线性代数第五章相似矩阵与二次型

合集下载

线性代数 第五章 相似矩阵与二次型 第1节

线性代数 第五章  相似矩阵与二次型 第1节

就正交。
显然,零向量与任何向量正交。
定义 一组两两正交的非零向量,称为正交向量组。
定理 如果 n 维向量 1, 2 ,..., m 为正交向量组, 则1, 2 ,..., m 线性无关。
证明 设有1,2,m 使11 2 2 ... m m 0

T 1
左乘上式两端,得
1
T 1
1
0
因1 0, 故1T1 1 2 0,从而1 0。
1 3 1
4 6
1 2 1
5 3
1 1 ; 1
3
3
[ 3, 1] [1, 1]
1
[ 3, 2] [2, 2 ]
2
4 1 0
1
3
1 2 1
5
3
1 1 1
2 0
2
再把它们单位化,取
e1
1
1
1 6
1 2 , 1
e3
3
3
r1,n , 把1,r ,r1,n 正交规范化
就得到 Rn 的一个正交规范基。
五、正交矩阵与正交变换
定义 若 n 阶方阵A 满足 AT A E (即A1 AT )
则称 A 是正交矩阵。
若记 A 1 2 n ,则 AT A可表示为:
12TT
1
2
n E
T n

iT j
1 0
当i 当i
四、施密特正交化方法
把基 1, 2 ,..., n 化成标准正交基的具体步骤:
先正交化:

1

1
2
2
[ 2 , [1,
1] 1]
1
3
3
2 i 1
[ 3 [i

大学线性代数课件相似矩阵及二次型第五章 相似矩阵及二次型

大学线性代数课件相似矩阵及二次型第五章 相似矩阵及二次型

|[, ] | [, ][ , ]
长为 1 的向量称为单位向量.
例1
01,
1
0
2

0
1
2
若向量
1
3
x ≠0 ,

1 x
x
1 都是3 维单位向量.
3
1
是 单 位 向 量.
3
例 已知
1
2
2
,
3
,
1
1
0
0
计算两个向量单位化后的内积.
解:
12 22 (1)2 02
1 0 2
所以A的特征值为 1 2,2 3 1
当 1 2解齐次线性方程组 (2E A)x 0 即
3x1 x2 0 4x1 x2 0 x1 0
3 1 0 1 0 0

2E
A
4 1
1 0
00
0 0
1 0
0 0
0
得基础解系
p1
10
故对应于 1 2的全体特征向量为 k1 p1(k1 0)
y yT y xT PT Px xT x x
说明经正交变换向量长度保持不变,这是正交变换的优 良特性.
2 方阵的特征值 特征向量
内容分布 一、特征值与特征向量 二、特征值与特征向量的性质
基本要求 会求特征值与特征向量
2.1 特征值与特征向量
定义8 设A是n阶方阵,如果数 和n维非零向量x使
量为
k11 k22 kss (k1, ···,ks不同时为0)
例1 求矩阵
A
2 1
解: A的特征方程为
1 2
的特征值和特征向量
2 1
| E A |

线性代数第五章相似矩阵及二次型

线性代数第五章相似矩阵及二次型

1.2正交向量组与施密特正交化方法
b1 ,b2 , ,br1 ,br 是正交向量组.由
b1
,br
b1
,ar
b1 ,ar b1 ,b1
b1
b2 b2
br 1 ,ar br 1 ,br 1
br 1
,ar ,b2
b2
由归纳假设知b1 分别与 b2 ,b3 , ,br 1 正交,故
a1 b1,
a2
b2
b1, a2 b1, b1
b1
,
1.2正交向量组与施密特正交化方法
ar
br
b1 ,ar b1 ,b1
b1
b2 b2
,ar ,b2
b2
br 1 ,ar br 1 ,br 1
br 1 .
于是得 a1 ,a2 , ,ar b1 ,b2 , ,br 与等价.
若再将 b1 ,b2 , ,br 单位化,并记为
a,b a1b1 a2b2 anbn aTb
1.1向量的内积
例2 设向量 1
a
0
,
2
3
3
b
2
1
,
求a,
b
1
解 a,b 13 0 2 2(1) 31 4
3
1
练习设向量
a
1 0
,
b
1 2
,

a,
b
2
3
解 a,b 3111 0 (2) 2 (3) 2
1 2 3
6 3
1 1 1
1 0 1
1.2正交向量组与施密特正交化方法
b3
a3
b1, a3 b1, b1
b1
b2 , b2 ,
a3 b2

线性代数课件第五章相似矩阵及二次型-第6节

线性代数课件第五章相似矩阵及二次型-第6节
应用三
在矩阵分解和矩阵求逆中,可以利用相似变换将一 个复杂的问题转化为简单的问题,提高计算效率。
03
二次型
定义与性质
二次型是定义在一组数域上的 一个多项式,其最高次项的次 数为2。
二次型具有对称性,即对于任 意实数x和y,有f(y,x)=f(x,y)。
二次型的系数矩阵是对称矩阵 ,即其转置矩阵等于其本身。
定义法
根据特征值的定义,通过解方程组$Ax = λx$来计算特征值和特征向 量。
谱分解法
将矩阵A表示为若干个特征值的线性组合,即$A = λ1P1 + λ2P2 + ... + λnPn$,其中Pn是对应的特征向量组成的矩阵,λn是特征值。 通过求解这个方程组可以得到特征值和特征向量。
特征值与特征向量的应用
答案
01
02
03
04
1. $A^2 = begin{bmatrix} 5 & 0 0 & 5 end{bmatrix}$
2. $B^3 = begin{bmatrix} 2 & -2 -1 & 1 end{bmatrix}$
3. $C^2 = begin{bmatrix} -1 & 0 0 & -1 end{bmatrix}$,
05
矩阵对角化
矩阵对角化的定义与性质
定义:如果存在可逆矩阵$P$,使得 $P^{-1}AP$为对角矩阵,则称矩阵$A$ 可对角化。
可对角化的矩阵$A$的行列式值等于其 对角矩阵的行列式值。
可对角化的矩阵$A$的秩等于其对角矩 阵的秩。
性质
可对角化的矩阵$A$的特征值都在对角 线上。
矩阵对角化的判定
在求解线性方程组时,如果系数矩阵可对角化,可以利用对角化方法将方程组化为易于求解的形式。

