求数列通项公式的十种方法-例题答案详解
求数列通项公式的十种方法(例题+详解)

求数列通项公式的十种方法一、公式法例1 已知数列{}n a 满足1232n n n a a +=+⨯,12a =,求数列{}n a 的通项公式。
解:1232n n n a a +=+⨯两边除以12n +,得113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2n n a 是以1222a 11==为首项,以23为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222n n a n =-。
评注:本题解题的关键是把递推关系式1232n n n a a +=+⨯转化为113222n n n na a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22n n a n =+-,进而求出数列{}n a 的通项公式。
二、利用{1(2)1(1)n n S S n S n n a --≥==例2.若n S 和n T 分别表示数列{}n a 和{}n b 的前n 项和,对任意正整数2(1)n a n =-+,34n n T S n -=.求数列{}n b 的通项公式;解: 22(1)4231a n a d S n n n n =-+∴=-=-=--23435T S n n n n n ∴=+=-- (2)分 当1,35811n T b ===--=-时当2,626 2.1n b T T n b n n n n n ≥=-=--∴=---时……4分练习:1。
已知正项数列{a n },其前n 项和S n 满足10S n =a n 2+5a n +6且a 1,a 3,a 15成等比数列,求数列{a n }的通项a n解: ∵10S n =a n 2+5a n +6, ① ∴10a 1=a 12+5a 1+6,解之得a 1=2或a 1=3又10S n -1=a n -12+5a n -1+6(n ≥2),②由①-②得 10a n =(a n 2-a n -12)+6(a n -a n -1),即(a n +a n -1)(a n -a n -1-5)=0 ∵a n +a n -1>0 , ∴a n -a n -1=5 (n ≥2)当a 1=3时,a 3=13,a 15=73 a 1, a 3,a 15不成等比数列∴a 1≠3;当a 1=2时, a 3=12, a 15=72, 有 a 32=a 1a 15 , ∴a 1=2, ∴a n =5n -3三、累加法例3 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
求数列通项公式的十种方法(教师版)

专题----通项公式的求法总述:求数列通项的方法:累加法、累乘法、待定系数法、阶差法(逐差法)、迭代法、对数变换法、倒数变换法、一、累加法 适用于:1()n n a a f n +=+转换成1()n n a a f n +-=,其中f(n)可以是关于n 的一次函数、二次函数、指数函数、分式函数,求通项n a .①若f(n)是关于n 的一次函数,累加后可转化为等差数列求和; ②若f(n)是关于n 的二次函数,累加后可分组求和;③若f(n)是关于n 的指数函数,累加后可转化为等比数列求和; ④若f(n)是关于n 的分式函数,累加后可裂项求和。
例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++=例2 已知数列{}n a 满足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。
解;由1231nn n a a +=+⨯+得1231nn n a a +-=⨯+则11232211122112211()()()()(231)(231)(231)(231)32(3333)(1)33(13)2(1)313331331n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=⨯++⨯+++⨯++⨯++=+++++-+-=+-+-=-+-+=+-练习1.已知数列{}n a 的首项为1,且*12()n n a a n n N +=+∈写出数列{}n a 的通项公式.答案:12+-n n 练习2.已知数列}{n a 满足31=a ,)2()1(11≥-+=-n n n a a n n ,求此数列的通项公式.答案:裂项求和 n a n 12-=二、累乘法1.适用于: 1()n n a f n a += ----------这是广义的等比数列2.若1()n n a f n a +=,则31212(1)(2)()n na a af f f n a a a +=== ,,, 两边分别相乘得,1111()nn k a a f k a +==⋅∏例3 已知数列{}n a 满足321=a ,n n a n na 11+=+,求n a 。
求数列通项公式的11种方法

求数列通项公式的11种方法方法总述:一.利用递推关系式求数列通项的11种方法:累加法、 累乘法、 待定系数法、 阶差法〔逐差法〕、 迭代法、 对数变换法、 倒数变换法、换元法〔目的是去递推关系式中出现的根号〕、 数学归纳法〔少用〕不动点法〔递推式是一个数列通项的分式表达式〕、 特征根法二.四种根本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。
等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最根本方法。
三 .求数列通项的方法的根本思路是:把所求数列通过变形,代换转化为等级差数列或等比数列。
四.求数列通项的根本方法是:累加法和累乘法。
五.数列的本质是一个函数,其定义域是自然数集的一个函数。
一、累加法1.适用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最根本的二个方法之一。
2.假设1()n n a a f n +-=(2)n ≥,那么21321(1)(2) ()n n a a f a a f a a f n +-=-=-=两边分别相加得 111()nn k a a f n +=-=∑例1 数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
解:由121n n a a n +=++得121n n a a n +-=+那么112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++=所以数列{}n a 的通项公式为2n a n =。
例2 数列{}n a 满足112313nn n a a a +=+⨯+=,,求数列{}n a 的通项公式。
数列求通项的七种方法及例题

数列求通项的七种方法及例题数列求通项的7种方法及例题:1. 已知首项和公比法:设数列{an}中,a1为首项,q为公比,则an = a1 × q^(n-1)。
例如:已知数列{an}中,a1=2,q=3,求a5。
答案:a5=2×3^4=2×81=1622. 已知前n项和法:设数列{an}中,Sn为前n项和,则an = S0 + S1 + S2 +···+ Sn-1 - (S1 + S2 +···+ Sn-1) = S0。
例如:已知数列{an}中,S2=6,S4=20,求a3。
答案:a3 = S2 - (S2 - S1) = 6 - (6 - 2) = 83. 等差数列的通项公式:设数列{an}为等差数列,d为公差,则an = a1 + (n-1)d。
例如:已知数列{an}为等差数列,a1=2,d=4,求a5。
