膜质量的影响磷化工作液在磷化过程中,游离酸度和总酸度的控制十分重要,它是确保磷化工作液中各组分化学平衡,磷化反应正常进行的主要条件。
不同类型的磷化剂控制范围有很大的差别,如高温锰系磷化一般不控制游离酸和总酸度的具体数量而是控制酸比,其他类型的磷化控制游离酸和总酸的具体数值。
一般规律是:磷化温度越高,游离酸度越高,生成的磷化膜越厚但容易产生不细密和粗糙的磷化膜,如果游离酸偏低,磷化生成速度缓慢,但生成的磷化膜细密。
总酸度高,对磷化膜质量无明显影响,但如果总酸度过低,磷化膜生成速度变慢,往往在规定的时间内不能获得满意的磷化膜:促进剂对磷化质量的影响促进剂在磷化液中起到缩短磷化时间,加快磷化生成速度,降低磷化温度的作用。
促进剂的量应适当。
促进剂量过少,磷化速度变慢,不能在规定时间内生成完整的磷化膜;促进剂量过多,磷化速度加快,但是造成金属表面钝化,反而影响磷化膜的生成,易产生蓝色或彩虹色的氧化膜。
促进磷化膜形成的方法可分为化学方法和物理方法两大类: (1)化学方法。
在磷化液中加人氧化剂,如氯酸盐、硝酸盐、亚硝酸盐、过氧化氢、过氧化物、嗅酸盐、碘酸盐、有机硝基化合物等。
在磷化液中加人还原剂,如亚硫酸盐、连二亚硫酸盐、羟胺等。
在磷化液中加入重金属盐,如铜、镍、钼、钴、钨等。
(2)物理方法( ①机械方法:如搅拌磷化液或把磷化液喷射到工件上的方法。
金属磷化工艺技术标准

金属磷化工艺技术标准金属磷化工艺技术标准在金属表面处理技术中,磷化工艺是一种常用的方法。
磷化能够形成一层磷化物膜,提高金属表面的耐腐蚀性能和附着力,从而延长金属产品的使用寿命。
为了确保磷化工艺的质量和稳定性,制定金属磷化工艺技术标准具有重要意义。
金属磷化工艺技术标准需要包含以下内容:1. 磷化液配方:磷化液的配方是决定磷化效果的关键。
不同金属需要使用不同的磷化液配方。
标准需要规定磷化液的主要成分,如含磷酸盐、缓蚀剂、表面活性剂等,以及适用于各类金属的磷化液的配比。
2. 磷化液处理参数:磷化液处理的过程参数也是保证磷化效果的重要因素。
标准需要明确磷化液的温度、浸泡时间、液体搅拌强度等处理条件,并提供合理的范围和标准操作方法。
3. 表面预处理:在磷化前的金属表面预处理对磷化效果有重要影响。
标准需要规定金属表面的处理方法,如去油、除锈、酸洗等,以及预处理的质量要求。
4. 检验和评价指标:为了评估磷化工艺的效果,标准需要规定一系列检验和评价指标。
例如,磷化膜的厚度、颜色、结晶度、耐腐蚀性能、附着力等。
标准还需要提供相应的测试方法和检测仪器。
5. 操作规范:金属磷化工艺需要操作人员按照标准进行操作,以确保工艺的一致性和稳定性。
标准需要明确操作人员的技术要求和操作规范,包括操作流程、安全要求、仪器设备的使用等。
6. 质量控制:金属磷化工艺需要进行质量控制,以确保产品的质量。
标准需要规定质量控制的方法和标准,如定期检查设备的运行情况、检测磷化膜的质量、记录操作参数等。
7. 产品标识:为了区分不同批次的磷化产品,标准需要规定产品标识的要求。
例如,标注磷化液配方、批次号、生产日期等信息。
金属磷化工艺技术标准的制定需要综合考虑金属材料的特性和应用环境的要求。
标准的制定应该科学、合理,并且能够适应不同金属材料的磷化需求。
同时,标准的制定也需要结合实际生产情况,综合考虑成本、效率、环境等因素,以提高金属磷化工艺的技术水平和经济效益。
传统磷化工艺的危害

传统磷化工艺的危害
传统磷化工艺指的是使用酸性磷酸溶液进行金属表面的磷化处理,常用于防腐蚀、增加摩擦系数和提高着色性能等方面。