第五章 相似矩阵及二次型 线性代数 含答案

第五章 相似矩阵及二次型  线性代数  含答案

第五章 相似矩阵及二次型5.4.1 基础练习 1. (1223),(3151),(,)αβαβ==∠求.2. 若λ=2为可逆阵A的特征值,则1213A -⎛⎫⎪⎝⎭的一个特征值为 .3. 试证n阶方阵A的满足2A A =,则A的特征值为0或者1.4.已知三维向量空间中,12(111),(121)TTαα==-正交,试求3123,,αααα,使得是三维向量空间的一个正交基.5. 已知向量1(111)T α=,求3R 的一个标准正交基.6. 已知122224242A -⎛⎫⎪=-- ⎪ ⎪-⎝⎭,问A 能否化为对角阵?若能对角化,则求出可逆矩阵P ,使1P AP -为对角阵.7. 将二次型222123121323171414448f x x x x x x x x x =++---,通过正交变换x Py =化成标准型.8. 判别二次型()222123123121323,,55484f x x x x x x x x x x x x =+++--是否正定?5.4.2 提高练习1. 设n 阶实对称矩阵A 满足2A A =,且A 的秩为r ,试求行列式det(2E -A).2. 设460350361A ⎛⎫⎪=-- ⎪ ⎪--⎝⎭,问A 能否对角化?若能对角化,则求出可逆矩阵P ,使得-1P AP 为对角阵.3. 已知实对称矩阵220212020A -⎛⎫⎪=-- ⎪ ⎪-⎝⎭,分别求出正交矩阵P ,使1P AP -为对角阵. 4. 化二次型()123121323,,f x x x x x x x x x =++为标准形,并求所作的可逆线性变换.5. 设A,B分别为m阶,n阶正定矩阵,试判定分块矩阵ACB⎛⎫= ⎪⎝⎭是否为正定矩阵?6. 判别二次型22256444f x y z xy xz=---++的正定性.7. 判断下列两矩阵A,B是否相似11100111100,111100nA B⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪==⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭第五章 参考答案5.4.1 基础练习 1.[,]cos ||||||||4αβπθθαβ===∴=2.34. 3.略.4. 设3123()0Tx x x α=≠,则[][]1223,0,,0αααα==,即 12313312321002001x x x x x x x x x α-⎛⎫++==-⎧⎧ ⎪⇒⇒=⎨⎨ ⎪-+==⎩⎩ ⎪⎝⎭5. 设非零向量23,αα都与2α正交,即满足方程11230,0T x x x x α=++=或者,其基础解 系为: 12100,111ξξ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭, 令 121321101,0,1111ααξαξ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪===== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭1)正交化令 121122121111[,]1,0,[,]11βαβαβαβαββ⎛⎫⎛⎫⎪⎪===-== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭1323233312321122221[,][,][,]12[,][,][,]21βαβαβαβαββαβββββββ-⎛⎫⎪=--=-= ⎪ ⎪-⎝⎭2)标准化令1||||i i i ςββ=,则1231111,0,2111ςςς-⎛⎫⎛⎫⎛⎫⎪⎪⎪===⎪⎪⎪⎪⎪⎪--⎭⎭⎭6. 由2122224(2)(7)242A E λλλλλλ---=---=--+--得,1232,7λλλ===-将12λ=λ=2代入()1A-λE x=0,得方程组 12312312322024402440x x x x x x x x x --+=⎧⎪--+=⎨⎪+-=⎩解值得基础解系 12200,111αα⎛⎫⎛⎫ ⎪⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 同理,对3λ=-7,由()3A-λE x=0,求得基础解系()31,2,2Tα=,由于201120112≠,所以123,,ααα线性无关,即A 有3个线性无关得特征向量,因而A 可对角化,可逆矩阵为:123201(,,)012112P ααα⎛⎫⎪== ⎪ ⎪⎝⎭7. 第一步,写出对应得二次型矩阵,并求其特征值 172221442414A --⎛⎫ ⎪=-- ⎪⎪--⎝⎭, ()()2172221441892414A E λλλλλλ---⎛⎫⎪-=---=-- ⎪⎪---⎝⎭,从而A 的全部特征值为1239,18λλλ===。

线性代数 第五章 相似矩阵及二次型

线性代数  第五章  相似矩阵及二次型

1 2
也是 R4 的一个规范正交基.
1 1 1 1
e1
0 0
,
e2
1 0
,
e3
1 1
,
e4
1
1
0
0
0
1
是 R4 的一个基,但不是规范正交基.
§1 向量的内积、长度及正交性
设 e1, e2, …, er 是向量空间 V 中的一个正交基,则V 中任意一
个向量可唯一表示为 x = l1e1 + l2e2 + …+ lrer
[x + y, z] = [x, z] + [y, z] 当 x = 0(零向量) 时, [x, x] = 0;
当[xl x≠,0y(] 零(l向x量)T )y 时l,xT[xy, x]l>( x0T.y) l[x, y] 施瓦兹(Schwarz)不等式 [ x y, z] ( x y)T z[x, (yx]2T ≤[yxT, )x]z[y,(yx]T.z) ( yT z) [ x, z] [ y, z]
y
x
§1 向量的内积、长度及正交性
定义:两两正交的非零向量组成的向量组成为正交向量组.
定理:若 n 维向量a1, a2, …, ar 是一组两两正交的非零向量, 则 a1, a2, …, ar 线性无关. 证明:设 k1a1 + k2a2 + … + kr ar = 0(零向量),那么 0 = [a1, 0] = [a1, k1a1 + k2a2 + … + kr ar]
当 x ≠ 0 且 y ≠ 0 时,
[x, y] 1≠ 0 且 y ≠ 0 时,把
arccos [ x, y]