答案:a5 = 2 + (5-1)4 = 184. 等比数列的通项公式:设数列{an}为等比数列,q为公比,则an = a1 ×q^(n-1)。
例如:已知数列{an}为等比数列,a1=2,q=3,求a5。
答案:a5=2×3^4=2×81=1625. 三项和平均数法:设数列{an}中,Sn = a1 + a2 + a3 +···+ an,则an = Sn/n。
例如:已知数列{an}中,S4=20,求a3。
答案:a3 = S4/4 = 20/4 = 56. 泰勒公式法:对于一般的数列,可以使用泰勒公式进行求通项。
例如:已知数列{an}中,a1=2,且当n→∞ 时,an → 0,求a4。
答案:使用泰勒公式,a4 = a1 + (n-1)(a2 - a1)/1! + (n-1)(n-2)(a3 -2a2 + a1)/2! + (n-1)(n-2)(n-3)(a4 - 3a3 + 3a2 - a1)/3! = 2 + 3(2 - 2)/1! + 3(3 - 2)(3 - 4)/2! + 3(3 - 2)(3 - 4)(3 - 5)/3! = 2 + 3(0)/1! + 3(1)(-1)/2! + 3(1)(-1)(-2)/3! = 2 - 3/2 - 3/4 + 3/6 = 2 - 1/87. 斐波那契数列法:斐波那契数列是一种特殊的数列,它的通项公式可以写作 an = an-1 + an-2。
数列通项公式的完整求法,还有例题详解

一.不雅察法例1:依据数列的前4项,写出它的一个通项公式: (1)9,99,999,9999,…(2) ,17164,1093,542,211(3) ,52,21,32,1(4) ,54,43,32,21-- 解:(1)变形为:101-1,102―1,103―1,104―1,……∴通项公式为:110-=n n a(2);122++=n n n a n(3);12+=n a n (4)1)1(1+⋅-=+n na n n .点评:症结是找出各项与项数n的关系.二.公式法:当已知前提中有a n 和s n 的递推关系时,往往运用公式:a n =1*1(1)(2,)n n s n s s n n N -=⎧⎪⎨-≥∈⎪⎩来求数列的通项公式. 例1: 已知数列{a n }是公役为d 的等差数列,数列{b n }是公比为q 的(q ∈R 且q ≠1)的等比数列,若函数f (x ) = (x -1)2,且a 1 = f (d -1),a 3 = f (d +1),b 1 = f (q +1),b 3 = f (q -1),(1)求数列{ a n }和{ b n }的通项公式;解:(1)∵a 1=f (d -1) = (d -2)2,a 3 = f (d +1)= d 2,∴a 3-a 1=d 2-(d -2)2=2d ,∴d =2,∴a n =a 1+(n -1)d = 2(n -1);又b 1= f (q +1)= q 2,b 3 =f (q -1)=(q -2)2,∴2213)2(q q b b -==q 2,由q ∈R ,且q ≠1,得q =-2,∴b n =b ·qn -1=4·(-2)n -1例2. 等差数列{}n a 是递减数列,且432a a a ⋅⋅=48,432a a a ++=12,则数列的通项公式是( )(A)122-=n a n (B)42+=n a n (C)122+-=n a n(D)102+-=n a n解析:设等差数列的公役位d,由已知⎩⎨⎧==+⋅⋅+12348)()(3333a d a a d a ,解得⎩⎨⎧±==243d a ,又{}n a 是递减数列,∴2-=d ,81=a ,∴=--+=)2)(1(8n a n 102+-n ,故选(D).例 3. 已知等比数列{}n a 的首项11=a ,公比10<<q ,设数列{}n b 的通项为21+++=n n na ab ,求数列{}n b 的通项公式.解析:由题意,321++++=n n n a a b ,又{}n a 是等比数列,公比为q ∴q a a a a b b n n n n n n =++=+++++21321,故数列{}n b 是等比数列,)1(211321+=+=+=q q q a q a a a b ,∴)1()1(1+=⋅+=-q q q q q b n n n点评:当已知数列为等差或等比数列时,可直接运用等差或等比数列的通项公式,只需求得首项及公役公比.例4: 已知无限数列{}n a 的前n 项和为n S ,并且*1()n n a S n N +=∈,求{}n a 的通项公式?【解析】:1n n S a =-,∴111n n n n n a S S a a +++=-=-,∴112n n a a +=,又112a =, ∴12nn a ⎛⎫= ⎪⎝⎭.反思:运用相干数列{}n a 与{}n S 的关系:11a S =,1n n n a S S -=-(2)n ≥与提设前提,树立递推关系,是本题求解的症结.{}n a 的前n 项和n S ,知足关系()1lg nS n +=(1,2)n =⋅⋅⋅.试证数列{}n a 是等比数列.例5:已知数列{}n a 前n 项的和为s n =23a n -3,求这个数列的通项公式.剖析:用a n 调换s n -s 1-n (n ≥2)得到数列项与项的递推关系来求.解: a 1=23a 1-3, ∴ a 1=6s n =23a n -3 (n ∈N *) ① ∴s 1-n =23a 1-n -3 (n ≥2且n ∈N *) ②①- ②得:a n =23a n -23a 1-n∴21 a n =23a 1-n ,即1-n n a a =3(n ≥2且n ∈N *) ∴数列{}na 是以a 1=6,公比q 为3的等比数列. ∴a n=a 1q 1-n =6⨯31-n =2⨯3n.例6:已知正项数列{}n a 中,s n =21(a n +na 1),求数列{}n a 的通项公式.剖析:用s n -s 1-n (n ≥2)调换a n 得到数列n s 与1n s -的递推关系来求较易.解 s n =21(a n +na 1),∴a 1=21( a 1+11a )∴ a 1=1又a n = s n -s 1-n (n ≥2且n ∈N *)∴ s n =21(s n -s 1-n +1n s 1--n s )∴2s n =s n -s 1-n +1n s 1--n s∴sn+s 1-n =1n s 1--n s∴ s n2-s 1-n 2=1 (n ≥2且n ∈N *)∴数列{}2n s 是以a 21=1为首项,公役为1的等差数列. ∴ s n 2=1+(n -1)⨯1=n,即s n=n ,当n ≥2时,s n -s 1-n =a n =n -1-n 将n =1代入上式得a n =n -1-n演习:数列{}n a 前n 项和为n S ,已知n a =5n S -3(*n N ∈),求n a 三.累加法:求形如1n a +=n a +f(n)的递推数列的通项公式的根本办法.(个中f(n)能求前n 项和即可)运用1211()()n n n a a a a a a -=+-+⋅⋅⋅-求通项公式的办法称为累加法.累加法是求型如1()n n a a f n +=+的递推数列通项公式的根本办法(()f n 可求前n 项和).例1.已知数列{}n a 中,1129,21,(2,*)n n a a a n n n N -==+-≥∈,求这个数列的通项公式.剖析:由已知121n n a a n -=+-,得121n n a a n --=-,留意到数列{}n a 的递推公式的情势与等差数列的递推公式相似,因而,可累加法求数列的通项.解:数列{}n a 中,1129,21,(2,*)n n a a a n n n N -==+-≥∈,可得:以上各式相加,将n =1代入上式得228n a n =+演习:已知数列{}n a 中,113,2,(*)n n n a a a n N ==+∈+,求n a例2:已知数列6,9,14,21,30,…求此数列的一个通项. 