然而,传统磷化工艺存在一些潜在的危害:
1. 酸性磷酸溶液中的酸性气体:传统磷化过程中产生的酸性气体,例如磷化钢时产生的磷化氢气体,对操作人员和环境造成潜在的危害。
这些酸性气体可能会引起呼吸道刺激、眼睛刺激,并对大气环境造成污染。
2. 废水和废气的处理:传统磷化过程中产生大量废水和废气,其中包含重金属离子、有机物和酸性物质等。
这些废水和废气如果没有经过有效的处理,可能对环境造成污染,对生态系统和人类健康造成潜在危害。
3. 高能耗:传统磷化需要高温和长时间的处理,因此会消耗较多的能源。
高能耗不仅对环境不利,还会增加生产成本。
4. 重金属污染:传统磷化液中常含有重金属离子,例如镉、铅等,这些重金属离子会渗透到磷化层中,并可能对人体和环境产生慢性危害。
5. 工艺复杂性:传统磷化工艺需要严格控制溶液浓度、温度和处理时间等参数,操作相对复杂。
此外,如果未能严格控制工艺条件,还可能导致磷化膜的质量不稳定,从而影响表面性能。
综上所述,传统磷化工艺存在一些潜在的危害,包括酸性气体的危害、废水和废气处理问题、高能耗、重金属污染和工艺复杂性等。
磷化膜质量评定项目与方法

磷化前处理技术在实际生产中的应用一、磷化膜质量评定项目与方法1、外观目视法好的磷化膜外观均匀完整细密、无金属亮点、无白灰。
锌系磷化膜为灰色膜,铁系磷化为彩虹色膜。
而铝及铝合金则为无色或彩色铝皮膜。
2、微观结构显微镜法以金相显微镜或电子显微镜将磷化膜放大到100~1000倍,观察结晶形状、尺寸大小及排部情况。
结晶形状以柱状晶为好。
结晶尺寸小些为好,一般控制在几十微米以下,排部越均匀,孔隙率越小越好。
3、厚度(或重量法)测定法对于钢板的磷化膜方法是将磷化板浸在75度,质量分数喂%的铬酸溶液中(10~15)min以去除磷化膜,然后除去膜层前后的重量差求的膜重。
3、腐蚀性能测定法最常用的是硫酸铜点滴实验法。
现在常与下道工序进行后根据用户要求进行盐雾试验、耐温热试验或循环周期试验等。
4、抗冲击试验常常是进行涂装后一起测定,当用49N•cm对涂装后的磷化板进行冲击试验时,当冲击后的样板的反面冲击点不产生放射性裂纹时,即可确定该磷化膜的质量较好。
5、二次附着力测定磷化膜涂装后测定的附着力为一次附着力。
在一定条件下进行耐温水实验后测定的附着力称为二次附着力。
一般是在耐水试验后的样板上用划格法作附着力的测定,以胶带剥离后观察涂膜脱落等级,一般均为平行比较实验。
6、磷化膜孔隙率的测定取14%的NaCL和3%的铁氰化钾溶液,表面活性剂的质量分数为0.1%的蒸馏水溶液,保存在褐色瓶中24小时,用滤纸过滤。
使用时将滤纸切成长、宽均为 2.5厘米的纸片,用塑料镊子将纸片浸入上述溶液中,提出滴净多余试液,将他覆盖在戴测的磷化膜表面,经过一段时间(1分钟)后将试纸拿掉,观察膜层表面,有兰色斑点处表示有孔隙部分。
6、磷化膜的耐碱性比较磷化膜在浸碱液0.1mol/L的氢氧化钠,25度,5分钟前后的质量差,可以得到磷化膜在碱液中的溶解量。
7、磷化膜的耐酸性比较磷化膜在PH值位为2的酸液中的溶解量来评价磷化膜的耐酸性。
磷化处理影响因素及常见问题

磷化处理影响因素及常见问题磷化处理影响因素及常见问题一、磷化工艺参数的影响1、总酸度————总酸度过低、磷化必受影响,因为总酸度是反映磷化液浓度的一项指标。
控制总酸度的意义在于使磷化液中成膜离子浓度保持在必要的范围内。
2、游离酸度————游离酸度过高、过低均会产生不良影响。
过高不能成膜,易出现黄锈;过低磷化液的稳定性受威胁,生成额外的残渣。