线性代数第五章答案

线性代数第五章答案
k1a1k2a2 knranrl1b1l2b2 lnrbnr0 记 k1a1k2a2 knranr(l1b1l2b2 lnrbnr) 则k1 k2 knr不全为0 否则l1 l2 lnt不全为0 而
l1b1l2b2 lnrbnr0 与b1 b2 bnt线性无关相矛盾
因此 0 是A的也是B的关于0的特征向量 所以A与B有公共的特征值 有 公共的特征向量
8 设A23A2EO 证明A的特征值只能取1或2 证明 设是A的任意一个特征值 x是A的对应于的特征向量 则
(A23A2E)x2x3x2x(232)x0 因为x0 所以2320 即是方程2320的根 也就是说1或2
9 设A为正交阵 且|A|1 证明1是A的特征值 证明 因为A为正交矩阵 所以A的特征值为1或1 (需要说明) 因为|A|等于所有特征值之积 又|A|1 所以必有奇数个特征值为1 即1 是A的特征值
10 设0是m阶矩阵AmnBnm的特征值 证明也是n阶矩阵BA的特征值 证明 设x是AB的对应于0的特征向量 则有
(AB)xx 于是 B(AB)xB(x) 或 BA(B x)(Bx) 从而是BA的特征值 且Bx是BA的对应于的特征向量
11 已知3阶矩阵A的特征值为1 2 3 求|A35A27A| 解 令()3527 则(1)3 (2)2 (3)3是(A)的特征值 故
|A35A27A||(A)|(1)(2)(3)32318
12 已知3阶矩阵A的特征值为1 2 3 求|A*3A2E| 解 因为|A|12(3)60 所以A可逆 故
A*|A|A16A1 A*3A2E6A13A2E 令()6132 则(1)1 (2)5 (3)5是(A)的特征值 故 |A*3A2E||6A13A2E||(A)|
6 设A为n阶矩阵 证明AT与A的特征值相同 证明 因为