解易知,121-=--n a a n n ∵,312=-a a ,523=-a a ,734=-a a ……,121-=--n a a n n各式相加得)12(7531-++++=-n a a n ∴)(52N n n a n ∈+=点评:一般地,对于型如)(1n f a a n n +=+类的通项公式,只要)()2()1(n f f f +++ 能进行乞降,则宜采取此办法求解.例3. 若在数列{}n a 中,31=a ,n a a n n +=+1,求通项n a . 解析:由na a n n +=+1得na a n n =-+1,所以11-=--n a a n n ,221-=---n a a n n ,…,112=-a a ,将以上各式相加得:1)2()1(1+⋅⋅⋅+-+-=-n n a a n ,又31=a 所以n a =32)1(+-n n例4已知无限数列{}n a 的的通项公式是12nn a ⎛⎫= ⎪⎝⎭,若数列{}n b 知足11b =,(1)n ≥,求数列{}n b 的通项公式.【解析】:11b =,112nn n b b +⎛⎫-= ⎪⎝⎭(1)n ≥,∴1211()()n n n b b b b b b -=+-+⋅⋅⋅-=1+12+⋅⋅+112n -⎛⎫⎪⎝⎭=1122n -⎛⎫- ⎪⎝⎭.反思:用累加法求通项公式的症结是将递推公式变形为1()n n a a f n +=+.112a =,112nn n a a +⎛⎫=+ ⎪⎝⎭*()n N ∈,求数列{}n a 通项公式.3.累乘法:求形如1n a +=g(n)n a 的递推数列通项公式的根本办法.(个中g(n)可求前n 项 积即可).运用恒等式321121(0,2)n n n n a a a a a a n a a a -=⋅⋅⋅≠≥求通项公式的办法称为累乘法,累乘法是求型如: 1()n n a g n a +=的递推数列通项公式的根本办法(数列()g n 可求前n 项积). 例1.若知足111,(*),1n n a na n N a n +==∈+求这个数列的通项公式. 剖析:由11n na n a n +=+知数列{}n a 不是等比数列,但其递推公式的情势与等比数列递推公式相似,因而,可累加法求数列的通项.解: 111,(*),1n n a na n N a n +==∈+ 以上各式相乘得:11231...234n a n a n -=⨯⨯⨯⨯1n a n∴=(2)n ≥∈*且n N将n =1代入上式得1n a n=变式演习:设{}n a 是首项为1的正数构成的数列,且2211(1)0(12)n n n n n a na a a n +++-+==,,…,则它的通项公式为n a =. 例2:在数列{n a }中,1a =1, (n+1)·1+n a =n ·n a ,求n a 的表达式.解:由(n+1)·1+n a =n ·n a 得11+=+n n a a n n ,1a an =12a a ·23a a ·34a a …1-n n a a =n n n 11433221=-⋅⋅ 所以n a n 1=例3 已知数列{}n a 中,311=a ,前n 项和n S 与n a 的关系是n n a n n S )12(-= ,试求通项公式n a .解析:起首由n n a n n S )12(-=易求的递推公式:1232,)32()12(11+-=∴-=+--n n a a a n a n n n n n 5112521221=--=∴--a a n n a a n n 将上面n —1个等式相乘得:点评:一般地,对于型如1+n a =f (n)·n a 类的通项公式,当)()2()1(n f f f ⋅⋅ 的值可以求得时,宜采取此办法.例四 已知11a =,1()n n n a n a a +=-*()n N ∈,求数列{}n a 通项公式. 【解析】:1()n n n a n a a +=-,∴11n n a n a n++=,又有321121(0,2)n n n n a a a a a a n a a a -=⋅⋅⋅≠≥= 1×23n×××12n-1⋅⋅⋅=n ,当1n =时11a =,知足n a n =,∴n a n =. 反思: 用累乘法求通项公式的症结是将递推公式变形为1()n n a g n a +=.{}n a 知足11a =,123123(1)(2)n n a a a a n a n -=+++⋅⋅⋅+-≥.则{}n a 的通项公式是.4.结构新数列:经由过程变换递推关系,可将非等差数列或等比数列转化为等差或等比数列而求得通项公式的办法.(待定系数法)例题5:已知数列{}n a 中知足11a =,*123()n n a a n N +=-∈,求数列{}n a 的通项公式.剖析:将一阶线性递推关系形如1(0,1)n n a Aa B A B A B +=+≠≠、为常数,可转化为111(),111n n n n Ba B B A a A a A B A A a A +++-+=+=--+-即的一个新的等比数列或消常数项转化为212111()n n n n n n n na aa a A a a A a a ++++++--=-=-,即的一个等比数列.解法1:数列{}n a 中11=a ,321-=+n n a a (n 1≥)∴数列{}331--+n n a a 是以首项231-=-a ,公比为2的等比数列解法2: 数列{}n a 中11=a ,321-=+n n a a ① ∴3212-=++n n a a ②②-①得)(=-n n n n a a a a -++122又 21231a a =-=-∴数列{}1n n a a --是以首项212,a a -=-公比为2的等比数列∴11122,2n n n n n n a a a a ----⨯-=-=-即,(再运用累加法可求数列的通项公式,以下解法略)可求得()*23n n a n N =-∈+ (倒数法)例题6:已知数列{}n a 中知足11a =,131nn n a a a +=+,求数列的通项n a .剖析:可将形如一阶分式递推公式1nn n Ca a Aa B+=+,(A.B.C 为知足前提的常数),等式双方取倒数得:111.n n B Aa C a C+=+,又可运用求形如1''n n a A a B +=+(A ’.B ’为常数)的办法来求数列的通项.解:数列 {}n a 中, 11a =,131n n n aa a +=+∴1113n n a a +=+,即1113n na a +-= ∴数列1n a ⎧⎫⎨⎬⎩⎭是以111,a =公役为3的等差数列.变式演习:知数列{}n a 中知足11a =,1231nn n a a a +=+,求数列的通项.例题7:已知数列{}n a 中知足11a =,122(n n n a a n N ++=+∈),求数列{}n a 的通项公式.剖析:形如递推公式1.(1,1)n n n a q a d q d d +=+≠≠、为非零常数,q 可转化为111.n n n n a a q d d d d ++=+,若令nnn a b d =,则转化为形如1.(n n a A a B A B +=+、为常数)的办法来求数列的通项.(提醒:将122(n n n a a n N ++=+∈)转化为111222n n n n a a ++-=,解法略.)别的,数列通项求法还稀有学归纳猜测法,可以先求出数列的前n 项,然后不雅察前n 项的纪律,再进行归纳.猜测出通项,最后予以证实,例如:数列{}n a 知足a 1=4,n a =4-14n a -(n ≥2),求n a (理科请求,解略);还有对数变换法,例如:形如1(0,0,01)p n n na Ca a Cpp +=≠且可转化为1lg lg lg n n a p a C +=+问题解决;当然还有特点方程法等等. 