线性代数 第五 相似矩阵及二次型

合集下载

线性代数 第五章 相似矩阵与二次型 第1节

线性代数 第五章  相似矩阵与二次型 第1节

就正交。
显然,零向量与任何向量正交。
定义 一组两两正交的非零向量,称为正交向量组。
定理 如果 n 维向量 1, 2 ,..., m 为正交向量组, 则1, 2 ,..., m 线性无关。
证明 设有1,2,m 使11 2 2 ... m m 0

T 1
左乘上式两端,得
1
T 1
1
0
因1 0, 故1T1 1 2 0,从而1 0。
1 3 1
4 6
1 2 1
5 3
1 1 ; 1
3
3
[ 3, 1] [1, 1]
1
[ 3, 2] [2, 2 ]
2
4 1 0
1
3
1 2 1
5
3
1 1 1
2 0
2
再把它们单位化,取
e1
1
1
1 6
1 2 , 1
e3
3
3
r1,n , 把1,r ,r1,n 正交规范化
就得到 Rn 的一个正交规范基。
五、正交矩阵与正交变换
定义 若 n 阶方阵A 满足 AT A E (即A1 AT )
则称 A 是正交矩阵。
若记 A 1 2 n ,则 AT A可表示为:
12TT
1
2
n E
T n

iT j
1 0
当i 当i
四、施密特正交化方法
把基 1, 2 ,..., n 化成标准正交基的具体步骤:
先正交化:

1

1
2
2
[ 2 , [1,
1] 1]
1
3
3
2 i 1
[ 3 [i

第五章 相似矩阵及二次型

第五章 相似矩阵及二次型

第五章:相似矩阵及二次型本章要求:1. 理解矩阵特征值、特征向量及有关性质,熟练掌握求矩阵特征值和特征向量的方法。

2. 理解相似矩阵的概念和矩阵相似于对角矩阵的条件。

3. 掌握实对称矩阵化为对角阵的方法。

4. 理解二次型的定义,掌握二次型在实数域上化标准形、规范形的方法。

5. 理解正定矩阵与正定二次型、会判定二次型的定性。

§1 向量的内积、长度及正交性内容:向量的内积;内积的性质;向量的长度(范数);长度的性质;单位向量;施瓦茨不等式[][][]y y x x y x , ,,2≤;n维向量x 与y 的夹角[]yx y x ,arccos=θ;正交;正交的向量组一定线性无关;规范正交基;基的规范正交化;施密特正交化过程;正交矩阵;方阵 A 为正交矩阵的充分必要条件是A 的列向量都是单位向量,且两两正交;方阵 A 为正交矩阵的充分必要条件是A 的行向量都是单位向量,且两两正交;正交矩阵A 的n 个列(行)向量构成向量空间 R n 的一个规范正交基;正交变换;正交变换不改变线段的长度。

重点:正交的向量组一定线性无关;施密特正交化法;基的规范正交化;正交阵判定的两种方法。

§2 方阵的特征值与特征向量内容:矩阵的特征值与特征向量;A 的特征方程;A 的特征值就是特征方程的解;A 的特征多项式()λλλλ---=nn n n n n a a a a a a a a a f212222111211;若λ是 A 的特征值,则 ()λϕ也是()A ϕ的特征值;特征值互不相等,则对应的特征向量线性无关。

重点:熟练掌握特征值和特征向量的求解方法;特征值的性质;特征值互不相等,则对应的特征向量线性无关。

§3 相 似 矩 阵内容:相似矩阵;相似变换;相似变换矩阵;若 n 阶矩阵 A 与 B 相似,则 A 与 B 的特征多项式相同,从而 A 与 B 的特征值也相同;设⎪⎪⎪⎪⎪⎭⎫⎝⎛=Λn λλλ21,则有 1),21⎪⎪⎪⎪⎪⎭⎫⎝⎛=Λknkkk λλλ()()()().21⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=Λn λϕλϕλϕϕ2)若n 阶矩阵A 与Λ相似,则n λλλ,,,21 即为A 的n 个特征值。

大学线性代数课件相似矩阵及二次型第五章 相似矩阵及二次型

大学线性代数课件相似矩阵及二次型第五章 相似矩阵及二次型

|[, ] | [, ][ , ]
长为 1 的向量称为单位向量.
例1
01,
1
0
2

0
1
2
若向量
1
3
x ≠0 ,

1 x
x
1 都是3 维单位向量.
3
1
是 单 位 向 量.
3
例 已知
1
2
2
,
3
,
1
1
0
0
计算两个向量单位化后的内积.
解:
12 22 (1)2 02
1 0 2
所以A的特征值为 1 2,2 3 1
当 1 2解齐次线性方程组 (2E A)x 0 即
3x1 x2 0 4x1 x2 0 x1 0
3 1 0 1 0 0

2E
A
4 1
1 0
00
0 0
1 0
0 0
0
得基础解系
p1
10
故对应于 1 2的全体特征向量为 k1 p1(k1 0)
y yT y xT PT Px xT x x
说明经正交变换向量长度保持不变,这是正交变换的优 良特性.
2 方阵的特征值 特征向量
内容分布 一、特征值与特征向量 二、特征值与特征向量的性质
基本要求 会求特征值与特征向量
2.1 特征值与特征向量
定义8 设A是n阶方阵,如果数 和n维非零向量x使
量为
k11 k22 kss (k1, ···,ks不同时为0)
例1 求矩阵
A
2 1
解: A的特征方程为
1 2
的特征值和特征向量
2 1
| E A |