线性代数第五章答案

线性代数第五章答案

线性代数第五章答案第五章相似矩阵及二次型1. 试用施密特法把下列向量组正交化:(1)=931421111) , ,(321a a a ;解根据施密特正交化方法,==11111a b ,-=-=101],[],[1112122b b b a b a b ,-=--=12131],[],[],[],[222321113133b b b a b b b b a b a b .(2)---=011101110111) , ,(321a a a .解根据施密特正交化方法,-==110111a b ,-=-=123131],[],[1112122b b b a b a b , ?-=--=433151],[],[],[],[222321113133b b b a b b b b a b a b . 2. 下列矩阵是不是正交阵:(1)---121312112131211;解此矩阵的第一个行向量非单位向量, 故不是正交阵.(2)------979494949198949891.解该方阵每一个行向量均是单位向量, 且两两正交, 故为正交阵.3. 设x 为n 维列向量, x T x =1, 令H =E -2xx T , 证明H 是对称的正交阵. 证明因为H T =(E -2xx T )T =E -2(xx T )T =E -2(xx T )T =E -2(x T )T x T =E -2xx T , 所以H 是对称矩阵. 因为H T H =HH =(E -2xx T )(E -2xx T ) =E -2xx T -2xx T +(2xx T )(2xx T ) =E -4xx T +4x (x T x )x T =E -4xx T +4xx T =E , 所以H 是正交矩阵.4. 设A 与B 都是n 阶正交阵, 证明AB 也是正交阵. 证明因为A ,B 是n 阶正交阵, 故A -1=A T , B -1=B T ,(AB )T (AB )=B T A T AB =B -1A -1AB =E ,故AB 也是正交阵.5. 求下列矩阵的特征值和特征向量:(1)----201335212;解 3)1(201335212||+-=-------=-λλλλλE A ,故A 的特征值为λ=-1(三重). 对于特征值λ=-1, 由----=+000110101101325213~E A ,得方程(A +E )x =0的基础解系p 1=(1, 1, -1)T , 向量p 1就是对应于特征值λ=-1的特征值向量.(2)633312321;解 )9)(1(633312321||-+-=---=-λλλλλλλE A ,故A 的特征值为λ1=0, λ2=-1, λ3=9. 对于特征值λ1=0, 由=000110321633312321~A ,得方程A x =0的基础解系p 1=(-1, -1, 1)T , 向量p 1是对应于特征值λ1=0的特征值向量. 对于特征值λ2=-1, 由=+000100322733322322~E A ,得方程(A +E )x =0的基础解系p 2=(-1, 1, 0)T , 向量p 2就是对应于特征值λ2=-1的特征值向量. 对于特征值λ3=9, 由--???? ??---=-00021101113333823289~E A ,得方程(A -9E )x =0的基础解系p 3=(1/2, 1/2, 1)T , 向量p 3就是对应于特征值λ3=9的特征值向量.(3)0001001001001000.(和书后答案不同,以书后为主,但解题步骤可以参考)解22)1()1(001010010100||+-=----=-λλλλλλλE A ,故A 的特征值为λ1=λ2=-1, λ3=λ4=1. 对于特征值λ1=λ2=-1,由=+00000000011010011001011001101001~E A , 得方程(A +E )x =0的基础解系p 1=(1, 0, 0, -1)T , p 2=(0, 1, -1, 0)T , 向量p 1和p 2是对应于特征值λ1=λ2=-1的线性无关特征值向量.对于特征值λ3=λ4=1, 由------=-00000000011010011001011001101001~E A , 得方程(A -E )x =0的基础解系p 3=(1, 0, 0, 1)T , p 4=(0, 1, 1, 0)T , 向量p 3和p 4是对应于特征值λ3=λ4=1的线性无关特征值向量.6. 设A 为n 阶矩阵, 证明A T 与A 的特征值相同. 证明因为|A T -λE |=|(A -λE )T |=|A -λE |T =|A -λE |,所以A T 与A 的特征多项式相同, 从而A T 与A 的特征值相同.7.设n阶矩阵A、B满足R(A)+R(B)<n,证明a与b有公共的特征值,有公共的特征向量.< p="">证明设R(A)=r,R(B)=t,则r+t<n.< p="">若a1,a2,,a n-r是齐次方程组A x=0的基础解系,显然它们是A的对应于特征值λ=0的线性无关的特征向量.类似地,设b1,b2,,b n-t是齐次方程组B x=0的基础解系,则它们是B的对应于特征值λ=0的线性无关的特征向量.由于(n-r)+(n-t)=n+(n-r-t)>n,故a1,a2,,a n-r,b1,b2,,b n-t 必线性相关.于是有不全为0的数k1,k2,,k n-r,l1,l2,,l n-t,使k1a1+k2a2++k n-r a n-r+l1b1+l2b2++l n-r b n-r=0.记γ=k1a1+k2a2++k n-r a n-r=-(l1b1+l2b2++l n-r b n-r),则k1,k2,,k n-r不全为0,否则l1,l2,,l n-t不全为0,而l1b1+l2b2++l n-r b n-r=0,与b1,b2,,b n-t线性无关相矛盾.因此,γ≠0,γ是A的也是B的关于λ=0的特征向量,所以A与B有公共的特征值,有公共的特征向量.8.设A2-3A+2E=O,证明A的特征值只能取1或2.证明设λ是A的任意一个特征值,x是A的对应于λ的特征向量,则(A2-3A+2E)x=λ2x-3λx+2x=(λ2-3λ+2)x=0.因为x≠0,所以λ2-3λ+2=0,即λ是方程λ2-3λ+2=0的根,也就是说λ=1或λ=2.9.设A为正交阵,且|A|=-1,证明λ=-1是A的特征值.证明因为A为正交矩阵,所以A的特征值为-1或1.(需要说明)因为|A|等于所有特征值之积,又|A|=-1,所以必有奇数个特征值为-1,即λ=-1是A的特征值.10.设λ≠0是m阶矩阵A m?n B n?m的特征值,证明λ也是n阶矩阵BA的特征值.证明设x是AB的对应于λ≠0的特征向量,则有(AB)x=λx,于是B(AB)x=B(λx),或BA(B x)=λ(B x),从而λ是BA的特征值,且B x是BA的对应于λ的特征向量.11.已知3阶矩阵A的特征值为1, 2, 3,求|A3-5A2+7A|.解令?(λ)=λ3-5λ2+7λ, 则?(1)=3, ?(2)=2, ?(3)=3是?(A )的特征值, 故 |A 3-5A 2+7A |=|?(A )|=?(1)??(2)??(3)=3?2?3=18.12. 已知3阶矩阵A 的特征值为1, 2, -3, 求|A *+3A +2E |. 解因为|A |=1?2?(-3)=-6≠0, 所以A 可逆, 故 A *=|A |A -1=-6A -1, A *+3A +2E =-6A -1+3A +2E .令?(λ)=-6λ-1+3λ+2, 则?(1)=-1, ?(2)=5, ?(-3)=-5是?(A )的特征值, 故 |A *+3A +2E |=|-6A -1+3A +2E |=|?(A )|=?(1)??(2)??(-3)=-1?5?(-5)=25.13. 设A 、B 都是n 阶矩阵, 且A 可逆, 证明AB 与BA 相似.证明取P =A , 则P -1ABP =A -1ABA =BA ,即AB 与BA 相似.14. 设矩阵=50413102x A 可相似对角化, 求x .解由)6()1(50413102||2---=---=-λλλλλλx E A ,得A 的特征值为λ1=6, λ2=λ3=1.因为A 可相似对角化, 所以对于λ2=λ3=1, 齐次线性方程组(A -E )x =0有两个线性无关的解, 因此R (A -E )=1. 由-???? ??=-00030010140403101)(~x x E A r知当x =3时R (A -E )=1, 即x =3为所求.15. 已知p =(1, 1, -1)T 是矩阵---=2135212b a A 的一个特征向量.(1)求参数a , b 及特征向量p 所对应的特征值;解设λ是特征向量p 所对应的特征值, 则(A -λE )p =0, 即=???? ??-???? ??------0001112135212λλλb a ,解之得λ=-1, a =-3, b =0.(2)问A 能不能相似对角化?并说明理由. 解由3)1(201335212||--=-------=-λλλλλE A ,得A 的特征值为λ1=λ2=λ3=1. 由-???? ??----=-00011010111325211~r b E A知R (A -E )=2, 所以齐次线性方程组(A -E )x =0的基础解系只有一个解向量. 因此A 不能相似对角化.16. 试求一个正交的相似变换矩阵, 将下列对称阵化为对角阵:(1)----020212022;解将所给矩阵记为A . 由λλλλ-------=-20212022E A =(1-λ)(λ-4)(λ+2),得矩阵A 的特征值为λ1=-2, λ2=1, λ3=4. 