游离酸度反映磷化液中游离H+的含量。
控制游离酸度的意义在于控制磷化液中磷酸二氢盐的离解度,把成膜离子浓度控制在一个必须的范围。
磷化液在使用过程中,游离酸度会有缓慢的升高,这时要用碱来中和调整,注意缓慢加入,充分搅拌,否则碱液局部过浓会产生不必要的残渣,出现越加碱,游离酸度越高的现象。
单看游离酸度和总酸度是没有实际意义的,必须一起考虑。
3、酸比————酸比即指总酸度与游离酸度的比值。
一般的说酸比都在5~30的范围内。
酸比较小的配方,游离酸度高,成膜速度慢,磷化时间长,所需温度高。
酸比较大的配方,成膜速度快,磷化时间短,所需温度低。
因此必须控制好酸比。
4、温度————磷化处理温度与酸比一样,也是成膜的关键因素。
不同的配方都有不同的温度范围,实际上,他在控制着磷化液中的成膜离子的浓度。
温度高,磷酸二氢盐的离解度大,成膜离子浓度相应高些,因此可以利用此种关系在降低温度的同时提高酸比,同样可达到成膜,其关系如下:70℃ 60℃ 50℃ 40℃ 30℃ 20℃1/5 1/7 1/10 1/15 1/20 1/25生产单位确定了某一配方后,就应该严格控制好温度,温度过高要产生大量沉渣,磷化液失去原有平衡。
温度过低,成膜离子浓度总达不到浓度积,不能生成完整磷化膜。
温度过高,磷化液中可溶性磷酸盐的离解度加大,成膜离子浓度大幅度提高,产生不必要的沉渣,白白浪费了磷化液中的有效成分,原有的平衡被迫坏,形成一个新的温度下的平衡,如,低温磷化液在温度失控而升高时,H2PO4→H++PO43- 的离解反应向右进行,从而使磷酸根浓度升高,产生磷酸锌沉淀,使磷化液的酸比自动升高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一般规律是:磷化温度越高,游离酸度越高,生成的磷化膜越厚,但容易产生不细密和粗糙的磷化膜;如果游离酸偏低,磷化生成速度缓慢,但生成的磷化膜细密。
总酸度高,对磷化膜质量无明显影响,但如果总酸度过低,磷化膜生成速度变慢,往往在规定的时间内不能获得满意的磷化膜。
1、促进剂促进剂加速剂的含量对磷化过程影响较大,含量太低,反应速度慢,但太高又会导致金属表面钝化,阻止磷化膜的形成,因此NO2-,ClO3-等的含量必须严格控制。
(当促进剂浓度过高时,反应进行的速度会很快,成膜物质来不及沉淀在基材表面而生成残渣,造成磷化药剂的浪费。
由于促进剂的强氧化性,浓度过高还会使金属表面生成一种氧化膜。
)
2、PH一般来说,锌系磷化液、锰系磷化液的pH值以2—3为宜,pH<1..5时,金属工件表面难以生成磷化膜,而造成工件铁的溶解大于磷酸盐的沉积,不起磷化作用而起了酸洗作用。
若pH值>3.0,则工件表面严重挂灰,生成大量粉末,造成磷化药剂的非生产性消耗,形成浪费。
以磷酸二氢铁为主的磷化液,pH值以3.0~3.5为宜。
3、游离酸游离酸度是指磷化槽液中的游离H+的浓度(含部分游离磷酸),单位为“点”。
其定义为:取10mL磷化槽液,以甲基橙3.1(红)-4.4(黄)或溴粉兰pH 3.0~4.6黄变蓝作指示剂,用0.1mol/LNaOH溶液滴定至终点,0.1mol/L NaOH消耗的毫升数,即为此磷化槽液的游离酸点数,也称游离酸度(FA)。
游离酸度是磷化控制的一个重要参数,磷化槽液中游离酸的来源是磷化剂中的游离磷酸,及磷化剂主成分磷酸二氢盐的电离。
其作用是促使金属(如铁)的溶解,以形成较多的晶核,使膜结晶致密。