第五章 相似矩阵及二次型 线性代数 含答案

第五章 相似矩阵及二次型  线性代数  含答案

第五章 相似矩阵及二次型5.4.1 基础练习 1. (1223),(3151),(,)αβαβ==∠求.2. 若λ=2为可逆阵A的特征值,则1213A -⎛⎫⎪⎝⎭的一个特征值为 .3. 试证n阶方阵A的满足2A A =,则A的特征值为0或者1.4.已知三维向量空间中,12(111),(121)TTαα==-正交,试求3123,,αααα,使得是三维向量空间的一个正交基.5. 已知向量1(111)T α=,求3R 的一个标准正交基.6. 已知122224242A -⎛⎫⎪=-- ⎪ ⎪-⎝⎭,问A 能否化为对角阵?若能对角化,则求出可逆矩阵P ,使1P AP -为对角阵.7. 将二次型222123121323171414448f x x x x x x x x x =++---,通过正交变换x Py =化成标准型.8. 判别二次型()222123123121323,,55484f x x x x x x x x x x x x =+++--是否正定?5.4.2 提高练习1. 设n 阶实对称矩阵A 满足2A A =,且A 的秩为r ,试求行列式det(2E -A).2. 设460350361A ⎛⎫⎪=-- ⎪ ⎪--⎝⎭,问A 能否对角化?若能对角化,则求出可逆矩阵P ,使得-1P AP 为对角阵.3. 已知实对称矩阵220212020A -⎛⎫⎪=-- ⎪ ⎪-⎝⎭,分别求出正交矩阵P ,使1P AP -为对角阵. 4. 化二次型()123121323,,f x x x x x x x x x =++为标准形,并求所作的可逆线性变换.5. 设A,B分别为m阶,n阶正定矩阵,试判定分块矩阵ACB⎛⎫= ⎪⎝⎭是否为正定矩阵?6. 判别二次型22256444f x y z xy xz=---++的正定性.7. 判断下列两矩阵A,B是否相似11100111100,111100nA B⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪==⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭第五章 参考答案5.4.1 基础练习 1.[,]cos ||||||||4αβπθθαβ===∴=2.34. 3.略.4. 设3123()0Tx x x α=≠,则[][]1223,0,,0αααα==,即 12313312321002001x x x x x x x x x α-⎛⎫++==-⎧⎧ ⎪⇒⇒=⎨⎨ ⎪-+==⎩⎩ ⎪⎝⎭5. 设非零向量23,αα都与2α正交,即满足方程11230,0T x x x x α=++=或者,其基础解 系为: 12100,111ξξ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭, 令 121321101,0,1111ααξαξ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪===== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭1)正交化令 121122121111[,]1,0,[,]11βαβαβαβαββ⎛⎫⎛⎫⎪⎪===-== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭1323233312321122221[,][,][,]12[,][,][,]21βαβαβαβαββαβββββββ-⎛⎫⎪=--=-= ⎪ ⎪-⎝⎭2)标准化令1||||i i i ςββ=,则1231111,0,2111ςςς-⎛⎫⎛⎫⎛⎫⎪⎪⎪===⎪⎪⎪⎪⎪⎪--⎭⎭⎭6. 由2122224(2)(7)242A E λλλλλλ---=---=--+--得,1232,7λλλ===-将12λ=λ=2代入()1A-λE x=0,得方程组 12312312322024402440x x x x x x x x x --+=⎧⎪--+=⎨⎪+-=⎩解值得基础解系 12200,111αα⎛⎫⎛⎫ ⎪⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 同理,对3λ=-7,由()3A-λE x=0,求得基础解系()31,2,2Tα=,由于201120112≠,所以123,,ααα线性无关,即A 有3个线性无关得特征向量,因而A 可对角化,可逆矩阵为:123201(,,)012112P ααα⎛⎫⎪== ⎪ ⎪⎝⎭7. 第一步,写出对应得二次型矩阵,并求其特征值 172221442414A --⎛⎫ ⎪=-- ⎪⎪--⎝⎭, ()()2172221441892414A E λλλλλλ---⎛⎫⎪-=---=-- ⎪⎪---⎝⎭,从而A 的全部特征值为1239,18λλλ===。

工程数学线性代数课后答案详解

工程数学线性代数课后答案详解
13 设 A、B 都是 n 阶矩阵 且 A 可逆 证明 AB 与 BA 相

证明 取 PA 则 即 AB 与 BA 相似
P1ABPA1ABABA
14
设矩阵 A432
0 1 0
15x 可相似对角化
求 x
解由
2 0 1 | AE| 3 1 x ( 1)2( 6)
022
x1 x2 x3


0

得特征向量(1 2 2)T
单位化得
p1

(1, 3
2, 3
2)T 3
对于21, 解方程(AE)x0 即

1 2 0
2 0
2
201
x1 x2 x3


0

得特征向量(2 1 2)T
特征值341 的线性无关特征值向量
6 设 A 为 n 阶矩阵 证明 AT 与 A 的特征值相同 证明 因为
|ATE||(AE)T||AE|T|AE| 所以 AT 与 A 的特征多项式相同 从而 AT 与 A 的特征值相同
7 设 n 阶矩阵 A、B 满足 R(A)R(B)n 证明 A 与 B 有公共的特征值 有公 共的特征向量
b1


011

b3

a3

[[bb11,,ab13]]b1

[[bb22,,ab23]]b2

1 3

211

(2) (a1,
a2,
a3)