对于λ1=-2, 解方程(A +2E )x =0, 即0220232024321=----x x x , 得特征向量(1, 2, 2)T , 单位化得T)32 ,32 ,31(1=p .对于λ2=1, 解方程(A -E )x =0, 即0120202021321=-----x x x , 得特征向量(2, 1, -2)T , 单位化得T )32 ,31 ,32(2-=p . 对于λ3=4, 解方程(A -4E )x =0, 即0420232022321=-------x x x , 得特征向量(2, -2, 1)T , 单位化得T )31 ,32 ,32(3-=p . 于是有正交阵P =(p 1, p 2, p 3), 使P -1AP =diag(-2, 1, 4).(2)----542452222. (和书后答案不同,以书后答案为准,解题步骤可以参考)解将所给矩阵记为A . 由λλλλ-------=-542452222E A =-(λ-1)2(λ-10),得矩阵A 的特征值为λ1=λ2=1, λ3=10. 对于λ1=λ2=1, 解方程(A -E )x =0, 即=???? ?????? ??----000442442221321x x x , 得线性无关特征向量(-2, 1, 0)T 和(2, 0, 1)T , 将它们正交化、单位化得T 0) 1, ,2(511-=p , T 5) ,4 ,2(5312=p .对于λ3=10, 解方程(A -10E )x =0, 即=???? ?????? ??-------000542452228321x x x ,得特征向量(-1, -2, 2)T , 单位化得T )2 ,2 ,1(313--=p . 于是有正交阵P =(p 1, p 2, p 3), 使P -1AP =diag(1, 1, 10).17. 设矩阵------=12422421x A 与-=Λy 45相似, 求x , y ; 并求一个正交阵P , 使P -1AP =Λ.解已知相似矩阵有相同的特征值, 显然λ=5, λ=-4, λ=y 是Λ的特征值, 故它们也是A 的特征值. 因为λ=-4是A 的特征值, 所以0)4(9524242425|4|=-=---+---=+x x E A ,解之得x =4.已知相似矩阵的行列式相同, 因为100124242421||-=-------=A , y y2045||-=-=Λ,所以-20y =-100, y =5.对于λ=5, 解方程(A -5E )x =0, 得两个线性无关的特征向量(1, 0, -1)T , (1, -2, 0)T . 将它们正交化、单位化得T )1 ,0 ,1(211-=p , T )1 ,4 ,1(2312-=p .对于λ=-4, 解方程(A +4E )x =0, 得特征向量(2, 1, 2)T , 单位化得T )2 ,1 ,2(313=p .于是有正交矩阵?--=23132212343102313221P , 使P -1AP =Λ. 18. 设3阶方阵A 的特征值为λ1=2, λ2=-2, λ3=1; 对应的特征向量依次为p 1=(0, 1, 1)T , p 2=(1, 1, 1)T , p 3=(1,1, 0)T , 求A .解令P =(p 1, p 2, p 3), 则P -1AP =diag(2, -2, 1)=Λ, A =P ΛP -1.因为---=???? ??=--11011101101111111011P ,所以---???? ??-???? ??=Λ=-1101110111000200020111111101P P A------=244354332. 19. 设3阶对称阵A 的特征值为λ1=1, λ2=-1, λ3=0; 对应λ1、λ2的特征向量依次为p 1=(1, 2, 2)T , p 2=(2, 1, -2)T , 求A .解设=653542321x x x x x x x x x A , 则A p 1=2p 1, A p 2=-2p 2, 即 =++=++=++222222122653542321x x x x x x x x x , ---① =-+-=-+-=-+222122222653542321x x x x x x x x x . ---② 再由特征值的性质, 有x 1+x 4+x 6=λ1+λ2+λ3=0. ---③由①②③解得612131x x --=, 6221x x =, 634132x x -=,642131x x -=, 654132x x +=. 令x 6=0, 得311-=x , x 2=0, 323=x ,314=x , 325=x . 因此-=022********A . 20. 设3阶对称矩阵A 的特征值λ1=6, λ2=3, λ3=3, 与特征值λ1=6对应的特征向量为p 1=(1, 1, 1)T , 求A .解设=653542321x x x x x x x x x A .因为λ1=6对应的特征向量为p 1=(1, 1, 1)T , 所以有=???? ??1116111A , 即?=++=++=++666653542321x x x x x x x x x ---①. λ2=λ3=3是A 的二重特征值, 根据实对称矩阵的性质定理知R (A -3E )=1. 利用①可推出--???? ??---=-331113333653542653542321~x x x x x x x x x x x x x x x E A .因为R (A -3E )=1, 所以x 2=x 4-3=x 5且x 3=x 5=x 6-3, 解之得x 2=x 3=x 5=1, x 1=x 4=x 6=4.因此=411141114A .21. 设a =(a 1, a 2, , a n )T , a 1≠0, A =aa T . (1)证明λ=0是A 的n -1重特征值;证明设λ是A 的任意一个特征值, x 是A 的对应于λ的特征向量, 则有A x =λx ,λ2x =A 2x =aa T aa T x =a T a A x =λa T ax , 于是可得λ2=λa T a , 从而λ=0或λ=a T a .设λ1, λ2, ? ? ?, λn 是A 的所有特征值, 因为A =aa T 的主对角线性上的元素为a 12, a 22, ? ? ?, a n 2, 所以a 12+a 22+ ? ? ? +a n 2=a T a =λ1+λ2+ ? ? ? +λn ,这说明在λ1, λ2, ? ? ?, λn 中有且只有一个等于a T a , 而其余n -1个全为0, 即λ=0是A 的n -1重特征值.(2)求A 的非零特征值及n 个线性无关的特征向量. 解设λ1=a Ta , λ2= ? ? ? =λn =0.因为A a =aa T a =(a T a )a =λ1a , 所以p 1=a 是对应于λ1=a T a 的特征向量.对于λ2= ? ? ? =λn =0, 解方程A x =0, 即aa T x =0. 因为a ≠0, 所以a T x =0, 即a 1x 1+a 2x 2+ ? ? ? +a n x n =0, 其线性无关解为p 2=(-a 2, a 1, 0, , 0)T ,p 3=(-a 3, 0, a 1, , 0)T , ? ? ?,p n =(-a n , 0, 0, , a 1)T .因此n 个线性无关特征向量构成的矩阵为--=112212100), , ,(a a a aa a a nn n p p p . 22. 设-=340430241A , 求A 100. 解由)5)(5)(1(340430241||+---=----=-λλλλλλλE A ,得A 的特征值为λ1=1, λ2=5, λ3=-5.对于λ1=1, 解方程(A -E )x =0, 得特征向量p 1=(1, 0, 0)T . 对于λ1=5, 解方程(A -5E )x =0, 得特征向量p 2=(2, 1, 2)T . 对于λ1=-5, 解方程(A +5E )x =0, 得特征向量p 3=(1, -2, 1)T . 令P =(p 1, p 2, p 3), 则P -1AP =diag(1, 5, -5)=Λ, A =P ΛP -1, A 100=P Λ100P -1. 因为Λ100=diag(1, 5100, 5100),--=???? ??-=--1202105055112021012111P ,所以--???? ?????? ??-=12021050555112021012151100100100A-=1001001005000501501.23. 在某国, 每年有比例为p 的农村居民移居城镇, 有比例为q 的城镇居民移居农村, 假设该国总人口数不变, 且上述人口迁移的规律也不变. 把n 年后农村人口和城镇人口占总人口的比例依次记为x n 和y n (x n +y n =1).(1)求关系式??=??++n n n n y x A y x 11中的矩阵A ;解由题意知x n +1=x n +qy n -px n =(1-p )x n +qy n , y n +1=y n +px n -qy n = px n +(1-q )y n , 可用矩阵表示为--=??? ??++n n n n y x q p q p y x 1111,因此--=q p q p A 11.(2)设目前农村人口与城镇人口相等, 即??? ??=??? ??5.05.000y x , 求?n n y x .解由??=??++n n n n y x A y x 11可知??=??00y x A y x n n n . 