六.待定系数法:例10:设数列}{n c 的各项是一个等差数列与一个等比数列对应项的和,若c 1=2,c 2=4,c 3=7,c 4=12,求通项公式c n解:设1)1(-+-+=n n bq d n a c 132211121237242-+=⇒⎪⎪⎩⎪⎪⎨⎧=====⎪⎪⎩⎪⎪⎨⎧=++=++=++=+∴n n n c a b d q bq d a bq d a bq d a b a 例11.已知数列{}n c 中,b b c +=11,bbc b c n n ++⋅=-11,个中b 是与n 无关的常数,且1±≠b .求出用n 和b 暗示的a n 的关系式.解析:递推公式必定可暗示为)(1λλ-=--n n c b c 的情势.由待定系数法知:bbb ++=1λλ 故数列⎭⎬⎫⎩⎨⎧--21b b c n 是首项为112221-=--b b b b c ,公比为b 的等比数列,故111121211222--=∴-=-=--++-b b b c b b b b b b b c n n n n n点评:用待定系数法解题时,常先假定通项公式或前n 项和公式为某一多项式,一般地,若数列}{n a 为等差数列:则c bn a n +=,cn bn s n +=2(b.c为常数),若数列}{n a 为等比数列,则1-=n n Aq a ,)1,0(≠≠-=q Aq A Aq s n n .七.帮助数列法例12:已知数}{n a 的递推关系为121+=+n n a a ,且11=a 求通项n a .解:∵121+=+n n a a ∴)1(211+=++n n a a 令1+=n n a b 则帮助数列}{n b 是公比为2的等比数列∴11-=n n q b b 即n n n q a a 2)1(111=+=+-∴12-=n n a例13:在数列{}n a 中,11=a ,22=a ,n n n a a a 313212+=++,求n a . 解析:在n n n a a a 313212+=++双方减去1+n a ,得)(31112n n n n a a a a --=-+++ ∴{}n n a a -+1是认为112=-a a 首项,认为31-公比的等比数列,∴11)31(-+-=-n n n a a ,由累加法得na =112211)()()(a a a a a a a n n n n +-+⋅⋅⋅+-+---- =+--2)31(n +--3)31(n …11)31(++-=311)31(11+---n =1])31(1[431+---n = 1)31(4347---n 例14: 已知数列{n a }中11=a 且11+=+n nn a a a (N n ∈),,求数列的通项公式.解:∵11+=+n n n a a a ∴11111+=+=+n n n n a a a a , 设nn a b 1=,则11+=+n n b b故{n b }是认为1111==a b 首项,1为公役的等差数列 ∴n n b n =-+=)1(1∴nb a n n 11==点评:这种办法相似于换元法, 重要用于已知递推关系式求通项公式.五 结构新数列: 类型1 )(1n f a a n n +=+解法:把原递推公式转化为)(1n f a a n n =-+,运用累加法(逐差相加法)求解.例1:已知数列{}n a 知足211=a ,nn a a n n ++=+211,求n a .解:由前提知:111)1(1121+-=+=+=-+n n n n n n a a n n分离令)1(,,3,2,1-⋅⋅⋅⋅⋅⋅=n n ,代入上式得)1(-n 个等式累加之,即)()()()(1342312--+⋅⋅⋅⋅⋅⋅+-+-+-n n a a a a a a a a)111()4131()3121()211(nn --+⋅⋅⋅⋅⋅⋅+-+-+-= 所以n a a n 111-=-211=a ,nn a n 1231121-=-+=∴类型2 n n a n f a )(1=+解法:把原递推公式转化为)(1n f a a nn =+,运用累乘法(逐商相乘法)求解.例2:已知数列{}n a 知足321=a ,n n a n na 11+=+,求n a . 解:由前提知11+=+n na a n n ,分离令)1(,,3,2,1-⋅⋅⋅⋅⋅⋅=n n ,代入上式得)1(-n个等式累乘之,即1342312-•⋅⋅⋅⋅⋅⋅•••n n a a a a a a a a nn 1433221-⨯⋅⋅⋅⋅⋅⋅⨯⨯⨯=n a a n 11=⇒ 又321=a ,na n 32=∴ 例3:已知31=a ,n n a n n a 23131+-=+)1(≥n ,求n a .解:123132231232)2(31)2(32)1(31)1(3a n n n n a n +-•+⨯-⨯•⋅⋅⋅•+---•+---=3437526331348531n n n n n --=⋅⋅⋅⋅=---.变式:(2004,全国I,)已知数列{a n },知足a 1=1,1321)1(32--+⋅⋅⋅+++=n n a n a a a a (n ≥2),则{a n }的通项1___n a ⎧=⎨⎩12n n =≥ 解:由已知,得n n n na a n a a a a +-+⋅⋅⋅+++=-+13211)1(32,用此式减去已知式,得当2≥n 时,n n n na a a =-+1,即n n a n a )1(1+=+,又112==a a ,n a a a aa a a a a n n =⋅⋅⋅====∴-13423121,,4,3,1,1,将以上n 个式子相乘,得2!n a n =)2(≥n 类型3 q pa a n n +=+1(个中p,q 均为常数,)0)1((≠-p pq ).解法(待定系数法):把原递推公式转化为:)(1t a p t a n n -=-+,个中pqt -=1,再运用换元法转化为等比数列求解. 例4:已知数列{}n a 中,11=a ,321+=+n n a a ,求n a .解:设递推公式321+=+n n a a 可以转化为)(21t a t a n n -=-+即321-=⇒-=+t t a a n n .故递推公式为)3(231+=++n n a a ,令3+=n n a b ,则4311=+=a b ,且23311=++=++n n n n a a b b .所所以{}n b 认为41=b 首项,2为公比的等比数列,则11224+-=⨯=n n n b ,所以321-=+n n a . 变式:(2006,重庆,文,14)在数列{}n a 中,若111,23(1)n n a a a n +==+≥,则该数列的通项n a =_______________(key:321-=+n n a )类型 4 n n n q pa a +=+1(个中p,q 均为常数,)0)1)(1((≠--q p pq ). (或1n n n a pa rq +=+,个中p,q, r 均为常数) .解法:一般地,要先在原递推公式双方同除以1+n q ,得:q q a q p q a n n n n 111+•=++引入帮助数列{}n b (个中nnnq a b =),得:qb q pb n n 11+=+再待定系数法解决.例5:已知数列{}n a 中,651=a ,11)21(31+++=n n n a a ,求n a .解:在11)21(31+++=n n n a a 双方乘以12+n 得:1)2(32211+•=•++n n n n a a令n n n a b •=2,则1321+=+n n b b ,解之得:n n b )32(23-= 所以nn nn n b a )31(2)21(32-== 类型5 递推公式为n n n qa pa a +=++12(个中p,q 均为常数).