1 0 1 1
1 1 0
1
11 01

解 根据施密特正交化方法
1
b1

a1

第五章 相似矩阵及二次型

第五章 相似矩阵及二次型

首页
上页
返回
下页
结束
向量间的夹角 当x0 y0时
天 津 师 范 大 学 计 算 机 与 信 息 工 程 学 院
arccos
[ x, y] || x |||| y ||
称为n维向量x与y的夹角 当[x y]0时 称向量x与y正交 显然 若x0 则x与任何向 量都正交
首页 上页 返回 下页 结束
正交阵 如果n阶矩阵A满足ATAE(即A1AT) 那么称A为正交矩 阵 简称正交阵
天 津 师 范 大 学 计 算 机 与 信 息 工 程 学 院 郑 陶 然
方阵A为正交阵的充分必要条件是A的列(行)向量都是单 位向量 且两两正交 n阶正交阵A的n个列(行)向量构成向量空间Rn 的一个规 范正交基
范 大 学 计 算 机 与 信 息 工 程 学 院
内积的性质 设x y z为n维向量 为实数 则 (1)[x y][y x] (2)[x y][x y] (3)[xy z][x z][y z] 郑 (4)当x0时 [x x]0 当x0时 [x x]0 陶 然 (5)[x y]2[x x][y y] ——施瓦茨不等式
范 大 学 计 算 机 与 信 息 工 程 学 院 郑 陶 然
说明 内积是两个向量之间的一种运算 其结果是一个实数 用 矩阵记号表示 当x与y都是列向量时 有 [x y]xTy
首页 上页 返回 下页 结束
向量的内积 设有n维向量x(x1 x2 xn)T y(y1 y2 yn)T 令 [x y]x1y1x2y2 xnyn 天 津 师 [x y]称为向量x与y的内积
天 津 师 范 大 学 计 算 机 与 信 1 1 4 5 b2 a2 b1 3 2 1 1 6 1 3 1 [b1, b1] [b1, a2 ] 4 1 1 1 1 5 b3 a3 b1 b2 1 2 1 2 0 0 3 1 3 1 1 [b1, b1] [b2, b2 ] [b1, a3] [b2, a]

线性代数第五章答案

线性代数第五章答案
k1a1k2a2 knranrl1b1l2b2 lnrbnr0 记 k1a1k2a2 knranr(l1b1l2b2 lnrbnr) 则k1 k2 knr不全为0 否则l1 l2 lnt不全为0 而
l1b1l2b2 lnrbnr0 与b1 b2 bnt线性无关相矛盾
因此 0 是A的也是B的关于0的特征向量 所以A与B有公共的特征值 有 公共的特征向量
8 设A23A2EO 证明A的特征值只能取1或2 证明 设是A的任意一个特征值 x是A的对应于的特征向量 则
(A23A2E)x2x3x2x(232)x0 因为x0 所以2320 即是方程2320的根 也就是说1或2
9 设A为正交阵 且|A|1 证明1是A的特征值 证明 因为A为正交矩阵 所以A的特征值为1或1 (需要说明) 因为|A|等于所有特征值之积 又|A|1 所以必有奇数个特征值为1 即1 是A的特征值
10 设0是m阶矩阵AmnBnm的特征值 证明也是n阶矩阵BA的特征值 证明 设x是AB的对应于0的特征向量 则有
(AB)xx 于是 B(AB)xB(x) 或 BA(B x)(Bx) 从而是BA的特征值 且Bx是BA的对应于的特征向量
11 已知3阶矩阵A的特征值为1 2 3 求|A35A27A| 解 令()3527 则(1)3 (2)2 (3)3是(A)的特征值 故
|A35A27A||(A)|(1)(2)(3)32318
12 已知3阶矩阵A的特征值为1 2 3 求|A*3A2E| 解 因为|A|12(3)60 所以A可逆 故
A*|A|A16A1 A*3A2E6A13A2E 令()6132 则(1)1 (2)5 (3)5是(A)的特征值 故 |A*3A2E||6A13A2E||(A)|
6 设A为n阶矩阵 证明AT与A的特征值相同 证明 因为