由)1)(1(11||q p q p qp E A ++--=----=-λλλλλ,得A 的特征值为λ1=1, λ2=r , 其中r =1-p -q .对于λ1=1, 解方程(A -E )x =0, 得特征向量p 1=(q , p )T . 对于λ1=r ,解方程(A -rE )x =0, 得特征向量p 2=(-1, 1)T . 令??-==11) ,(21p q P p p , 则 P -1AP =diag(1, r )=Λ, A =P ΛP -1, A n =P Λn P -1.于是 11100111-??-??? ????? ??-=p q r p q A n n-??? ????? ??-+=q p r p q q p n 11001111+--++=n n n n qr p pr p qr q pr q q p 1,+--++=??? ??5.05.01n n n n n n qr p pr p qr q pr q q p y x ??-+-++=n n r p q p r q p q q p )(2)(2)(21.24. (1)设??--=3223A , 求?(A )=A 10-5A 9; 解由)5)(1(3223||--=----=-λλλλλE A ,得A 的特征值为λ1=1, λ2=5.对于λ1=1, 解方程(A -E )x =0, 得单位特征向量T )1 ,1(21. 对于λ1=5, 解方程(A -5E )x =0, 得单位特征向量T )1 ,1(21-.于是有正交矩阵?-=111121P , 使得P -1AP =diag(1, 5)=Λ,从而A =P ΛP -1, A k =P Λk P -1. 因此?(A )=P ?(Λ)P -1=P (Λ10-5Λ9)P -1 =P [diag(1, 510)-5diag(1, 59)]P -1 =P diag(-4, 0)P -1-??? ??-??? ??-=1111210004111121-=??? ??----=111122222.(2)设=122221212A , 求?(A )=A 10-6A 9+5A 8.解求得正交矩阵为---=20223123161P , 使得P -1AP =diag(-1, 1, 5)=Λ, A =P ΛP -1. 于是?(A )=P ?(Λ)P -1=P (Λ10-6Λ9+5Λ8)P -1 =P [Λ8(Λ-E )(Λ-5E )]P -1=P diag(1, 1, 58)diag(-2, 0, 4)diag(-6, -4, 0)P -1 =P diag(12, 0,0)P -1---???? ?---=222033*********223123161----=4222112112. 25. 用矩阵记号表示下列二次型: (1) f =x 2+4xy +4y 2+2xz +z 2+4yz ; 解=z y x z y x f 121242121) , ,(.(2) f =x 2+y 2-7z 2-2xy -4xz -4yz ; 解-------=z y x z y x f 722211211) , ,(.(3) f =x 12+x 22+x 32+x 42-2x 1x 2+4x 1x 3-2x 1x 4+6x 2x 3-4x 2x 4.解------=432143211021013223111211) , , ,(x x x x x x x x f .26. 写出下列二次型的矩阵: (1)x x x ?=1312)(T f ;解二次型的矩阵为=1222A .(2)x x x=987654321)(T f .解二次型的矩阵为=975753531A .27. 求一个正交变换将下列二次型化成标准形: (1) f =2x 12+3x 22+3x 33+4x 2x 3;解二次型的矩阵为=320230002A . 由)1)(5)(2(320230002λλλλλλλ---=---=-E A ,得A 的特征值为λ1=2, λ2=5, λ3=1. 当λ1=2时, 解方程(A -2E )x =0, 由=-0001002101202100002~E A ,得特征向量(1, 0, 0)T . 取p 1=(1, 0, 0)T . 当λ2=5时, 解方程(A -5E )x =0, 由-???? ??---=-0001100012202200035~E A ,得特征向量(0, 1, 1)T . 取T )21 ,21,0(2=p .当λ3=1时, 解方程(A -E )x =0, 由=-000110001220220001~E A ,得特征向量(0, -1, 1)T . 取T )21 ,21 ,0(3-=p .于是有正交矩阵T =(p 1, p 2, p 3)和正交变换x =T y , 使f =2y 12+5y 22+y 32.(2) f =x 12+x 22+x 32+x 42+2x 1x 2-2x 1x 4-2x 2x 3+2x 3x 4.解二次型矩阵为----=1101111001111011A . 由2)1)(3)(1(1101111001111011--+=--------=-λλλλλλλλE A ,得A 的特征值为λ1=-1, λ2=3, λ3=λ4=1.当λ1=-1时, 可得单位特征向量T )21 ,21 ,21 ,21(1--=p .当λ2=3时, 可得单位特征向量T )21 ,21 ,21 ,21(2--=p . 当λ3=λ4=1时, 可得线性无关的单位特征向量T )0 ,21 ,0 ,21(3=p , T )21 ,0 ,21 ,0(4=p .于是有正交矩阵T =( p 1, p 2, p 3, p 4)和正交变换x =T y , 使f =-y 12+3y 22+y 32+y 42.28. 求一个正交变换把二次曲面的方程3x 2+5y 2+5z 2+4xy -4xz -10yz =1化成标准方程.解二次型的矩阵为----=552552223A .由)11)(2(552552223||---=-------=-λλλλλλλE A , 得A 的特征值为λ1=2,λ2=11, λ3=0, .对于λ1=2, 解方程(A -2E )x =0, 得特征向量(4, -1, 1)T , 单位化得)231 ,231 ,234(1-=p .对于λ2=11, 解方程(A -11E )x =0, 得特征向量(1, 2, -2)T , 单位化得)32 ,32 ,31(2-=p . 对于λ3=0, 解方程A x =0, 得特征向量(0, 1, 1)T , 单位化得)21 ,21,0(3=p .于是有正交矩阵P =(p 1, p 2, p 3), 使P -1AP =diag(2, 11, 0), 从而有正交变换--=???? ??w v u z y x 21322312132231031234,使原二次方程变为标准方程2u 2+11v 2=1.29. 明: 二次型f =x T A x 在||x ||=1时的最大值为矩阵A 的最大特征值. 证明 A 为实对称矩阵, 则有一正交矩阵T , 使得TAT -1=diag(λ1, λ2, ? ? ?, λn )=Λ成立, 其中λ1, λ2, ? ? ?, λn 为A 的特征值, 不妨设λ1最大. 作正交变换y =T x , 即x =T T y , 注意到T -1=T T , 有 f =x T A x =y T TAT T y =y T Λy =λ1y 12+λ2y 22+ ? ? ? +λn y n 2. 因为y =T x 正交变换, 所以当||x ||=1时, 有||y ||=||x ||=1, 即y 12+y 22+ ? ? ? +y n 2=1.因此f =λ1y 12+λ2y 22+ ? ? ? +λn y n 2≤λ1,又当y 1=1, y 2=y 3=? ? ?=y n =0时f =λ1, 所以f max =λ1.30. 用配方法化下列二次形成规范形, 并写出所用变换的矩阵. (1) f (x 1, x 2, x 3)=x 12+3x 22+5x 32+2x 1x 2-4x 1x 3;解 f (x 1, x 2, x 3)=x 12+3x 22+5x 32+2x 1x 2-4x 1x 3 =(x 1+x 2-2x 3)2+4x 2x 3+2x 22+x 32 =(x 1+x 2-2x 3)2-2x 22+(2x 2+x 3)2.令 ??+==-+=323223211222x x y x y x x x y , 即+-==+-=323223211221225y y x y x y y y x , 二次型化为规范形f =y 12-y 22+y 32,所用的变换矩阵为--=12002102251C .(2) f (x 1, x 2, x 3)=x 12+2x 32+2x 1x 3+2x 2x 3; 解 f (x 1, x 2, x 3)=x 12+2x 32+2x 1x 3+2x 2x 3 =(x 1+x 3)2+x 32+2x 2x 3; =(x 1+x 3)2-x 22+(x 2+x 3)2.令 +==+=32322311x x y x y x x y , 即+-==-+=3 23223211y y x y x y y y x ,二次型化为规范形f =y 12-y 22+y 32,所用的变换矩阵为--=110010111C .(3) f (x 1, x 2, x 3)=2x 12+x 22+4x 32+2x 1x 2-2x 2x 3. 解 f (x 1, x 2, x 3)=2x 12+x 22+4x 32+2x 1x 2-2x 2x 3.</n.<></n,证明a与b有公共的特征值,有公共的特征向量.<>。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