解 (特点根法):对于由递推公式n n n qa pa a +=++12,βα==21,a a 给出的数列{}n a ,方程02=--q px x ,叫做数列{}n a 的特点方程. 若21,x x 是特点方程的两个根,当21x x ≠时,数列{}n a 的通项为1211--+=n n n Bx Ax a ,个中A,B 由βα==21,a a 决议(即把2121,,,x x a a 和2,1=n ,代入1211--+=n n n Bx Ax a ,得到关于A.B 的方程组);当21x x =时,数列{}n a 的通项为11)(-+=n n x Bn A a ,个中A,B 由βα==21,a a 决议(即把2121,,,x x a a 和2,1=n ,代入11)(-+=n n x Bn A a ,得到关于A.B 的方程组).例6: 数列{}n a :),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,,求n a 解(特点根法):的特点方程是:02532=+-x x .32,121==x x ,∴1211--+=n n n Bx Ax a 1)32(-⋅+=n B A .又由b a a a ==21,,于是⎩⎨⎧-=-=⇒⎪⎩⎪⎨⎧+=+=)(32332b a B a b A B A b BA a 故1)32)((323--+-=n nb a a b a 演习:已知数列{}n a 中,11=a ,22=a ,n n n a a a 313212+=++,求n a .1731:()443n n key a -=--. 变式:(2006,福建,文,22)已知数列{}n a 知足*12211,3,32().n n n a a a a a n N ++===-∈求数列{}n a 的通项公式;(I )解: 112211()()...()n n n n n a a a a a a a a ---∴=-+-++-+ 类型6 递推公式为n S 与n a 的关系式.(或()n n S f a =)解法:运用⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-)2()1(11n S S n S a n nn 与)()(11---=-=n n n n n a f a f S S a 消去n S )2(≥n 或与)(1--=n n n S S f S )2(≥n 消去n a 进行求解.例7:数列{}n a 前n 项和2214---=n n n a S .(1)求1+n a 与n a 的关系;(2)求通项公式n a . 解:(1)由2214---=n n n a S 得:111214-++--=n n n a S于是)2121()(1211--++-+-=-n n n n n n a a S S所以11121-+++-=n n n n a a a nnn a a 21211+=⇒+.(2)运用类型4(n n n q pa a +=+1(个中p,q 均为常数,)0)1)(1((≠--q p pq ))的办法,上式双方同乘以12+n 得:22211+=++n n n n a a由1214121111=⇒--==-a a S a .于是数列{}n na 2是以2为首项,2为公役的等差数列,所以n n a n n 2)1(222=-+=12-=⇒n n na归纳法:。
求数列通项公式的十种方法,例题答案详解

求数列通项公式的十一种方法(方法全,例子全,归纳细)总述:一.利用递推关系式求数列通项的11种方法:累加法、累乘法、待定系数法、阶差法(逐差法)、迭代法、对数变换法、倒数变换法、换元法(目的是去递推关系式中出现的根号)、数学归纳法、不动点法(递推式是一个数列通项的分式表达式)、特征根法二. 四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。
等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。
三. 求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等差数列或等比数列。
四. 求数列通项的基本方法是:累加法和累乘法。
五. 数列的本质是一个函数,其定义域是自然数集的一个函数。
一、累加法1. ---------------------------------------------- 适用于:。
心=“"+/(,?)这是广义的等差数列累加法是最基本的二个方法之一。
2. 若%+]-%= /(〃)(〃 > 2),«2 - a\ =/(1)则I*)两边分别相加得。
心一明 =文/0?)A.1例1已知数列{%}满足。
心=% + 2n + 1, %=1,求数列{%}的通项公式。
解:由S =缶+2// + 1得《土一%= 2〃 +1则% =(% 一%)+(%.| - %.2)+ •・• +(% - 务)+(% - 角)+ % =[2(〃一1) + 1] + [2(〃一2)+ 1] +…+ (2x2 + 1) +(2x1+ 1) + 1 =2[(〃一1) + (〃一2)+ …+ 2 +1] + (〃一1) +1(fi-l)n ,八, =2 +(〃一1) + 1=(〃一1)(〃+ 1) + 1=,?-所以数列{劣}的通项公式为% =〃七例2已知数列{%}满足%|=%+2x3"+l,《=3,求数列{丹}的通项公式。
解法一:由““I =ci n +2x3" +1 得为+[ -%=2x3" +1 则% =(% 一《I)+ (%| —《一2)+ • • • + (% - 缶)+(缶一妃 + % =(2X3”T +1)+(2X3"-2 +1)+ ...+(2x3?+ l) + (2x3】+1) + 3= 2(3/,-1+3n-2+.-- + 32+31) + (n-l) + 33(1—3”T)=2•- ]-、一 + (〃_1) + 3=3”一3+ 〃一1 + 3=3”+〃一1所以a n = 3" +〃一1.解法二:“,*=3%+2x3”+1两边除以3”“,得参=3 + : +名,an =(% _ 4-1)+(勺― , 3-2 %-3a3〃 3" )+(22^_4)+ ・.. +(查一 *%】a . 3〃-2 明 3〃-3 32 313/2 1、,2 1、,2 1、 2 13(—+ ) + ( — + r) + (— H + ■ . ■ + (— + -^r) + —3 3” 3 3〃-】 3 3心 3 32 32(n-1) ,11 1 11、「3 3" 3〃 3”-' 3〃-2 323“ 因此色=翌1 +剥一3")+1=空+- 1-33 2 2x3〃3〃32 1 1贝 ij a n = —x 〃x3" + —x3"——・3 2 2评注:已知4 =",匕由一。
数列史上最全求通项公式10种方法并配大量习题及答案

数列通项公式的求法10种求数列的通项公式方法非常众多,而且这个问题基本上都是高考试卷中第一问,也就是说这一问题做不出来或没有思路,那么即使后面的问题比如求前N 项和的问题,会做也是无济于事的。
我们逐个讲解一下这些重要的方法。
递推公式法:递推公式法是指利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,这样的问题有两种类型,(1)题目中给出的是()n S f n =的形式,也就是n S 的表达式是一个关于n 的函数,要将n 改成n-1,包括角标,这样加上题中给出的式子就得到两个式子,两式子做差,即可整理出通项公式。
这种情况是比较简单的,但是也有值得我们注意的地方,那就是求出的通项公式一定要检验是否需要写成分段的形式,即验证一下1a 和1S 是否相等,若不相等,则需要写成分段的形式,只要题中涉及到角标n 不能从n=1开始取值的,都需要检验。