线性代数第五章答案

线性代数第五章答案

线性代数第五章答案第五章相似矩阵及二次型1. 试用施密特法把下列向量组正交化:(1)=931421111) , ,(321a a a ;解根据施密特正交化方法,==11111a b ,-=-=101],[],[1112122b b b a b a b ,-=--=12131],[],[],[],[222321113133b b b a b b b b a b a b .(2)---=011101110111) , ,(321a a a .解根据施密特正交化方法,-==110111a b ,-=-=123131],[],[1112122b b b a b a b , ?-=--=433151],[],[],[],[222321113133b b b a b b b b a b a b . 2. 下列矩阵是不是正交阵:(1)---121312112131211;解此矩阵的第一个行向量非单位向量, 故不是正交阵.(2)------979494949198949891.解该方阵每一个行向量均是单位向量, 且两两正交, 故为正交阵.3. 设x 为n 维列向量, x T x =1, 令H =E -2xx T , 证明H 是对称的正交阵. 证明因为H T =(E -2xx T )T =E -2(xx T )T =E -2(xx T )T =E -2(x T )T x T =E -2xx T , 所以H 是对称矩阵. 因为H T H =HH =(E -2xx T )(E -2xx T ) =E -2xx T -2xx T +(2xx T )(2xx T ) =E -4xx T +4x (x T x )x T =E -4xx T +4xx T =E , 所以H 是正交矩阵.4. 设A 与B 都是n 阶正交阵, 证明AB 也是正交阵. 证明因为A ,B 是n 阶正交阵, 故A -1=A T , B -1=B T ,(AB )T (AB )=B T A T AB =B -1A -1AB =E ,故AB 也是正交阵.5. 求下列矩阵的特征值和特征向量:(1)----201335212;解 3)1(201335212||+-=-------=-λλλλλE A ,故A 的特征值为λ=-1(三重). 对于特征值λ=-1, 由----=+000110101101325213~E A ,得方程(A +E )x =0的基础解系p 1=(1, 1, -1)T , 向量p 1就是对应于特征值λ=-1的特征值向量.(2)633312321;解 )9)(1(633312321||-+-=---=-λλλλλλλE A ,故A 的特征值为λ1=0, λ2=-1, λ3=9. 对于特征值λ1=0, 由=000110321633312321~A ,得方程A x =0的基础解系p 1=(-1, -1, 1)T , 向量p 1是对应于特征值λ1=0的特征值向量. 对于特征值λ2=-1, 由=+000100322733322322~E A ,得方程(A +E )x =0的基础解系p 2=(-1, 1, 0)T , 向量p 2就是对应于特征值λ2=-1的特征值向量. 对于特征值λ3=9, 由--???? ??---=-00021101113333823289~E A ,得方程(A -9E )x =0的基础解系p 3=(1/2, 1/2, 1)T , 向量p 3就是对应于特征值λ3=9的特征值向量.(3)0001001001001000.(和书后答案不同,以书后为主,但解题步骤可以参考)解22)1()1(001010010100||+-=----=-λλλλλλλE A ,故A 的特征值为λ1=λ2=-1, λ3=λ4=1. 对于特征值λ1=λ2=-1,由=+00000000011010011001011001101001~E A , 得方程(A +E )x =0的基础解系p 1=(1, 0, 0, -1)T , p 2=(0, 1, -1, 0)T , 向量p 1和p 2是对应于特征值λ1=λ2=-1的线性无关特征值向量.对于特征值λ3=λ4=1, 由------=-00000000011010011001011001101001~E A , 得方程(A -E )x =0的基础解系p 3=(1, 0, 0, 1)T , p 4=(0, 1, 1, 0)T , 向量p 3和p 4是对应于特征值λ3=λ4=1的线性无关特征值向量.6. 设A 为n 阶矩阵, 证明A T 与A 的特征值相同. 证明因为|A T -λE |=|(A -λE )T |=|A -λE |T =|A -λE |,所以A T 与A 的特征多项式相同, 从而A T 与A 的特征值相同.7.设n阶矩阵A、B满足R(A)+R(B)<n,证明a与b有公共的特征值,有公共的特征向量.< p="">证明设R(A)=r,R(B)=t,则r+t<n.< p="">若a1,a2,,a n-r是齐次方程组A x=0的基础解系,显然它们是A的对应于特征值λ=0的线性无关的特征向量.类似地,设b1,b2,,b n-t是齐次方程组B x=0的基础解系,则它们是B的对应于特征值λ=0的线性无关的特征向量.由于(n-r)+(n-t)=n+(n-r-t)>n,故a1,a2,,a n-r,b1,b2,,b n-t 必线性相关.于是有不全为0的数k1,k2,,k n-r,l1,l2,,l n-t,使k1a1+k2a2++k n-r a n-r+l1b1+l2b2++l n-r b n-r=0.记γ=k1a1+k2a2++k n-r a n-r=-(l1b1+l2b2++l n-r b n-r),则k1,k2,,k n-r不全为0,否则l1,l2,,l n-t不全为0,而l1b1+l2b2++l n-r b n-r=0,与b1,b2,,b n-t线性无关相矛盾.因此,γ≠0,γ是A的也是B的关于λ=0的特征向量,所以A与B有公共的特征值,有公共的特征向量.8.设A2-3A+2E=O,证明A的特征值只能取1或2.证明设λ是A的任意一个特征值,x是A的对应于λ的特征向量,则(A2-3A+2E)x=λ2x-3λx+2x=(λ2-3λ+2)x=0.因为x≠0,所以λ2-3λ+2=0,即λ是方程λ2-3λ+2=0的根,也就是说λ=1或λ=2.9.设A为正交阵,且|A|=-1,证明λ=-1是A的特征值.证明因为A为正交矩阵,所以A的特征值为-1或1.(需要说明)因为|A|等于所有特征值之积,又|A|=-1,所以必有奇数个特征值为-1,即λ=-1是A的特征值.10.设λ≠0是m阶矩阵A m?n B n?m的特征值,证明λ也是n阶矩阵BA的特征值.证明设x是AB的对应于λ≠0的特征向量,则有(AB)x=λx,于是B(AB)x=B(λx),或BA(B x)=λ(B x),从而λ是BA的特征值,且B x是BA的对应于λ的特征向量.11.已知3阶矩阵A的特征值为1, 2, 3,求|A3-5A2+7A|.解令?(λ)=λ3-5λ2+7λ, 则?(1)=3, ?(2)=2, ?(3)=3是?(A )的特征值, 故 |A 3-5A 2+7A |=|?(A )|=?(1)??(2)??(3)=3?2?3=18.12. 已知3阶矩阵A 的特征值为1, 2, -3, 求|A *+3A +2E |. 