线性代数第七章二次型
第七章二次型分析

第七章 二次型二次型是型论的内容之一,是非线性的.二次型的研究源于解析几何中对有心二次曲线和二次曲面方程的化简.由于实二次型的讨论,可以转化为对实对称矩阵的讨论,所以将它纳入线性代数的内容,本章内容可以看作矩阵化简理论一个方面的应用.本章的重点是实二次型化标准形及正定二次型.7.1 二次型及其矩阵定义1 数域F 上的一个二次齐次多项式n n n x x a x x a x a x x x f 112112211121),,,(+++=ΛΛn n x x a x a x x a 2222221221++++Λ++Λ22211n nn n n n n x a x x a x x a +++Λ∑∑===n i nj j i ij x x a 11, (1)称为F 上的一个n 元二次型.),,2,1,(n j i F a ij Λ=∈称二次型),,,(21n x x x f Λ的系数.由于i j j i x x x x =,令⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=nn n n n n a a a a a a a a a A ΛΛΛΛΛΛΛ212222111211, 其中n j i a a ji ij ,,2,1,,Λ==.即A 为对称矩阵:A A T=.那么(1)可表为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n nn n n n n n n x x x a a a a a a a a a x x x x x x f M ΛΛΛΛΛΛΛΛΛ212122221112112121),,,(),,,( AX X T=, (2)其中⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n x x x X M 21.(2)称为(1)的矩阵表示式,称A 为二次型),,,(21n x x x f Λ的矩阵. A 的秩称为该二次型的秩.显然,每一个n 元二次型都对应一个n 阶对称矩阵.例1 三元二次型23322121321232),,(x x x x x x x x x f ++-=的矩阵⎪⎪⎪⎭⎫ ⎝⎛--=20010112323A .下面我们主要讨论实数域R 上的二次型,即对实对称矩阵进行讨论.我们的目的是化实对称矩阵为对角形矩阵.实对称矩阵有如下性质:性质1 实对称矩阵的特征值都是实数.证 设A 是n 阶实对称矩阵,λ为A 的特征值,Tn x x x ),,,(21Λ=α是属于特征值λ的特征向量.即有.λαα=A (3)令α为α的共轭向量,A 为A 的共轭矩阵(由A 的元素ij a 的共轭数ij a 构成).由(3)两边取共轭有λαα=A ,即αλα=A .因A A =,所以αλα=A . (4)对(4)两边取转置,得T T T A αλα=. (5)用α右乘(5)两边,得ααλααααααλTT T T T A A ===.于是0)(=-ααλλT .由222212211||||||n n T x x x x x x x x x +++=+++=ΛΛαα,而0≠α,则有ααT>0.因此0=-λλ,即λλ=,故λ为实数.性质2 实对称矩阵的属于不同特征值的特征向量正交.证 设21,λλ是实对称矩阵A 的两个不同的特征值,21,αα是分别属于21,λλ的特征向量(实n 元列向量),即有111αλα=A , 222αλα=A ,那么><>=>=<<21121121,,,ααλααλααA .又><====>=<21221221212121,)(,ααλααλααααααααT T T T T A A A A . 于是0,)(2121>=<-ααλλ.而021≠-λλ,故0,21>=<αα,即21,αα正交.性质3 n 阶实对称矩阵相似于n 阶对角形矩阵. 证 对n 采用归纳法. 2=n ,令⎪⎪⎭⎫ ⎝⎛=c b b a A .若0=b ,A 已是对角形矩阵.若0≠b ,由22)(||b ac c a cb ba A E -++-=----=-λλλλλ. (6)(6)式右端为λ的二次三项式,其判别式22224)()(4)(b c a b ac c a +-=--+=∆>0.因而A 有两个不同的特征值,由定理6.3.1的推论,A 可对角化.设对1-n 阶实对称矩阵,结论成立.当A 为n 阶实对称矩阵时,设111αλα=A .由于0≠k ,1αk 也属于1λ的特征向量,于是可取1α为单位向量.令),,,(211n p αααΛ=为正交矩阵,则有),,,(212111111n T n T T TA A A AP p AP p ααααααΛM ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==-,212221212111⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n T n T n T nn TT T n T T T A A A A A A A A A ααααααααααααααααααΛΛΛΛΛΛΛ 该矩阵仍为对称矩阵.而.1,1,0,,111111≠=⎩⎨⎧>=<==j j A j Tj T j λααλαλααα 于是.00001111⎪⎪⎪⎪⎪⎭⎫⎝⎛=-BAp p M Λλ 其中B 为1-n 阶对称矩阵.