控制游离酸度的目的在于控制磷化槽液中磷酸二氢盐的离解度,以便把磷化成膜离子预先控制在一个必须的范围之内,一般来说,磷化槽液的游离酸度过高、过低都会对磷化产生不良影响。
如果游离酸度过高,则磷化液与金属工件作用加快,会析出大量的氢,还将使得Fe(PO4) 2残渣大量生成。
同时,H+浓度的增大,抑制了Zn(H2PO4) 2的电离,使成膜离子浓度过低,令界面层磷酸盐不易饱和,导致晶核难以形成,造成磷化成膜困难,令磷化时间延长,生成的磷化膜结构疏松、多孔、粗糙,工件表面常常发黄,抗腐蚀性能下降。
调整的方法是,对于锌系磷化液可以加ZnO、ZnCO3或NaOH溶液,以降低游离酸度,对于锰系磷化液可以加MnCO3调整。
如果游离酸度过低,金属工件腐蚀反应缓慢,磷化膜薄,甚至难以形成,磷化槽液极不稳定,易产生大量残渣,引起工件表面挂灰,造成磷化药剂的非生产消耗。
调整的办法是在磷化槽液中加磷酸或磷酸二氢锌,1L磷化槽液加1g磷酸或6~7g磷酸二氢锌即可升高游离酸度1点。
因为温度越高,反应越易电离,所以游离酸度是温度的函数,会随着温度的变化而变化。
4、总酸总酸度是反映磷化槽液浓度的一个重要参数,单位为“点”。
其定义为:取10mL磷化槽液,以酚酞作指示剂,用0.1mol/L NaOH溶液滴定至终点,0 1mo1/L NaOH 溶液消耗的毫升数即为此磷化槽液的总酸度点数,也称总酸度(TA)。
因为采用酚酞作指示剂,滴定至终点时,溶液的pH值为9.7,这时,磷化溶液中的H2PO4、H2PO42-被中和,见下式:OH-十H3PO4—H2PO4-+H2O
OH-+H2PO4—HPO42-+H2O
由于磷化溶液中有金属离子的存在,滴定时生成磷酸盐沉淀,所以,HPO42-也被滴定,见下式:
2OH-+3M2++2HPO42-—M3 (PO4)2+2H2O
同时,磷化溶液中的金属离子还容易生成氢氧化物沉淀,下表是浓度为0.1mol/L 的锌、钙、锰、铁等离子的氢氧化物开始沉淀和完全沉淀的pH值范,下表是金属离子的氢氧
化物沉淀时的pH值
件表面挂灰。
但Zn2+含量过低时,磷化时间延长,难以形成磷化膜,形成的磷化膜薄而疏松、发暗。
7、磷化温度磷化温度对磷化成膜速度影响显著,这是因为磷化液中的电离平衡,此过程为吸热过程,因此,温度升高,平衡右移,成膜速度加快。
但温度过高会造成磷化膜厚且粗糙,沉渣增多。
如降低磷化温度,电离平衡左移,游离酸度显著下降,而游离酸对钢铁的阳极溶解、磷化速度起决定作用。
因此,降低磷化温度不利于磷化,此时得到的磷化膜稀疏,耐蚀性差,甚至易泛锈。
一般来说,不同的磷化液配方,有不同的磷化温度,但总地来说,磷化温度偏高有利于磷化膜的生成,因温度高,反应速度加快,磷化成膜时间就短。
但是温度过高会电离出大量的Zn2+和PO43-使之形成Zn3(PO4)2沉渣,造成磷化药剂的无效消耗,并容易使工件挂灰。
若磷化速度过快,会使磷化膜的结晶粗大,得不到好的磷化膜,如磷化温度过低,而低于其下限,则整个磷化速度减慢,磷化成膜的时间会延长,得到的磷化膜就过薄过细,甚至在规定的时间内(如流水线作业)生不成完整的磷化膜,工件在空气中容易被氧化生锈。
8、磷化时间在特定的温度下,磷化时间相对来说越长越好,从理论上来说,在特定的温度下,磷化成膜的速度开始很快,然后逐渐变慢,当磷化到一定程度时,磷化膜不再增厚,反应不再进行,这是因为金属表面全部被磷化膜覆盖。
也就是说,磷化到一定时间后,磷化膜重不再增加,磷化液达到新的平衡,但磷化时间对磷化膜重量的影响是磷化时间过长,由于受游离酸的侵蚀,磷化膜会变的粗糙,如果磷化时间过短,则不能形成完整的磷化膜。