解因为|A |=1?2?(-3)=-6≠0, 所以A 可逆, 故 A *=|A |A -1=-6A -1, A *+3A +2E =-6A -1+3A +2E .令?(λ)=-6λ-1+3λ+2, 则?(1)=-1, ?(2)=5, ?(-3)=-5是?(A )的特征值, 故 |A *+3A +2E |=|-6A -1+3A +2E |=|?(A )|=?(1)??(2)??(-3)=-1?5?(-5)=25.13. 设A 、B 都是n 阶矩阵, 且A 可逆, 证明AB 与BA 相似.证明取P =A , 则P -1ABP =A -1ABA =BA ,即AB 与BA 相似.14. 设矩阵=50413102x A 可相似对角化, 求x .解由)6()1(50413102||2---=---=-λλλλλλx E A ,得A 的特征值为λ1=6, λ2=λ3=1.因为A 可相似对角化, 所以对于λ2=λ3=1, 齐次线性方程组(A -E )x =0有两个线性无关的解, 因此R (A -E )=1. 由-???? ??=-00030010140403101)(~x x E A r知当x =3时R (A -E )=1, 即x =3为所求.15. 已知p =(1, 1, -1)T 是矩阵---=2135212b a A 的一个特征向量.(1)求参数a , b 及特征向量p 所对应的特征值;解设λ是特征向量p 所对应的特征值, 则(A -λE )p =0, 即=???? ??-???? ??------0001112135212λλλb a ,解之得λ=-1, a =-3, b =0.(2)问A 能不能相似对角化?并说明理由. 解由3)1(201335212||--=-------=-λλλλλE A ,得A 的特征值为λ1=λ2=λ3=1. 由-???? ??----=-00011010111325211~r b E A知R (A -E )=2, 所以齐次线性方程组(A -E )x =0的基础解系只有一个解向量. 因此A 不能相似对角化.16. 试求一个正交的相似变换矩阵, 将下列对称阵化为对角阵:(1)----020212022;解将所给矩阵记为A . 由λλλλ-------=-20212022E A =(1-λ)(λ-4)(λ+2),得矩阵A 的特征值为λ1=-2, λ2=1, λ3=4. 对于λ1=-2, 解方程(A +2E )x =0, 即0220232024321=----x x x , 得特征向量(1, 2, 2)T , 单位化得T)32 ,32 ,31(1=p .对于λ2=1, 解方程(A -E )x =0, 即0120202021321=-----x x x , 得特征向量(2, 1, -2)T , 单位化得T )32 ,31 ,32(2-=p . 对于λ3=4, 解方程(A -4E )x =0, 即0420232022321=-------x x x , 得特征向量(2, -2, 1)T , 单位化得T )31 ,32 ,32(3-=p . 于是有正交阵P =(p 1, p 2, p 3), 使P -1AP =diag(-2, 1, 4).(2)----542452222. (和书后答案不同,以书后答案为准,解题步骤可以参考)解将所给矩阵记为A . 由λλλλ-------=-542452222E A =-(λ-1)2(λ-10),得矩阵A 的特征值为λ1=λ2=1, λ3=10. 对于λ1=λ2=1, 解方程(A -E )x =0, 即=???? ?????? ??----000442442221321x x x , 得线性无关特征向量(-2, 1, 0)T 和(2, 0, 1)T , 将它们正交化、单位化得T 0) 1, ,2(511-=p , T 5) ,4 ,2(5312=p .对于λ3=10, 解方程(A -10E )x =0, 即=???? ?????? ??-------000542452228321x x x ,得特征向量(-1, -2, 2)T , 单位化得T )2 ,2 ,1(313--=p . 于是有正交阵P =(p 1, p 2, p 3), 使P -1AP =diag(1, 1, 10).17. 设矩阵------=12422421x A 与-=Λy 45相似, 求x , y ; 并求一个正交阵P , 使P -1AP =Λ.解已知相似矩阵有相同的特征值, 显然λ=5, λ=-4, λ=y 是Λ的特征值, 故它们也是A 的特征值. 因为λ=-4是A 的特征值, 所以0)4(9524242425|4|=-=---+---=+x x E A ,解之得x =4.已知相似矩阵的行列式相同, 因为100124242421||-=-------=A , y y2045||-=-=Λ,所以-20y =-100, y =5.对于λ=5, 解方程(A -5E )x =0, 得两个线性无关的特征向量(1, 0, -1)T , (1, -2, 0)T . 将它们正交化、单位化得T )1 ,0 ,1(211-=p , T )1 ,4 ,1(2312-=p .对于λ=-4, 解方程(A +4E )x =0, 得特征向量(2, 1, 2)T , 单位化得T )2 ,1 ,2(313=p .于是有正交矩阵?--=23132212343102313221P , 使P -1AP =Λ. 18. 设3阶方阵A 的特征值为λ1=2, λ2=-2, λ3=1; 对应的特征向量依次为p 1=(0, 1, 1)T , p 2=(1, 1, 1)T , p 3=(1,1, 0)T , 求A .解令P =(p 1, p 2, p 3), 则P -1AP =diag(2, -2, 1)=Λ, A =P ΛP -1.因为---=???? ??=--11011101101111111011P ,所以---???? ??-???? ??=Λ=-1101110111000200020111111101P P A------=244354332. 19. 设3阶对称阵A 的特征值为λ1=1, λ2=-1, λ3=0; 对应λ1、λ2的特征向量依次为p 1=(1, 2, 2)T , p 2=(2, 1, -2)T , 求A .解设=653542321x x x x x x x x x A , 则A p 1=2p 1, A p 2=-2p 2, 即 =++=++=++222222122653542321x x x x x x x x x , ---① =-+-=-+-=-+222122222653542321x x x x x x x x x . ---② 再由特征值的性质, 有x 1+x 4+x 6=λ1+λ2+λ3=0. ---③由①②③解得612131x x --=, 6221x x =, 634132x x -=,642131x x -=, 654132x x +=. 令x 6=0, 得311-=x , x 2=0, 323=x ,314=x , 325=x . 因此-=022********A . 20. 设3阶对称矩阵A 的特征值λ1=6, λ2=3, λ3=3, 与特征值λ1=6对应的特征向量为p 1=(1, 1, 1)T , 求A .