由归纳假设,有(1-n )阶可逆矩阵Q ,使得.321⎪⎪⎪⎪⎪⎭⎫⎝⎛=-n BQ Q λλλO令,0012⎪⎪⎭⎫⎝⎛=Q p且令21p p p =,则⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛==----Q B Q p Ap p p Ap p 00100001112111121λ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n λλλO 21. (7)实对称矩阵的讨论可以放在欧氏空间中进行.一个实对称矩阵A 化对角形矩阵,先求出A 的全部特征值(它即为对角矩阵中的元素)及相应的特征向量.将A 的属于同一特征值的特征向量正交化,单位化,仍为A 的属于该特征值的特征向量.由于属于不同特征值的特征向量正交,那么,此时A 的这n 个特征向量均为单位向量,且两两正交.以它们为列构成(7)式中的p ,则p 为正交矩阵.于是有定理7.1.1 A 是n 阶实对称矩阵,则一定存在n 阶正交矩阵U ,使得AU U T为对角形矩阵.定义2 设A ,B 是数域F 上两个n 阶矩阵,如果存在F 上的一个n 阶可逆矩阵p ,使得B AP P T = (8)那么就称A 与B 合同,记为A ≈B .矩阵的合同关系具有以下性质:1°自反性: A ≈A . 在(8)中取E P =即可.2°对称性: 若A ≈B ,则有可逆矩阵P ,使B AP P T =.于是11)(--BPP TTP )(1-=A BP =-1.即有B ≈A .3°传递性: 若A ≈B ,B ≈C ,则有可逆矩阵P ,Q ,使得B AP P T =, C BQ Q T=.于是C BQ Q APQ P Q PQ A PQ TT T T ===)()(,即有A ≈C .若A ≈B ,显然秩(A )=秩(B ).定理7.1.1说明,任意一个实对称矩阵都合同于一个对角形矩阵.例2 设⎪⎪⎪⎭⎫ ⎝⎛----=020212022A求正交矩阵U ,使AU U T为对角形.解 A 的特征多项式)2)(4)(1(20212022+--=--=-λλλλλλλA E , 特征值为:2,4,1-===λλλ. 对,1=λ求得齐次线性方程组⎪⎩⎪⎨⎧=+=+=+-0202202323121x x x x x x 的基础解系T)2,1,2(1--=α.对应,42=λ23-=λ的齐次线性方程组分别求得基础解系: T )1,2,2(2-=α,T )2,2,1(3=α.将321,,ααα单位化得:T )32,31,32(1--=η, T )31,32,32(2-=η, T )32,32,31(3=η.于是 ⎪⎪⎪⎭⎫⎝⎛---=21222112231U ,而 ⎪⎪⎪⎭⎫ ⎝⎛-=241AU U T .习 题1.写出下列实二次型的矩阵.(1) ;4232),,(233222312121321x x x x x x x x x x x x f --+-+=(2) 433241312143216532),,,(x x x x x x x x x x x x x x g +-+-=;(3) 232221321432),,(x x x x x x h +-=.2.设⎪⎪⎪⎭⎫ ⎝⎛----=320222021A ,求可逆矩阵AP P P T使,为对角形.3.设A 是一个可逆对称矩阵.证明,1-A ≈A .4.A 为四阶实对称矩阵,秩(A )2=,问与A 合同的对角形矩阵有哪几种情况?*5. 设σ是欧氏空间V 的一个线性变换,若V ∈∀ηξ,有>>=<<)(,),(ησξηξσ,则称σ是一个对称变换.证明对称变换σ在V 的任一个标准正交基下的矩阵是对称矩阵.7.2 实二次型的标准形我们已经知道,如果A 是n 阶实对称矩阵,秩r A =)(≤n ,那么,总存在n 阶可逆矩阵P ,有⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=0021OOrTd d d AP P . (1) 显然,与(1)中这个对角形矩阵相应的二次型只含有变量的平方项,即为.2222211r r y d y d y d +++Λ称此二次型为与A 相应的二次型的标准形.如何将一个二次型化为标准形,定理7.1.1已经给出了一个方法.事实上,设实二次型AX X x x x f T n =),,,(21Λ.其中,21⎪⎪⎪⎪⎪⎭⎫⎝⎛=n x x x X M TA A =.由定理7.1.1,则有正交矩阵P ,使得⎪⎪⎪⎪⎪⎭⎫⎝⎛=n T AP P λλλO21. 令,PY X =,),,,(21Tn y y y Y Λ=那么)()(),,,(21PY A PY AX X x x x f TT n ==Λ),,,()(21n TT y y y Y AP P Y Λ==⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n λλλO21⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n y y y M 21. (2) (2)中A n 为λλλ,,,21Λ的全部特征值.P 的第j 列为属于j λ的特征向量正交化、单位化后所得的特征向量.上述这种化二次型为标准形的方法,称为正交变换法.如果不考虑求正交矩阵P ,那么,求出实二次型矩阵的全部特征值后,便可得到该二次型的标准形.在正交变换法中,PY X =( P 为正交矩阵),称为坐标的正交变换.解析几何中.就是通过这种坐标的正交变换,将有心二次曲线或二次曲面方程化为标准形式的.正交变换法中,如果要求出正交矩阵P ,显然是比较麻烦的.下面我们再给出两种化二次型为标准形的方法.1.