(2)第二种情况是非常常见的,即11(,)n n n a a a -+与n S (1n S -,1n S +)同时存在于一个等式中,我们的思路是将n 改写成n-1,又得到另一个式子,这两个式子做差,在做差相减的过程中,要将等式的一端通过移项等措施处理为零,这样整理,容易得出我们想要的关系式。
累加法(迭、叠加法):累加法是在教材上推导等差数列通项公式和前n 项和公式的时候使用的一种方法,其实这个方法不仅仅适用于等差数列,它的使用范围是非常广泛的,我们可以总结为,只要适合:1()n n a a f n -=+的形式,都是可以使用累加法的,基本的书写步骤是:21324312,(2)3,(3)4,(4)......,()n n n a a f n a a f n a a f n n a a f n -=-==-==-==-=将上述展开后的式子左边累加后总是得到1(2)(3)(4)......()n a a f f f f n -=++++所以重点就是会求后边这部分累加式子的和,而这部分累加的式子,绝大部分都是三种情况之一,要么是一个等差数列的前n-1项的和,要么是一个等比数列前n-1项的和,要么就是能够在累加过程能够中消掉,比如使用裂项相消法等。
高中数学-数列求通项公式方法汇总及经典练习(含答案)

高中数学-数列求通项公式方法汇总及经典练习(含答案)1、定义法:直接求首项和公差或公比。
2、公式法:1 (1) (2)n n nn S n a S S n -=⎧=⎨-≥⎩两种用途(列举),结果要验证能否写成统一的式子.例、数列{}n a 的各项都为正数,且满足()()2*14nna S n N +=∈,求数列的通项公式.解一:由()()2*14nna S n N +=∈得()()()221114411n n n n n aS S a a +++=-=---化简得()()1120n n n n a a a a +++--=,因为10,2n n n a a a +>∴-=,又()2111441S a a ==-得11a =,故{}n a 是以1为首项,2为公差的等差数列,所以21n a n =-.解二:由()()2*14nn a S n N +=∈,可得()11,12n n n a S S n -=-∴=--≥化简可得)211n S -=,即1=,又11S =,所以数列是首项为1,公差为1的等差数列,∴n =,从而2n S n =,所以121n n n a S S n -=-=-,又11a =也适合,故21n a n =-.练习:已知数列{a n }的前n 项和S n 满足120n n n a S S -+=(2n ≥),a 1=21,求n a . 答案:a n =⎪⎪⎩⎪⎪⎨⎧≥--=)2()1(21)1(21n n n n .扩展一:作差法例、在数列}{n a 中,11a =,212323(1)n a a a na n n ++++=-+,求n a .解:由212323(1)n a a a na n n ++++=-+,得2123123(1)(2)1n a a a n a n n -++++-=-+-,两式相减,得66n na n =-+,∴ 1 (=1)66 (2)n n a n n n⎧⎪=-⎨≥⎪⎩.练习(理):已知数列{}n a 满足11231123(1)(2)n n a a a a a n a n -==++++-≥,,求n a .解:由123123(1)(2)n n a a a a n a n -=++++-≥,得1123123(1)n n n a a a a n a na +-=++++-+,两式相减,得1n n n a a na +-=,即11(2)n na n n a +=+≥,所以13222122![(1)43]2n n n n n a a a n a a n n a a a a a ---=⋅⋅⋅⋅=-⋅⋅⨯=又由已知,得2122a a a =+,则211a a ==,代入上式,得!13452n n a n =⋅⋅⋅⋅⋅=, 所以,{}n a 的通项公式为 1 (1)! (2)2n n a n n =⎧⎪=⎨≥⎪⎩.扩展二、作商法例、在数列}{n a 中,11a =,对所有的2n ≥,都有2123n a a a a n ••••=,求n a .解:∵2123n a a a a n ••••=,∴21232(1)n a a a a n -••••=-,故当2n ≥时,两式相除,得22(1)n n a n =-, ∴221 (=1) (2)(1)n n a n n n ⎧⎪=⎨≥⎪-⎩.3、 叠加法:对于型如)(1n f a a n n =-+类的通项公式.例、在数列{n a }中,31=a ,)1(11++=+n n a a n n ,求通项公式n a .答案:na n 14-=. 例、已知数列{}n a 满足112231n n n n a a ++=++-(*n N ∈),352a =,求通项n a .解:由112231n nn n aa ++=++-,两边同除以12n +,得()111131112222n n n n n n n a a n ++++-=-+≥,列出相加得121212121332323212212121-+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=---n a a n n n n又由已知求得16a =,∴()*231n n n n N a n ∈=•++.练习:已知数列}a {n 满足3a 132a a 1nn 1n =+⋅+=+,,求数列}a {n 的通项公式.答案:1n 32n 31332a n nn -+=++--⋅=.4、叠乘法:一般地,对于型如1+n a =f (n)·n a 的类型例(理)、已知数列{}n a 满足112(1)53nn n a n a a +=+⨯=,,求数列{}n a 的通项公式.解:因为112(1)53nn n a n a a +=+⨯=,,所以0n a ≠,则12(1)5n n na n a +=+,故13211221n n n n n a a a a a a a a a a ---=⋅⋅⋅⋅⋅121[2(11)5][2(21)5][2(11)5]3n n n n --=-+-++⨯⨯(1)1(1)(2)21122[(1)32]53325!n n n n n n n n n ---+-+++-=-⋅⋅⨯⨯⨯=⨯⨯⨯,所以数列{}n a 的通项公式为(1)12325!n n n n a n --=⨯⨯⨯.练习:在数列{a n }中,112a =,11(1n n n a a a n --=⋅+≥2),求n a . 答案:)1(1+=n n a n . 5、构造法:型如a n+1=pa n +f(n) (p 为常数且p ≠0, p ≠1)的数列(1)f(n)= q (q 为常数) 一般地,递推关系式a +1=pa n +q (p 、q 为常数,且p ≠0,p ≠1)等价与)1(11pqa p p q a n n --=--+,则{p q a n --1}为等比数列,从而可求n a .例、已知数列{}n a 满足112a =,132n n a a --=(2n ≥),求通项n a . 解:由132n n a a --=,得111(1)2n n a a --=--,又11210a -=≠,所以数列{1}n a -是首项为12,公比为12-的等比数列,∴11111(1)()1()22n nn a a -=---=+-. 练习:已知数列}{n a 的递推关系为121+=+n n a a ,且11=a ,求通项n a . 答案:12-=n na .(2) f(n)为等比数列,如f(n)= q n (q 为常数) ,两边同除以q n ,得111+=++nn n n qa p q a q ,令nn n a b q =,则可转化为b n+1=pb n +q 的形式求解.