解设=653542321x x x x x x x x x A .因为λ1=6对应的特征向量为p 1=(1, 1, 1)T , 所以有=???? ??1116111A , 即?=++=++=++666653542321x x x x x x x x x ---①. λ2=λ3=3是A 的二重特征值, 根据实对称矩阵的性质定理知R (A -3E )=1. 利用①可推出--???? ??---=-331113333653542653542321~x x x x x x x x x x x x x x x E A .因为R (A -3E )=1, 所以x 2=x 4-3=x 5且x 3=x 5=x 6-3, 解之得x 2=x 3=x 5=1, x 1=x 4=x 6=4.因此=411141114A .21. 设a =(a 1, a 2, , a n )T , a 1≠0, A =aa T . (1)证明λ=0是A 的n -1重特征值;证明设λ是A 的任意一个特征值, x 是A 的对应于λ的特征向量, 则有A x =λx ,λ2x =A 2x =aa T aa T x =a T a A x =λa T ax , 于是可得λ2=λa T a , 从而λ=0或λ=a T a .设λ1, λ2, ? ? ?, λn 是A 的所有特征值, 因为A =aa T 的主对角线性上的元素为a 12, a 22, ? ? ?, a n 2, 所以a 12+a 22+ ? ? ? +a n 2=a T a =λ1+λ2+ ? ? ? +λn ,这说明在λ1, λ2, ? ? ?, λn 中有且只有一个等于a T a , 而其余n -1个全为0, 即λ=0是A 的n -1重特征值.(2)求A 的非零特征值及n 个线性无关的特征向量. 解设λ1=a Ta , λ2= ? ? ? =λn =0.因为A a =aa T a =(a T a )a =λ1a , 所以p 1=a 是对应于λ1=a T a 的特征向量.对于λ2= ? ? ? =λn =0, 解方程A x =0, 即aa T x =0. 因为a ≠0, 所以a T x =0, 即a 1x 1+a 2x 2+ ? ? ? +a n x n =0, 其线性无关解为p 2=(-a 2, a 1, 0, , 0)T ,p 3=(-a 3, 0, a 1, , 0)T , ? ? ?,p n =(-a n , 0, 0, , a 1)T .因此n 个线性无关特征向量构成的矩阵为--=112212100), , ,(a a a aa a a nn n p p p . 22. 设-=340430241A , 求A 100. 解由)5)(5)(1(340430241||+---=----=-λλλλλλλE A ,得A 的特征值为λ1=1, λ2=5, λ3=-5.对于λ1=1, 解方程(A -E )x =0, 得特征向量p 1=(1, 0, 0)T . 对于λ1=5, 解方程(A -5E )x =0, 得特征向量p 2=(2, 1, 2)T . 对于λ1=-5, 解方程(A +5E )x =0, 得特征向量p 3=(1, -2, 1)T . 令P =(p 1, p 2, p 3), 则P -1AP =diag(1, 5, -5)=Λ, A =P ΛP -1, A 100=P Λ100P -1. 因为Λ100=diag(1, 5100, 5100),--=???? ??-=--1202105055112021012111P ,所以--???? ?????? ??-=12021050555112021012151100100100A-=1001001005000501501.23. 在某国, 每年有比例为p 的农村居民移居城镇, 有比例为q 的城镇居民移居农村, 假设该国总人口数不变, 且上述人口迁移的规律也不变. 把n 年后农村人口和城镇人口占总人口的比例依次记为x n 和y n (x n +y n =1).(1)求关系式??=??++n n n n y x A y x 11中的矩阵A ;解由题意知x n +1=x n +qy n -px n =(1-p )x n +qy n , y n +1=y n +px n -qy n = px n +(1-q )y n , 可用矩阵表示为--=??? ??++n n n n y x q p q p y x 1111,因此--=q p q p A 11.(2)设目前农村人口与城镇人口相等, 即??? ??=??? ??5.05.000y x , 求?n n y x .解由??=??++n n n n y x A y x 11可知??=??00y x A y x n n n . 由)1)(1(11||q p q p qp E A ++--=----=-λλλλλ,得A 的特征值为λ1=1, λ2=r , 其中r =1-p -q .对于λ1=1, 解方程(A -E )x =0, 得特征向量p 1=(q , p )T . 对于λ1=r ,解方程(A -rE )x =0, 得特征向量p 2=(-1, 1)T . 令??-==11) ,(21p q P p p , 则 P -1AP =diag(1, r )=Λ, A =P ΛP -1, A n =P Λn P -1.于是 11100111-??-??? ????? ??-=p q r p q A n n-??? ????? ??-+=q p r p q q p n 11001111+--++=n n n n qr p pr p qr q pr q q p 1,+--++=??? ??5.05.01n n n n n n qr p pr p qr q pr q q p y x ??-+-++=n n r p q p r q p q q p )(2)(2)(21.24. (1)设??--=3223A , 求?(A )=A 10-5A 9; 解由)5)(1(3223||--=----=-λλλλλE A ,得A 的特征值为λ1=1, λ2=5.对于λ1=1, 解方程(A -E )x =0, 得单位特征向量T )1 ,1(21. 对于λ1=5, 解方程(A -5E )x =0, 得单位特征向量T )1 ,1(21-.于是有正交矩阵?-=111121P , 使得P -1AP =diag(1, 5)=Λ,从而A =P ΛP -1, A k =P Λk P -1. 因此?(A )=P ?(Λ)P -1=P (Λ10-5Λ9)P -1 =P [diag(1, 510)-5diag(1, 59)]P -1 =P diag(-4, 0)P -1-??? ??-??? ??-=1111210004111121-=??? ??----=111122222.(2)设=122221212A , 求?(A )=A 10-6A 9+5A 8.解求得正交矩阵为---=20223123161P , 使得P -1AP =diag(-1, 1, 5)=Λ, A =P ΛP -1. 于是?(A )=P ?(Λ)P -1=P (Λ10-6Λ9+5Λ8)P -1 =P [Λ8(Λ-E )(Λ-5E )]P -1=P diag(1, 1, 58)diag(-2, 0, 4)diag(-6, -4, 0)P -1 =P diag(12, 0,0)P -1---???? ?