初等变换法 设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n T d d d AP P O21, 由P 可逆,令s p p p P Λ21=,),,2,1(s i p i Λ=为初等矩阵,那么有⎪⎪⎪⎪⎪⎭⎫⎝⎛=s S TT T s d d d P P AP P P P OΛΛ212112. (3) 又P P P EP s =Λ21. (4)(3)与 (4)说明,对A 施行某一类行初等变换后,同时施行相应的列的初等变换,并且对单位矩阵A E 随施行同样的列变换,当A 化成对角矩阵时,那么E 化为可逆矩阵P .综合(3)、(4),可表成如下形式:⎪⎪⎭⎫ ⎝⎛→⎪⎪⎭⎫ ⎝⎛P D E A ,其中D 为对角形矩阵.这种化实二次型为标准形的方法称为初等变换法.例1 用初等变换法化下列二次型为标准形32312123222132142224),,(x x x x x x x x x x x x f +++---=.解 ),,(321x x x f 的矩阵⎪⎪⎪⎭⎫ ⎝⎛---=221241111A .−−→−⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎭⎫ ⎝⎛++)1()3()1()2(100010001221241111E A ⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---100010111130330001−−→−+)2()3(⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--100110211200030001. 所以⎪⎪⎪⎭⎫ ⎝⎛=100110211P ,而经可逆变量替换PY X =,23222132123),,(y y y x x x f +--=.2.配方法.配方法是将二次型的一些项,配成全完平方项,逐步通过可逆的变量替换,最后化成只含新变量的平方项的二次型例2 用配方法化下列二次型为标准形2332312122213214642),,(x x x x x x x x x x x x f +++++=.解 3223213212)]2([),,(x x x x x x x x f +++=令32112x x x y ++=, 32112y y y x --=, 22x y =,或22y x =,33x y =.33y x =.经变量替换Y p X 1=,其中⎪⎪⎪⎭⎫ ⎝⎛=321x x x X , ⎪⎪⎪⎭⎫ ⎝⎛=321y y y Y , ⎪⎪⎪⎭⎫⎝⎛--=1000102111p ,有 32213212),,(y y y x x x f +=.再令11z y =, 2y = 32z z +,=3y 32z z -.经变量替换 ,2Z P Y =其中⎪⎪⎪⎭⎫ ⎝⎛-=1101100012p , ⎪⎪⎪⎭⎫ ⎝⎛=321z z z Z ,有 3322212121222z z z y y y -+=+.令⎪⎪⎪⎭⎫ ⎝⎛--==11011013121p p p ,那么,经可逆变量替换PZ X =有23222132122),,(z z z x x x f -+=.采用初等变换法或配方法化二次型为标准形,由于变换过程不同,或者选择配方的变量不一样,所化得的标准形可能不同,但标准形中,所含变量的平方项的个数都是一样的,这是因为两个相似或合同的矩阵有相同的秩.一个二次型经过变量的替换后,化成一个含新变量的二次型,那么,称这两个二次型是等价的.于是可以说,一个实二次型与它的标准形等价.为了避免实二次型的标准形可能出现的不唯一性,我们需要将它的标准形作进一步的规范.设n A 是阶实对称矩阵,秩)(A =r (0<r <n ),P 为实可逆矩阵,且⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=0021OOr Td d d AP P .必要时,交换对角矩阵中的两列和两行(相当于对它右乘以ij R 左乘以Tij R ),因而,总可以假定p d d ,,1Λ>0; r p d d ,,1Λ+<0, 0≤p ≤r .令⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=11||1||11OO r d d Q , 则有.0000000⎪⎪⎪⎭⎫⎝⎛-=-Pr PT T E E APQ P Q 于是我们得到定理7.2.1 任意一个秩为r 的实n 元二次型,都与如下一个二次型等价:.221221r P P y y y y ---+++ΛΛ (5)二次型(5)称为实二次型的规范形.下面我们进一步证明(5)中的P 也是唯一确定的,即有定理7.2.2(惯性定理) 实二次型的规范形是唯一的.证 设实二次型),,,(21n x x x f Λ的秩为r ,且经过可逆变量替换BY X =和CZ X =分别化为22122121),,(r p p n y y y y x x x f ---++=+ΛΛΛ 和22122121),,(r q q n z z z z x x x f ---++=+ΛΛΛ. 即经 BY C Z 1-=,有221221221221r p p r q q y y y y z z z z ---++=---++++ΛΛΛΛ (6)假设p >q ,令⎪⎪⎪⎪⎪⎭⎫⎝⎛=-nn n n n n t t tt t tt t t B C ΛΛΛΛΛΛΛ2122221112111. 