例、已知数列{a n }中,a 1=65,1111()32n n n a a ++=+,求通项n a . 解:由条件,得2 n+1a n+1=32(2 n a n )+1,令b n =2 n a n ,则b n+1=32b n +1,b n+1-3=32(b n -3) 易得 b n =3)32(341+--n ,即2 n a n =3)32(341+--n , ∴ a n =n n 2332+-. 练习、已知数列{}n a 满足1232n n n a a +=+⨯,12a =,求通项n a .答案:31()222nn a n =-.(3) f(n)为等差数列,如1n n a Aa Bn C +=++型递推式,可构造等比数列.(选学,注重记忆方法)例、已知数列{}n a 满足11=a ,11212n n a a n -=+-(2n ≥),求.解:令n n b a An B =++,则n n a b An B =--,∴11(1)n n a b A n B --=---,代入已知条件, 得11[(1)]212n n b An B b A n B n ---=---+-,即11111(2)(1)2222n n b b A n A B -=++++-,令202A +=,1022A B +-=,解得A=-4,B=6,所以112n n b b -=,且46n n b a n =-+, ∴{}n b 是以3为首项、以12为公比的等比数列,故132n n b -=,故13462n n a n -=+-. 点拨:通过引入一些尚待确定的系数,经过变形与比较,把问题转化成基本数列(等差或等比数列)求解. 练习:在数列{}a n 中,132a =,1263n n a a n --=-,求通项a n . 答案:a n nn -+=69912·().解:由1263n n a a n --=-,得111(63)22n n a a n -=+-,令11[(1)]2n n a An B a A n B -++=+-+,比较系数可得:A=-6,B=9,令n n b a An B =++,则有112n n b b -=,又1192b a A B ==++,∴{}n b 是首项为92,公比为12的等比数列,所以b n n =-92121(),故a n n n-+=69912·(). (4) f(n)为非等差数列,非等比数列法一、构造等差数列法例、在数列{}n a 中,1112(2)2()n n n n a a a n λλλ+*+==++-∈N ,,其中0λ>,求数列{}n a 的通项公式.解:由条件可得111221n nn nn n a a λλλλ+++⎛⎫⎛⎫-=-+ ⎪⎪⎝⎭⎝⎭,∴数列2n n n a λλ⎧⎫⎪⎪⎛⎫-⎨⎬ ⎪⎝⎭⎪⎪⎩⎭是首项为0,公差为1的等差数列,故21nnn a n λλ⎛⎫-=- ⎪⎝⎭,∴(1)2n n n a n λ=-+. 练习:在数列{a n }中,a na n a n n n n n 1132212==+++++,()()(),求通项a n 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
<求数列通项公式的十一种方法(方法全,例子全,归纳细)总述:一.利用递推关系式求数列通项的11种方法:累加法、 累乘法、 待定系数法、 阶差法(逐差法)、 迭代法、 对数变换法、~倒数变换法、换元法(目的是去递推关系式中出现的根号)、 数学归纳法、不动点法(递推式是一个数列通项的分式表达式)、 特征根法二。
四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。
等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。
三 .求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等差数列或等比数列。
四.求数列通项的基本方法是:累加法和累乘法。
]五.数列的本质是一个函数,其定义域是自然数集的一个函数。
一、累加法1.适用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最基本的二个方法之一。
2.若1()n n a a f n +-=(2)n ≥,则21321(1)(2) ()n n a a f a a f a a f n +-=-=-=两边分别相加得 111()nn k a a f n +=-=∑例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
解:由121n n a a n +=++得121n n a a n +-=+则!所以数列{}n a 的通项公式为2n a n =。
例2 已知数列{}n a 满足112313nn n a a a +=+⨯+=,,求数列{}n a 的通项公式。
解法一:由1231n n n a a +=+⨯+得1231nn n a a +-=⨯+则11232211122112211()()()()(231)(231)(231)(231)32(3333)(1)33(13)2(1)313331331n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=⨯++⨯+++⨯++⨯++=+++++-+-=+-+-=-+-+=+-所以3 1.nn a n =+-解法二:13231n n n a a +=+⨯+两边除以13n +,得111213333n n n n n a a +++=++, 则111213333n n n n n a a +++-=+,故 因此11(13)2(1)2113133133223n n n n na n n ---=++=+--⨯, 则21133.322n n n a n =⨯⨯+⨯- <评注:已知a a =1,)(1n f a a n n =-+,其中f(n)可以是关于n 的一次函数、二次函数、指数函数、分式函数,求通项na .①若f(n)是关于n 的一次函数,累加后可转化为等差数列求和; ②若f(n)是关于n 的二次函数,累加后可分组求和;③若f(n)是关于n 的指数函数,累加后可转化为等比数列求和; ④若f(n)是关于n 的分式函数,累加后可裂项求和。
例3.已知数列}{n a 中,>n a 且)(21n n n a n a S +=,求数列}{n a 的通项公式.解:由已知)(21n n n a n a S +=得)(2111---+-=n n n n n S S nS S S ,化简有nS S n n =--212,由类型(1)有nS S n ++++= 32212,…又11a S =得11=a ,所以2)1(2+=n n S n,又0>n a ,2)1(2+=n n s n ,则2)1(2)1(2--+=n n n n a n此题也可以用数学归纳法来求解. 二、累乘法1.适用于: 1()n n a f n a += ----------这是广义的等比数列 累乘法是最基本的二个方法之二。
2.若1()n n a f n a +=,则31212(1)(2)()n na aaf f f n a a a +===,,, 两边分别相乘得,1111()nn k a a f k a +==⋅∏ …例4 已知数列{}n a 满足112(1)53nn n a n a a +=+⨯=,,求数列{}n a 的通项公式。