k p1
(k 0).
当2 3 2时,解方程A 2E x 0.由
4 A 2E 0
1 0
1 0
~
4 0
1 0
1 0,
4 1 1 0 0 0
得基础解系为:
0 p2 1 , 1
1 p3 0, 4
所以对应于 2 3 2的全部特征向量为 :
k2 p2 k3 p3 (k2 , k3不同时为0).
三、特征值和特征向量的性质
1. 定理 设1,2 ,,m是方阵A的m个特征值, p1, p2 , , pm依次是与之对应的特征向量.如果1,2 ,,m
各不相等,则 p1, p2 ,, pm 线性无关.
2. A与AT有相同的特征多项式、相同的特征值。
§3 相似矩阵
一、相似矩阵与相似变换的概念 二、相似矩阵与相似变换的性质 三、利用相似变换将方阵对角化
征向量.
2当A可逆时, 0, 由Ax x可得 A1Ax A1x A1x
A1 x 1 x 故1是 矩 阵A1的 特 征 值, 且x是A1对 应 于1
的特征向量.
(3)若是A的特征值,则( )是( A)的特征值
(4)若 0为A的一个特征值,则 A 为 A 的一个特征值.
(5)1为E的一个特征值
2 A E 4
1 2
0 0
~
1 0
0 1
1 2,
1 0 1 0 0 0
得基础解系
1 p2 2, 1
所以kp2(k 0)是对应于2 3 1的全部特征向量.
例3
设A
2 0
1 2
1 0
,求A的特征值与特征向量.
4 1 3