---=222033*********223123161----=4222112112. 25. 用矩阵记号表示下列二次型: (1) f =x 2+4xy +4y 2+2xz +z 2+4yz ; 解=z y x z y x f 121242121) , ,(.(2) f =x 2+y 2-7z 2-2xy -4xz -4yz ; 解-------=z y x z y x f 722211211) , ,(.(3) f =x 12+x 22+x 32+x 42-2x 1x 2+4x 1x 3-2x 1x 4+6x 2x 3-4x 2x 4.解------=432143211021013223111211) , , ,(x x x x x x x x f .26. 写出下列二次型的矩阵: (1)x x x ?=1312)(T f ;解二次型的矩阵为=1222A .(2)x x x=987654321)(T f .解二次型的矩阵为=975753531A .27. 求一个正交变换将下列二次型化成标准形: (1) f =2x 12+3x 22+3x 33+4x 2x 3;解二次型的矩阵为=320230002A . 由)1)(5)(2(320230002λλλλλλλ---=---=-E A ,得A 的特征值为λ1=2, λ2=5, λ3=1. 当λ1=2时, 解方程(A -2E )x =0, 由=-0001002101202100002~E A ,得特征向量(1, 0, 0)T . 取p 1=(1, 0, 0)T . 当λ2=5时, 解方程(A -5E )x =0, 由-???? ??---=-0001100012202200035~E A ,得特征向量(0, 1, 1)T . 取T )21 ,21,0(2=p .当λ3=1时, 解方程(A -E )x =0, 由=-000110001220220001~E A ,得特征向量(0, -1, 1)T . 取T )21 ,21 ,0(3-=p .于是有正交矩阵T =(p 1, p 2, p 3)和正交变换x =T y , 使f =2y 12+5y 22+y 32.(2) f =x 12+x 22+x 32+x 42+2x 1x 2-2x 1x 4-2x 2x 3+2x 3x 4.解二次型矩阵为----=1101111001111011A . 由2)1)(3)(1(1101111001111011--+=--------=-λλλλλλλλE A ,得A 的特征值为λ1=-1, λ2=3, λ3=λ4=1.当λ1=-1时, 可得单位特征向量T )21 ,21 ,21 ,21(1--=p .当λ2=3时, 可得单位特征向量T )21 ,21 ,21 ,21(2--=p . 当λ3=λ4=1时, 可得线性无关的单位特征向量T )0 ,21 ,0 ,21(3=p , T )21 ,0 ,21 ,0(4=p .于是有正交矩阵T =( p 1, p 2, p 3, p 4)和正交变换x =T y , 使f =-y 12+3y 22+y 32+y 42.28. 求一个正交变换把二次曲面的方程3x 2+5y 2+5z 2+4xy -4xz -10yz =1化成标准方程.解二次型的矩阵为----=552552223A .由)11)(2(552552223||---=-------=-λλλλλλλE A , 得A 的特征值为λ1=2,λ2=11, λ3=0, .对于λ1=2, 解方程(A -2E )x =0, 得特征向量(4, -1, 1)T , 单位化得)231 ,231 ,234(1-=p .对于λ2=11, 解方程(A -11E )x =0, 得特征向量(1, 2, -2)T , 单位化得)32 ,32 ,31(2-=p . 对于λ3=0, 解方程A x =0, 得特征向量(0, 1, 1)T , 单位化得)21 ,21,0(3=p .于是有正交矩阵P =(p 1, p 2, p 3), 使P -1AP =diag(2, 11, 0), 从而有正交变换--=???? ??w v u z y x 21322312132231031234,使原二次方程变为标准方程2u 2+11v 2=1.29. 明: 二次型f =x T A x 在||x ||=1时的最大值为矩阵A 的最大特征值. 证明 A 为实对称矩阵, 则有一正交矩阵T , 使得TAT -1=diag(λ1, λ2, ? ? ?, λn )=Λ成立, 其中λ1, λ2, ? ? ?, λn 为A 的特征值, 不妨设λ1最大. 作正交变换y =T x , 即x =T T y , 注意到T -1=T T , 有 f =x T A x =y T TAT T y =y T Λy =λ1y 12+λ2y 22+ ? ? ? +λn y n 2. 因为y =T x 正交变换, 所以当||x ||=1时, 有||y ||=||x ||=1, 即y 12+y 22+ ? ? ? +y n 2=1.因此f =λ1y 12+λ2y 22+ ? ? ? +λn y n 2≤λ1,又当y 1=1, y 2=y 3=? ? ?=y n =0时f =λ1, 所以f max =λ1.30. 用配方法化下列二次形成规范形, 并写出所用变换的矩阵. (1) f (x 1, x 2, x 3)=x 12+3x 22+5x 32+2x 1x 2-4x 1x 3;解 f (x 1, x 2, x 3)=x 12+3x 22+5x 32+2x 1x 2-4x 1x 3 =(x 1+x 2-2x 3)2+4x 2x 3+2x 22+x 32 =(x 1+x 2-2x 3)2-2x 22+(2x 2+x 3)2.令 ??+==-+=323223211222x x y x y x x x y , 即+-==+-=323223211221225y y x y x y y y x , 二次型化为规范形f =y 12-y 22+y 32,所用的变换矩阵为--=12002102251C .(2) f (x 1, x 2, x 3)=x 12+2x 32+2x 1x 3+2x 2x 3; 解 f (x 1, x 2, x 3)=x 12+2x 32+2x 1x 3+2x 2x 3 =(x 1+x 3)2+x 32+2x 2x 3; =(x 1+x 3)2-x 22+(x 2+x 3)2.令 +==+=32322311x x y x y x x y , 即+-==-+=3 23223211y y x y x y y y x ,二次型化为规范形f =y 12-y 22+y 32,所用的变换矩阵为--=110010111C .(3) f (x 1, x 2, x 3)=2x 12+x 22+4x 32+2x 1x 2-2x 2x 3. 解 f (x 1, x 2, x 3)=2x 12+x 22+4x 32+2x 1x 2-2x 2x 3.</n.<></n,证明a与b有公共的特征值,有公共的特征向量.<>。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3的 特 征 向 量, 故 它 们 必 两 两 正 交.
第四步 将特征向量单位化