那么,BY C Z 1-= 即为⎪⎪⎩⎪⎪⎨⎧+++=+++=+++=.22112222121212121111n nn n n n nn nn y t y t y t z y t y t y t z y t y t y t z ΛΛΛΛΛΛΛΛΛΛ (7)考虑齐次线性方程组:⎪⎪⎪⎩⎪⎪⎪⎨⎧===+++=++++,0000122111212111n p n qn q q n n y y y t y t y t y t y t y t ΛΛΛΛΛΛΛΛΛΛΛΛ (8)(8)中方程个数为 )()(q p n p n q --=-+<n ,因而有非零解:),,,,,(11n p p k k k k ΛΛ+,其中,01===+n p k k Λ.将它代入(6)的右端得221p k k ++Λ>0,又代入(8)的前q 个方程知(7)中有01===q z z Λ,于是(6)的左端221r q z z ---+Λ≤0,矛盾.因而p ≤q ,同法可得q ≤p ,从而q p =.规范形(5)中的p 称实二次型的正惯性指数,p r -称为负惯性指数,r p p r p -=--2)(称为二次型的符号差,记为s ,即r p s -=2.由惯性定理得,推论 两个实二次型等价,当且仅当它们有相同的秩和符号差.习 题1.用正交变换法,化二次型为标准形31232221321422),,(x x x x x x x x f +-+=.2.分别用初等变换法和配方法,将二次型2332222121321242),,(x x x x x x x x x x f -+-+=化为标准形.3.求下列二次型的秩、正惯性指数和符号差. (1);262),,(313221321x x x x x x x x x f +-=(2).4242),,(3221232221321x x x x x x x x x x f ++++=4.将等价的二次型作为一类,证明,所有的n 元实二次型共有)2)(1(21++n n 个类.7.3 正定二次型一个n 元实二次型AX X x x x f Tn =),,,(21Λ,实际上可以看成定义在实数域R 上的一个n 元实函数.用Tn c c c X ),,,(210Λ=取代X ,得到一个唯一确定的实数0021),,,(AX X c c c f Tn =Λ,称该实数为),,(1n x x f Λ在0X X =时的值.定义 1 设有n 元实二次型AX X x x x f Tn =),,,(21Λ,如果对于任何一组不全为零的实数n c c c ,,,21Λ,都有),,,(21n c c c f Λ>0,那么称),,,(21n x x x f Λ是正定二次型.正定二次型的矩阵A 称为正定矩阵(A 是正定矩阵简称A 正定).定理7.3.1 n 元实二次型AX X x x x f Tn =),,,(21Λ正定的充分必要条件是它的正惯性指数n p =.证 若),,,(21n x x x f Λ的正惯性指数n p =,则经可逆变量替换PY X =,可化为规范形2222121),,,(n n y y y x x x f +++=ΛΛ. (1)任取0),,,(210≠=Tn c c c X Λ,代入X PY =,得线性方程组0X PY =.由p 可逆及00≠X ,可得唯一非零解010X p Y -=.令.0),,,(210≠=T n b b b Y Λ得2222121),,,(n n b b b c c c f +++=ΛΛ>0.故),,,(21n x x x f Λ是正定二次型.反之,若AX X x x x f Tn =),,,(21Λ正定,而正惯性指数p <n .1=.设秩p A =)(,则该二次型经可逆变量替换Z Q X 1=,化为规范形:.),,,(221222121n n n z z z z x x x f -+++=-ΛΛ (2)取Tp n p Z )1,,1,0,,0(0876Λ876Λ个个-=,得010Z Q X =.由00≠Z 且1Q 可逆,知00≠X .令0),,,(210≠=T n k k k X Λ,代入(2),得0),,,(21=n k k k f Λ,与),,,(21n x x x f Λ正定矛盾.2).设秩()p r A >=,则该二次型经可逆变量替换W Q X 2=化为规范形:.),,,(22122121r p p n w w w w x x x f ---++=+ΛΛΛ取Tp n p W )1,,1,0,,0(0876Λ876Λ个个-=.同样可得.0),,,(210≠=T n t t t X Λ而,0)(),,,(21<--=p r t t t f n Λ必与),,,(21n x x x f Λ正定矛盾.故.n p =由定理7.3.1,可得推论1 n A 是阶实对称矩阵,A 正定的充分必要条件是A 的所有特征值都大于零. 推论2 n 阶实对称矩阵A 为正定矩阵的充分必要条件是A 合同于单位矩阵n E . 由推论1,2可知, A 是正定矩阵,那么A 对应的二次型是正定二次型.这样,对正定二次型的讨论可以转化为对正定矩阵的讨论,下面给出正定矩阵的几个性质.性质1 实对称矩阵A 正定的充分必要条件是存在可逆的实矩阵Q ,使得Q Q A T=.事实上,若A 正定,那么有可逆矩阵p ,使n T E AP P =.于是.)()(1111----==P P PP A T T令1-=P Q ,则有Q Q A T =.反过来,若Q Q A T=,且Q 可逆,那么.)()(1111E AQ Q AQ Q T T==----令1-=Q P ,便有E AP p T=,由定理7.3.1的推论2知,A 正定.性质2 实对称矩阵A 正定,则||A >0事实上,在性质1中,对Q Q A T=两边取行列式即得.为了直接从A 来判定A 是否正定,我们先给出定义2 设n a A ij 是)(=阶实对称矩阵,由A 的前k 行,前k 列的元构成的k 阶子式kkk k kk a a a a a a a a a ΛΛΛΛΛΛΛ212222111211, 称为A 的k 阶主子式(或称k 阶顺序主子式).