解:因为112(1)53nn n a n a a +=+⨯=,,所以0n a ≠,则12(1)5n n na n a +=+,故1321122112211(1)(2)21(1)12[2(11)5][2(21)5][2(21)5][2(11)5]32[(1)32]53325!n n n n n n n n n n n n n a a a a a a a a a a n n n n n -------+-+++--=⋅⋅⋅⋅⋅=-+-+⋅⋅+⨯+⨯⨯=-⋅⋅⨯⨯⨯=⨯⨯⨯所以数列{}n a 的通项公式为(1)12325!.n n n n a n --=⨯⨯⨯例5.设{}n a 是首项为1的正项数列,且()011221=+-+++n n n n a a na a n (n =1,2, 3,…),则它的通项公式是n a =________.解:已知等式可化为:[]0)1()(11=-++++n n n n na a n a a0>n a (*N n ∈)∴(n+1)01=-+n n na a , 即11+=+n na a n n∴2≥n 时,nn a a n n 11-=-∴112211a a a a a a a a n n n n n ⋅⋅⋅⋅=--- =121121⋅⋅--⋅- n n nn =n 1. 、评注:本题是关于na 和1+n a 的二次齐次式,可以通过因式分解(一般情况时用求根公式)得到na 与1+n a 的更为明显的关系式,从而求出na .练习.已知1,111->-+=+a n na a n n ,求数列{an}的通项公式.答案:=n a )1()!1(1+⋅-a n -1.评注:本题解题的关键是把原来的递推关系式,11-+=+n na a n n 转化为),1(11+=++n n a n a 若令1+=n n a b ,则问题进一步转化为nn nb b =+1形式,进而应用累乘法求出数列的通项公式.三、待定系数法 适用于1()n n a qa f n +=+基本思路是转化为等差数列或等比数列,而数列的本质是一个函数,其定义域是自然数集的一个函数。
1.形如(,1≠+=+c d ca a n n ,其中a a =1)型?(1)若c=1时,数列{n a }为等差数列;(2)若d=0时,数列{na }为等比数列;(3)若01≠≠且d c 时,数列{na }为线性递推数列,其通项可通过待定系数法构造辅助数列来求.待定系数法:设)(1λλ+=++n n a c a ,得λ)1(1-+=+c ca a n n ,与题设,1d ca a n n +=+比较系数得d c =-λ)1(,所以)0(,1≠-=c cd λ所以有:)1(11-+=-+-c d a c c d a n n 因此数列⎭⎬⎫⎩⎨⎧-+1c d a n 构成以11-+c da 为首项,以c 为公比的等比数列, 所以11)1(1-⋅-+=-+n n c c d a c d a 即:1)1(11--⋅-+=-c d c c d a a n n . 、规律:将递推关系dca a n n +=+1化为)1(11-+=-++c da c c d a n n ,构造成公比为c 的等比数列}1{-+c d a n 从而求得通项公式)1(1111-++-=-+c da c c d a n n逐项相减法(阶差法):有时我们从递推关系dca a n n +=+1中把n 换成n-1有dca a n n +=-1,两式相减有)(11-+-=-n n n n a a c a a 从而化为公比为c 的等比数列}{1n n a a -+,进而求得通项公式.)(121a a c a a n n n -=-+,再利用类型(1)即可求得通项公式.我们看到此方法比较复杂.例6已知数列{}n a 中,111,21(2)n n a a a n -==+≥,求数列{}n a 的通项公式。
解法一:121(2),n n a a n -=+≥又{}112,1n a a +=∴+是首项为2,公比为2的等比数列12n n a ∴+=,即21nn a =-解法二:121(2),n n a a n -=+≥两式相减得112()(2)n n n n a a a a n +--=-≥,故数列{}1n n a a +-是首项为2,公比为2的等比数列,再用累加法的……]练习.已知数列}{n a 中,,2121,211+==+n n a a a 求通项n a 。
答案:1)21(1+=-n n a2.形如:nn n q a p a +⋅=+1 (其中q 是常数,且n ≠0,1)①若p=1时,即:nn n q a a +=+1,累加即可.②若1≠p 时,即:n n n q a p a +⋅=+1,求通项方法有以下三种方向:i. 两边同除以1+n p .目的是把所求数列构造成等差数列即:nnn n n qp p q a p a )(111⋅+=++,令n n n p a b =,则nn n q p p b b )(11⋅=-+,然后类型1,累加求通项.ii.两边同除以1+n q . 目的是把所求数列构造成等差数列。
]即:qq a q p q a n n n n 111+⋅=++,令nnn qab=,则可化为qbqpbnn11+⋅=+.然后转化为类型5来解,iii.待定系数法:目的是把所求数列构造成等差数列设)(11nnnnpapqa⋅+=⋅+++λλ.通过比较系数,求出λ,转化为等比数列求通项.注意:应用待定系数法时,要求p≠q,否则待定系数法会失效。
例7已知数列{}na满足1112431nn na a a-+=+⋅=,,求数列{}na的通项公式。
解法一(待定系数法):设11123(3n nn na aλλλ-++=+⋅),比较系数得124,2λλ=-=,则数列{}143nna--⋅是首项为111435a--⋅=-,公比为2的等比数列,·所以114352n nna---⋅=-⋅,即114352n nna--=⋅-⋅解法二(两边同除以1+nq):两边同时除以13n+得:112243333n nn na a++=⋅+,下面解法略解法三(两边同除以1+np):两边同时除以12+n得:nnnnnaa)23(342211⋅+=++,下面解法略3.形如bknpaann++=+1 (其中k,b是常数,且0≠k)方法1:逐项相减法(阶差法)方法2:待定系数法通过凑配可转化为))1(()(1ynxapyxnann+-+=++-;解题基本步骤:】1、确定()f n=kn+b2、设等比数列)(yxnabnn++=,公比为p3、列出关系式))1(()(1ynxapyxnann+-+=++-,即1-=nnpbb4、比较系数求x,y5、解得数列)(y xn a n ++的通项公式6、解得数列{}n a 的通项公式例8 在数列}{n a 中,,23,111n a a a n n +==+求通项na .(逐项相减法)解: ,,231n a a n n +=+ ①$∴2≥n 时,)1(231-+=-n a a n n ,两式相减得2)(311+-=--+n n n n a a a a .令nn n a a b -=+1,则231+=-n n b b利用类型5的方法知2351+⋅=-n n b 即13511-⋅=--+n n n a a ②再由累加法可得213251--⋅=-n a n n . 亦可联立 ① ②解出213251--⋅=-n a n n .例9. 在数列{}n a 中,362,2311-=-=-n a a a n n ,求通项n a .(待定系数法)解:原递推式可化为yn x a y xn a n n ++-+=++-)1()(21比较系数可得:x=-6,y=9,上式即为12-=n n b b所以{}n b 是一个等比数列,首项299611=+-=n a b ,公比为21.1)21(29-=∴n n b 即:nn n a )21(996⋅=+->故96)21(9-+⋅=n a n n .4.形如cn b n a pa a n n +⋅+⋅+=+21 (其中a,b,c 是常数,且0≠a )基本思路是转化为等比数列,而数列的本质是一个函数,其定义域是自然数集的一个函数。