i
i i
,
i 1,2,3.

2 3
1 2 3 ,
2 3
2 1 3 ,
1 3
2 3
1 3
3 2 3.
2 3
2 2 1

P
1, 2 , 3
1
3
2 1
1 2
2, 2
4 0 0

P1AP P1P
其中对角矩阵的对角元素含r1 个 1, , rs 个s , 恰
是A的n个特征值.
二、利用正交矩阵将对称矩阵对 角化 的方法
根据上述结论,利用正交矩阵将对称矩阵化 为对角矩阵,其具体步骤为:
1. 求A的特征值;
2. 由A i Ex 0,求出A的特征向量;
3. 将特征向量正交化;
线性代数
第五章 相似矩阵及二次型
一、对称矩阵的性质
说明:本节所提到的对称矩阵,除非特别说 明,均指实对称矩阵.
定理1 对称矩阵的特征值为实数.
证明 设复数为对称矩阵A的特征值 ,复向量x为
对应的特征向量,

Ax x , x 0.
用 表示的共轭复数, x表示x的共轭复向量 ,
则 A x A x Ax x x.
由于对称矩阵A的特征值 i 为实数,所以齐次
线性方程组
(A i E)x 0 是实系数方程组,由 A i E 0知必有实的基础解
系, 从 而 对 应 的 特 征 向 量 可以 取 实 向 量.
定理2 设1 , 2 是对称矩阵A的两个特征值 , p1 , p2是对应的特征向量,若1 2 ,则p1与p2正交. 证明 1 p1 Ap1, 2 p2 Ap2 , 1 2 ,
A对称, A AT ,
1 p1T 1 p1 T Ap1 T p1T AT p1T A,
于是 1 p1T p2 p1T Ap2 p1T 2 p2 2 p1T p2 ,
1 2 p1T p2 0.
1 2 , p1T p2 0. 即p1与p2正交.
定理3 设 A为 n阶对称矩阵, 是A的特征方程的r 重根,则矩阵 A E 的秩 R( A E) n r,从而
0 2 得 1 4, 2 1, 3 2.
第二步 由A i E x 0,求出A的特征向量
对 1 4,由A 4E x 0,得
2
2x1 2x2 0 x1 3 x2 2 x3
0
解之得基础解系
1
2 2 .
2x2 4x3 0
1
对 2 1,由A E x 0,得
1
2 0,
0
0
3 1.
1
2与3恰好正交 ,
所以 1, 2 , 3两两正交.
再将 1, 2 , 3单位化,令i
i i
i
1,2,3得
0
1 1 2 ,
1 2
1
2 0,
0
0
3 1 2.
1 2
于是得正交阵
P1,2源自,310 2
1 0 0 1 2
1 2 0 1 2
理3( 如上)可得:
对应特征值 i (i 1,2, , s),恰有 r i 个线性无
关的实特征向量,把它们正交化并单位化,即得 r i 个 单位正交的特征向量. 由r1 r2 rs n知, 这样的特征向量共可得 n个.
由定理2知对应于不同特征值的特征向量正交, 故这 n 个单位特征向量两两正交. 以它们为列向量构成正交矩阵 P ,则
于是有 xT Ax xT Ax xT x xT x,
及 xT Ax xT AT x Ax T x xT x xT x.
两式相减,得
xT x 0.
但因为 x 0,
所以
xT
x
n
xi xi
n
xi
2
0,
0,
i 1
i 1
即 , 由此可得是实数.
定理1的意义

P 1 AP
2 0
0 4
0 0.
0 0 4
三、小结
1. 对称矩阵的性质: (1)特征值为实数; (2)属于不同特征值的特征向量正交; (3)特征值的重数和与之对应的线性无关的
特征向量的个数相等; (4)必存在正交矩阵,将其化为对角矩阵,
且对角矩阵对角元素即为特征值.
2. 利用正交矩阵将对称阵化为对角阵的步骤: (1)求特征值;(2)找特征向量;(3)将特征向
对应特征值 恰有 r 个线性无关的特征向量.
定理4 设A为n阶对称矩阵,则必有正交矩阵P,使
P 1 AP ,其中 是以 A的 n 个特征值为对角元
素的对角矩阵.
证明 设A 的互不相等的特征值为 1,2 , ,s ,
它们的重数依次为r1 , r2 , , rs (r1 r2 rs n). 根据定理1(对称矩阵的特征值为实数)和定
2
x1 x1
2 x2 2 x3
0 0
2x2 x3 0
2
解之得基础解系
2
1
.
2
对 3 2,由A 2E x 0,得
2
x1
4 x1 3x2
2x2 2x3
0
0
解之得基础解系 3
1 2.
2x2 2x3 0
2
第三步 将特征向量正交化
由于1,2 ,3是属于A的3个不同特征值1, 2 ,
P
1
AP
0
1
0 .
0 0 2
4 0 0 (2) A 0 3 1
0 1 3
4 0 A E 0 3
0
1 2 4 2,
0 1 3
得特征值 1 2, 2 3 4.
0
对 1 2,由A 2E x 0,得基础解系
1 1
1
对 2 3 4,由 A 4E x 0,得基础解系
量单位化;(4)最后正交化.
思考题
设n阶实对称矩阵A满足A2 A,且A的秩为r,
试求行列式det2E A的值.
思考题解答
解 由 A2 A可得A的特征值为1或0,又A是实对称
阵, 且秩为r , 故存在可逆阵P , 使得
P 1 AP E r 0 , 0 0
其中E r 是r阶单位阵. 从而 det(2E A) det(2P P1 P P1)
4. 将特征向量单位化.
例 对下列各实对称矩阵,分别求出正交矩阵 P, 使 P1AP为对角阵.
2 2 0
4 0 0
(1)A 2 1 2, (2) A 0 3 1
0 2 0
0 1 3
解 (1)第一步 求 A 的特征值
2 2 0
A E 2 1 2 4 1 2 0
相关文档
最新文档