取,,,2,1n k Λ=便得到A 的所有主子式.定理7.3.2 A 是n 阶实对称矩阵, A 正定的充分必要条件是A 的所有主子式都大于零.证 设),,,(21k k x x x f Λ为k 元二次型,其矩阵为k k ij k a A ⨯=)(.任取0),,,(210≠=T k c c c X Λ代入k f ,有∑==kj i jiij k k c c a c c c f 1,21.),,,(Λ令Tk n k c c X )0,,0,,,(11876ΛΛ个-=,则01≠X .由),,,(21n x x x f Λ正定,有),,,()0,,0,,,(211k k k c c c f c c f ΛΛΛ=>0,因此),,,(21k k x x x f Λ正定,从而k A 正定,由性质2, |k A |>0,.,,2,1n k Λ=反之,设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=nn n n n n a a a a a a a a a A ΛΛΛΛΛΛΛ212222111211. A 的所有主子式||k A >0,n k ,,2,1Λ=.从第二行起,逐步对A 的第i 行,第i 列施行同样的第三类初等变换,首先有⎪⎪⎪⎪⎪⎭⎫⎝⎛→0000111B a A M Λ, 其中11a >0,1B 仍为对称矩阵(因为122112)(P P P P P AP P P P s T T S T T s ΛΛΛ=TT P AP 21 i T S P P ,Λ为第三类初等矩阵).如此下去,最后得⎪⎪⎪⎪⎪⎭⎫ ⎝⎛→n d d a A O211. (3) 由行列式的性质得知||111A a =>0,||2211A d a =>0,…,||211A d d a n =Λ>0,因此11a >0,i d >0,n i ,,2Λ=.而(3)相当于⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n T d d a AP P O211, 其中p 为第三类初等矩阵的乘积,而A 对应的二次型经可逆变量替换PY X =,有.),,(222221111n n n y d y d y a x x f +++=ΛΛ),,,(21n x x x f Λ的正惯性指数n p =,因而),,(1n x x fΛ正定,故A 正定.例1 证明A 是正定矩阵⎪⎪⎪⎭⎫⎝⎛=521241111A . 证 由于A 的主子式1||1=A >0,34111||2==A >0,1||=A >0.所以A 正定.例2 λ为何值时,二次型3231212322213214225),,(x x x x x x x x x x x x f +-+++=λ是正定二次型.解 ),,(321x x x f 的矩阵⎪⎪⎪⎭⎫ ⎝⎛--=5212111λλA .A 的主子式11=A , 22111λλλ-==A ,.45521211123λλλλ--=--=A由⎩⎨⎧---λλλ45122 >0>0解得54-<λ<0.即当54-<λ<0时,所给二次型为正定二次型. 与正定二次型相仿,我们可以定义负定二次型,半正定二次型.即对任意的0),,(2,1≠=T n x x x X Λ,若AX X x x x f T n =),,,(21Λ<0,那么称),,(2,1n x x x f Λ为负定二次型;若有AX X x x x f T n =),,,(21Λ≥0,那么称),,(2,1n x x x f Λ为半正定二次型.习 题1.下列矩阵中,哪些是正定矩阵(1) ;5221⎪⎪⎭⎫ ⎝⎛ (2);4331⎪⎪⎭⎫⎝⎛ (3)⎪⎪⎪⎭⎫⎝⎛510142022.2.下列二次型中,哪些是正定二次型(1) 3121232221443210x x x x x x x +++-; (2) 32312123222148455x x x x x x x x x --+++.3.λ取何值时,下列二次型是正定的.313221232221222)(x x x x x x x x x --+++λ.4.证明:如果A 正定,那么1-A 、)0(>k kA 、*A 也正定.5.如果n B A 为,阶正定矩阵,证明B A +也是正定矩阵.。
天津大学线性代数教材第七章

记 B = STAS, 知 B 是对称矩阵, 是二次型 g(Y ) 的矩阵.
7.2 化二次型为标准形
· 149 ·
如果所作的线性替换 X = SY 是满秩的, 则 S 是可逆矩阵, 线性替换 Y = S−1X 可把 g(Y ) 还原到 f (X), 此时的二次型 f 与 g 是等价的.
定义 7.1.4 设 A, B 为 n 阶矩阵, 若存在 n 阶可逆矩阵 S 使得
津 数 因此, 一个二次型能否化成标准形, 用矩阵的语言来说, 就是对称矩阵 A 能否与一个对 学 角矩阵合同. 由于 S 是可逆矩阵, 所以 r(A) = r(STAS) = r(B). 因此, 二次型 f 的标准形 天 大 中不为零的平方项的项数等于二次型 f 的秩.
津 7.2.1 正交线性替换法
天 实二次型的矩阵为实对称矩阵. 由定理 6.3.4 知, 对于实对称矩阵 A, 必存在 n 阶正交矩
阵 Q, 使得 QTAQ = Q−1AQ = diag(λ1, λ2, . . . , λn), 其中 λ1, λ2, . . . , λn 为矩阵 A 的全部
特征值, 即一个实对称矩阵合同于一个对角矩阵. 因此, 一个实二次型一定能化为标准形.