2 1
1
A E 0 2 0
4 1 3
2
2 2 4
2 4 2
2 (2)A 5
1
1 3 0
2 3 2

1 2
2
(1)由 A E 2 2 4
2
4 2
22 7 0
得 1 2 2, 3 7.
将 1 2 2代入A 1Ex 0,得方程组
2xx1124xx2224xx33
0 0
2x1 4x2 4x3 0
例4 证明:若 是矩阵 A 的特征值 , x 是 A 的 属于 的特征向量,则
(1) m是Am的特征值m是任意自然数.
(2) 当A可逆时,1是A1的特征值.
证明 1 Ax x AAx Ax Ax x A2 x 2 x
再继续施行上述步骤 m 2次,就得 Am x m x
故m 是矩阵Am的特征值,且 x是 Am 对应于m的特
推论 如果 n 阶矩阵 A 的 n个特征值互不相等, 则 A与对角阵相似.
(A与对角阵相似的充分条件)
说明:如果A的特征方程有重根,此时不一定有 n个线性无关的特征向量,从而矩阵A不一定能
对角化,但如果能找到 n个线性无关的特征向量, A还是能对角化.
例1 判断下列实矩阵能否化为对角阵?
1 (1) A 2
求方阵 An 的特征值与特征向量的步骤:
1. 由特征方程 A E 0 解得 n 个特征根 i (i 1,2,, n)
2. 对每个i分别求出( A i E)x 0的基础解系, 写出其 非零线性组合.
例2
求矩阵A
1 4
1 3
00 的特征值和特征向量.
1 0 2
解 A的特征多项式为
( 1) 22 , 令 ( 1) 22 0
得A的特征值为1 1,2 3 2.
当1 1时,解方程A E x 0.由
1 A E 0
1 3
1 0
~
1 0
0 1
1 0 ,
4 1 4 0 0 0
得基础解系
1 p1 0, 1
故对应于1 1的全体特征向量为
§2 方阵的特征值与特征向量
一、特征值与特征向量的概念 二、特征值和特征向量的求法 三、特征值和特征向量的性质
一、特征值与特征向量的概念
定义1 设 A 是 n 阶矩阵,若数 和 n 维非零 列向量 x 使关系式 A x = x 成立,则称数 为
方阵 A 的特征值,非零列向量 x 称为 A 的对应
于特征值 的特征向量.
说明 1. 特征向量 x 0 . 2. 特征值问题只对方阵而言 .
3. A E 0
a11 a12
a21
a22
a1n
a2n
0
an1
an2 ann
记 f A E ,它是 的 n 次多项式 ,
称其 为方阵 A的 特征多项式 .
称以 为未知数的一元n 次方程 A E 0
为A的特征方程 .
4. 齐次线性方程组 A i E x 0 的所有非零
解向量就是 n 阶方阵 A 的对应特征值 i 的
所有特征向量 .
5. 设 n 阶方阵 A aij 的特征值为1,2 ,,n ,
则有
(1) 1 2 n a11 a22 ann;
(2) 12 n A .
一、相似矩阵与相似变换的概念
定义1 设 A , B 都是 n 阶矩阵,若有可逆矩阵P ,
使
P 1 AP B ,
则 称 B 是 A的相似矩阵, 或说矩阵A 与 B 相 似.
对 A 进 行 运算P 1 AP 称 为 对 A进 行 相似 变 换,
可逆矩阵P 称 为 把 A 变 成 B的相似变换矩阵.
二、相似矩阵与相似变换的性质
线性无关的特征向量于是R( A E) 1
所以Βιβλιοθήκη 1 AE 10 0
1 1 0 x ~ 0 0
1 x 1
1
0 1
0
0
0
所以 x 1
§4 对称矩阵的对角化
问题:什么样的矩阵可以进行对角化? 答案:对称矩阵可以对角化
§5 二次型及其标准形
一、二次型及其标准形的概念 二、二次型的表示方法 三、二次型的矩阵及秩
1. 单位向量及n维向量间的夹角
1 当 x 1时,称 x为单位向量 .
2当 x 0, y 0时, arccos x, y
xy 称为n维向量x与y的夹角 .
2. 正交、正交向量组的概念 当 [ x, y] 0 时 , 称向量 x 与 y 正交 .(orthogonal)
若一非零向量组中的向量两两正交,则称该向 量组为正交向量组.
存在可逆阵P,使得P1AP B,
B E P1AP P1EP P1A EP
P1 A E P
A E .
推论 若 n 阶方阵A与对角阵
1
2
n
相似 , 则1,2,,n 即是 A的 n 个特征值 .
对于对角矩阵 ,有
k 1
k
k 2
,
k n
( 1)
()
( 2)
,
解之得基础解系
2
0
1 0 , 2 1.
1
1
同理, 对3 7,由A E x 0, 求得基础解系 3 1,2,2T
201
由于
0 1 2 0,
112
所以 1,2 ,3线性无关.
即A有3个线性无关的特征向量,因而A可对角
化.
2 1 2
(2) A 5 3 3
1 0 2
1 1 A E 4 3
0
0 (2 )(1 )2 ,
1
0 2
所以A的特征值为1 2, 2 3 1.
当1 2时,解方程( A 2E )x 0.由
3 A 2E 4
1 1
0 0
~
1 0
0 1
0 0,
1 0 0 0 0 0
得基础解系
0 p1 0,
1
所以kp1(k 0)是对应于1 2的全部特征向量. 当 2 3 1时,解方程( A E)x 0.由
内积的运算性质
其中 x , y , z 为 n 维向量 , 为实数 :
(1) x, y y, x; (2) x, y x, y; 或 x,y x, y;
(3) x y, z x, z y, z; 或 x, y z x, y x, z;
(4) [ x, x] 0,且当 x 0 时有[ x, x] 0.
1.若A与B相似, 则Am与B m 相似m为正整数.
2.若 n 阶矩阵A 与 B 相似,则 A 与 B 的特征 多项式相同, 从而 A 与 B 的特征值亦相同.
定理3 若 n 阶矩阵 A 与 B 相似,则 A 与 B 的特征 多项式相同, 从而 A 与 B 的特征值亦相同. 证明 A与B相似 ,
(5)[x, y]2 [x, x][ y, y] 施瓦茨不等式
二、向量的长度及性质
定义2 令
x x, x x12 x22 xn2 , 称 x 为n维向量 x的长度或范数 . (norm)
向量的长度具有下述性质: 1. 非负性当 x 0时, x 0;当 x 0时, x 0;
2. 齐次性 x x ; 3. 三角不等式 x y x y .
二、特征值与特征向量的求法
求方阵 An 的特征值与特征向量的步骤:
1. 由特征方程 A E 0 解得 n 个特征根 i (i 1,2,, n)
2. 对每个i分别求出( A i E)x 0的基础解系, 写出其 非零线性组合.
例1 求A 3 1的特征值和特征向量. 1 3
解 A的特征多项式为
则有
P 1 AP
2 0
0 1
0 0 .
0 0 1
即矩阵 P的列向量和对角矩阵中特征值的位置 要相互对应.
例3 设
0 0 1
A 1 1 x
1
0
0
问x为何值时,矩阵A能对角化?
解:
0 1
1
A E 1 1 x (1 )
1
相关文档
最新文档