版 所 f (x1, x2, . . . , xn) =a11x21 + 2a12x1x2 + 2a13x1x3 + · · · + 2a1nx1xn 院 + a22x22 + 2a23x2x3 + · · · + 2a2nx2xn + · · · + annx2n
(7.1)
学 权 称为数域 P 上的 (n 元) 二次型. 当 P = R 时称之为实二次型. 版 令 aij = aji(i > j), 则 2aijxixj = aijxixj + ajixjxi(i > j), 于是 (7.1) 式可写成
二次型定理

二次型定理二次型定理是线性代数中的重要定理之一,它将二次型与矩阵的特征值联系起来,通过特征值的求解,可以确定二次型的性质。
本文将详细介绍二次型定理的概念、证明过程及其应用。
一、二次型的定义在线性代数中,二次型是指由多个变量的平方和线性组合而成的函数。
设有n个实数变量x_1,x_2,...,x_n,记作x=(x_1,x_2,...,x_n)^T。
二次型可以表示为:f(x) = x^TAx其中,A是一个n\times n的实对称矩阵。
二、二次型的矩阵表示设A是一个n\times n的实对称矩阵,x=(x_1,x_2,...,x_n)^T,则f(x)=x^TAx可以写成矩阵形式:f(x)=\begin{pmatrix}x_1 & x_2 & \cdots & x_n\end{pmatrix}\begin{pmatrix}a_{11} & a_{12} & \cdots & a_{1n} \\a_{21} & a_{22} & \cdots & a_{2n} \\\vdots & \vdots & \ddots & \vdots \\a_{n1} & a_{n2} & \cdots & a_{nn}\end{pmatrix}\begin{pmatrix}x_1 \\x_2 \\\vdots \\x_n\end{pmatrix}整理得:f(x)=\sum_{i=1}^n\sum_{j=1}^na_{ij}x_ix_j将此式称为二次型的矩阵表示。
三、二次型定理二次型定理表明,任何一个二次型都可以通过正交变换转化为标准型。
具体来说,对于一个n\times n的实对称矩阵A,必存在一个正交矩阵P,使得:P^TAP = D其中,D是一个对角矩阵,其对角线上的元素称为二次型的主元或特征值。
进一步推广,在主元前面引入主元系数q_i,则有:P^TAP = q_1\lambda_1 + q_2\lambda_2 + ... + q_n\lambda_n其中,\lambda_1, \lambda_2, ..., \lambda_n是A的特征值,q_1, q_2, ..., q_n 是相应的特征向量。
线性代数—二次型的标准形和规范形PPT课件

题。
下面介绍二次型化为标准形的方法。
2
第2页/共33页
1、用拉格朗日配方法化二次型为标准形
拉格朗日配方法的基本步骤: 1. 若二次型含有 的平方项,则先把含有
x 的乘积项集中,然后配方,再对其余i 的变量同 x样进i 行,直到都配成平方项为止,经过非退化线
第12页/共33页
1
2
2
1 2 , 2 1 , 3 0 ,
2
0
1
正交化,
3
2 0 1
4 5
2 1 0
1 5
2 4 5
,
再单位化,合在一起,即得所求正交变换的矩阵
1 3 2 5 2 45
P 2 3 1 5 4 45
2 3
(x1 x2 x3)2 (x2 2x3)2 ,
4
第4页/共33页
f (x1 x2 x3)2 (x2 2x3)2 ,
令
y1 y2
x1 x2 x2 2x3
x3
x1 x2
y1 y2 y2 2 y3
y3
y3 x3
x3 y3
x1 1 1 1 y1 x2 0 1 1
1 1
1
A 1 3
1
1
11 11 1 3
1
1
1
1 13 01 1
0 0
0 10
1 1 11 11
0
1 0 10
,
1
1 1 11
,
1
2
1,
E
A
1 1 1
1 1 1 1
1 1 1 1
1 1
1 11
0 0 0
线性代数—二次型(课件)

称 为 由 变 量 x 1 , x 2 , , x n 到 y 1 , y 2 , , y n 的 一 个 线 性 变 换 。
记
x 1
X
x2
,
x n
y 1
Y
y2
,
y n
c11
C
c21
cn1
c12 c22
cn2
c1n
c2n
,
cnn
则上述线性变换可以写成矩阵形式: XCY. 11
的矩阵A和二次型的秩,其 中 a 1,a 2,a 3不 全 为 零 。
解 f(x 1 ,x 2 ,x 3 ) ( a 1 x 1 a 2 x 2 a 3 x 3 ) 2
a1 2
a1
x1
( x1 , x2 , x3 ) a2 (x1, x2, x3)a2(a1,a2,a3)x2,
a3
x1 c11y1 c12y2 c1n yn x2 c2 1y1 c22y2 c2n yn , xn cn1 y1 cn2 y2 cnnxn
C 称为该线性变换的矩阵。
XCY.
若 C 0 , 则 此 线 性 变 换 称 为 可 逆 线 性 变 换 。
如果C 为正交矩阵,则此线性变换称为正交变换。
a 2x 2 2 2 2 a 2x 3 2 x 3 2 a 2 n x 2 x n
称为一个(n元)二次型.
ann xn2
本书只讨论实二次型,即系数全是实数的二次型。
3
f(x1,x2,,xn) a 1 x 1 2 1 2 a 1 x 1 2 x 2 2 a 1 x 1 3 x 3 2 a 1 n x 1 x n
6
f(x1,x2, ,xn)XTA,X
二次型表达式

二次型表达式二次型是线性代数中的重要概念,它在数学和工程中都有广泛的应用。
二次型是由平方项组成的多项式函数,通常用于描述二次曲线、锥面以及正负定矩阵等问题。
设A是n阶矩阵,x是n维列向量,则称函数f(x)=x^T A x为一个二次型。
其中x^T表示x的转置,A是一个对称矩阵,也可以是一个复数域上的矩阵。
二次型可以表示为矩阵乘法的形式,即f(x)=x^T A x=x_1 a_{11} x_1+x_2a_{22} x_2+\cdots+x_n a_{nn} x_n+2x_1 a_{12} x_2+2x_1 a_{13}x_3+\cdots+2x_{n-1} a_{n-1,n} x_n,其中a_{ij}表示矩阵A的第i行第j列的元素。
我们可以对二次型进行一些简化与分类。
首先,我们可以通过矩阵A的特征值来判断一个二次型的性质。
若所有特征值都为正,则称该二次型为正定二次型;若所有特征值都为负,则称该二次型为负定二次型;若存在正特征值和负特征值,则称该二次型为不定二次型。
正定二次型的图像是一个椭圆,负定二次型的图像是一个竖直方向打开的椭圆,不定二次型的图像是一个双曲线。
其次,我们可以通过矩阵A的秩来判断一个二次型的性质。
若矩阵A的秩为n,则称该二次型为非退化二次型;若矩阵A的秩小于n,则称该二次型为退化二次型。
非退化二次型的图像是一个在空间中没有截平面的曲面,退化二次型的图像是一个在空间中有截平面的曲面。
对于一个二次型,我们还可以通过配方法将其化为标准型。
配方法是通过坐标变换来将二次型的主元素系数化为标准形式,即所有非主对角的元素为0。
这里的坐标变换是通过引入新的变量来改变原有的变量,从而将二次型化为标准型。
综上所述,二次型是由平方项组成的多项式函数,可以用矩阵乘法的形式表示。
我们可以通过矩阵A的特征值、秩以及配方法来判断二次型的性质和将其化为标准型。
二次型在数学和工程中都有广泛的应用,例如在图像处理、机器学习和最优化等领域中常常使用二次型来建模和优化问题。
中国科学技术大学线性代数课程讲义7
是上三角方阵.当
char F
̸=
2
时,Q(x)
=
xT Sx,其中
S
=
1 2
(A
+
AT )
是对称方阵.
在本章中,我们始终假设 char F ̸= 2,二次型 Q(x) = xT Ax,其中 A 是对称方阵,称为 Q(x)
的矩阵表示.容易验证,二次型的矩阵表示是存在且唯一的.留作习题.
§7.1 二次型的化简
√1 6
yy12.
x3
00
√3
6
y3
例 7.4. 通过相合变换,把 R 上的二次型 Q(x) = x1x2 − 2x1x3 + 3x2x3 化为对角形.
解答.
( Q(x) = x1
x2
) x3
0
1 2
1 2
0
−321 xx12.对
0
1 2
1 2
0
−231 作相合变换,
−1
3 2
0
x3
−1
3 2
0
Q(x1, x2, · · · , xn) = a12
x1
+
∑n
j=3
a2j a12
xj
x2
+
∑n
j=3
a1j a12
xj
+ Q(x3, · · · , xn).
设
y1
=
x1
+
x2
+
∑n
j=3
x ,y a1j +a2j
a12
j
2
=
x2
−
x1
+
∑n
j=3
《线性代数及其应用》第七章 对称矩阵和二次型
|E + A| = (1+ 1)(2 + 1) ···(n + 1)>1 . 证毕
注 定利矩用阵二A次是型一的个分对类称,矩相阵应,地且得二到次矩型阵x的T形Ax式分是类正。定一的个。正其
他形式的矩阵(如半正定矩阵)的概念可以类似定义。
例6 设 B 为 m×n 实矩阵, 证明: Bx = 0 只有零解的充
即 解得
1 1 1 x1 1 1 1 x2 0, 1 1 1 x3
1
1
p2 1 , p3 1 ,
0
2
显然, p1 , p2 , p3 两两正交, 现把它们单位化.
令
1
1
1
e1 p1 p1
1, 3 1
e2
1 p2
p2
1
1 1 ,
2 0
第七章 对称矩阵和二次型
§7.1 对称矩阵的对角化
定义 1 一个矩阵 A 若满足 AT A 则称为这个矩阵为 对称矩阵。
说明:(1)对称矩阵是方阵; (2)对称阵的元素以主对角线为对称轴对应相等。
例如
12
A
6 1
6 8 0
1 60
为对称阵.
例1: 设Bmn ,则 BT B 和 BBT 都是对称矩阵.
例4 判定下列二次型的正定性:
Q(x1,x2,x3,x4 ) 3x12 3x22 3x32 x42 2x1x2 2x1x3 2x2x3
解 二次型 Q 的矩阵 A 为
3 1 1 0
A
1 1 0
3 1 0
1 3 0
0 0 1
,
且A的特征值是1,2,2和5,所以二次型是正定二次型。
A = PP-1 ,
线性代数二次型
线性代数二次型线性代数中的二次型描述的是多元函数的形式,是一个关于多元变量的最高次平方项的函数。
当我们只考虑第二次有关变量的函数时,称为二次函数,可以表示为:f(x,y)=a_{00}+a_{10}x+a_{01}y+a_{11}xy+a_{20}x^2+a_{02}y^2其中,a_{ij}为常数系数。
当变量个数为二时,a_{ij}一共有6个:a_{00},a_{01},a_{02},a_{10},a_{11},a_{20},其中a_{20}和a_{02}分别描述了x和y各自本身的作用。
它们两个变量将产生函数f(x,y)的极值,即满足极值条件的函数点以及其附近的极大值点的方向向量。
由f(x,y)的定义可以发现,其图形是一条抛物线;若a_{20}<0,a_{02}<0,则函数的上拱与下凹形成一个凹型;若a_{20}>0,a_{02}>0,则函数的上拱与下凹形成一个凸型;若a_{20}>0,a_{02}<0,则函数形成一个锥形。
二次型在线性代数、优化理论、公众经济学等多个方面都具有重要意义。
在线性代数里,二次型是证明方程组有解最重要的准则之一;在优化理论里,二次型是求极值最为常见的一类问题;在公众经济学里,二次型有着应用广泛的基本模型,研究双位置不确定性下的物价水平和量的曲线就是一个运用二次型的典型的例子。
在运筹学应用上,常常使用二次型表示变量与变量之间的关系,对其解析或者可以利用数学优化算法求解它所代表的最优化问题。
几何上,二次型可以用来表示抛物线,平面曲线,曲面等。
它们也被广泛运用到电子技术、信息科学、控制理论等多个领域中。
从上面的描述可以看出,二次型在线性代数、优化理论、公众经济学等多个学科中都非常重要,可以说是当今学科发展的重要内容。
线性代数-二次型
在物理中的应用
在经典力学中,二次型常常用来描述物体的运动轨迹。例如,行星的运动轨迹可 以用一个二次型来表示,通过求解这个二次型的根,可以得到行星的运动轨迹。
在量子力学中,二次型也用于描述粒子的波函数。例如,一个自由粒子的波函数 可以用一个二次型来表示,通过求解这个二次型的根,可以得到粒子的能级和波 函数。
02
矩阵$A$的元素由二次型中各项的系数决定,即$A =
(a_{ij})$,其中$a_{ij} = frac{1}{2}(b_{ij} + b_{ ji})$。
03
矩阵表示的二次型可以方便地进行代数运算和变换,
例如求导数、求极值等。
二次型的几何意义
二次型在几何上表示一个二次 曲面或曲线,其形状由矩阵 $A$决定。
THANKS
感谢观看
在经济学中的应用
二次型在经济学中也有广泛的应用。 例如,在微观经济学中,二次型可以 用来描述消费者的效用函数,通过求 解这个二次型的最大值,可以得到消 费者的最优消费决策。
VS
在宏观经济学中,二次型可以用来描 述一个国家的生产函数,通过求解这 个二次型的最大值,可以得到一个国 家最优的产出水平。此外,二次型也 用于描述成本函数、需求函数等。
正定二次型
01
正定性
对于正定二次型,其矩阵的所有主子式都大于0,且没有实数根。
02
特征
正定二次型的特征值都大于0。
03
实例
对于二次型 $f(x,y,z)=x^2+y^2+z^2$,它是一个正定二次型,因为其
矩阵的所有主子式都大于0,且没有实数根。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§7.1 §7.2 §7.3
二 次型
配方法化二次型为标准形 矩阵理论化二次型为标准形 二次型的规范形
§7.4
§7.5
正定二次型
概要与小结
二次型的一个重要议题就是用变量的非退化线性替换化简一个 二次型使它只含平方项(称为标准形)。
容易看出把上式代入二次型f(x1,x2,…,xn)得到的 关于y1,y2,…,yn的多项式仍然是齐二次的,故线性替换 把二次型变为二次型.我们将只含平方项,不含混合项 的二次型称为标准形. 研究如何通过非退化的线性替换将二次型f(x1,x2,…,xn) 化为标准形 配方法是应用中学代数配平方的方法来达到逐次消去 混合项,最后只剩下平方项,从而化为标准形的.
注记 作非退化线性变换的目是为了在二次型中出现
平方,所以这种变换形式相对固定,即利用公式
一般的二次型可以表示为:
x1 c11 c12 c1n y1 x c y c c 2n 2 2 21 22 , xn cn1 cn 2 cnn yn
则存在正交矩阵
记
1 1 0 A 0 0
1 1 0 0 0
0 0 1 0 0
0 0 0 0 0 0 1 0 0 1 nn