2018年中考数学真题专题汇编—一次函数、反比例函数综合题

合集下载

各地2018年中考数学试卷精选汇编 函数与一次函数(含解析).-2019-11-12-20-47-32-096

各地2018年中考数学试卷精选汇编 函数与一次函数(含解析).-2019-11-12-20-47-32-096

函数与一次函数一、选择题1.(2018•山东滨州•3分)如果规定[x]表示不大于x的最大整数,例如[2.3]=2,那么函数y=x﹣[x]的图象为()A. B.C. D.【分析】根据定义可将函数进行化简.【解答】解:当﹣1≤x<0,[x]=﹣1,y=x+1当0≤x<1时,[x]=0,y=x当1≤x<2时,[x]=1,y=x﹣1……故选:A.【点评】本题考查函数的图象,解题的关键是正确理解[x]的定义,然后对函数进行化简,本题属于中等题型.2.(2018•山东枣庄•3 分)如图,直线l是一次函数y=kx+b的图象,若点A(3,m)在直线l上,则m 的值是()A.﹣5 B.C.D.7【分析】待定系数法求出直线解析式,再将点A代入求解可得.【解答】解:将(﹣2,0)、(0,1)代入,得:解得:,∴y=x+1,将点 A(3,m)代入,得:+1=m,即 m= ,故选:C.【点评】本题主要考查直线上点的坐标特点,熟练掌握待定系数法求函数解析式是解题的关键.3.(2018·湖南省常德·3分)若一次函数y=(k﹣2)x+1的函数值y随x的增大而增大,则()A.k<2 B.k>2 C.k>0 D.k<0【分析】根据一次函数的性质,可得答案.【解答】解:由题意,得k﹣2>0,解得 k>2,故选:B.【点评】本题考查了一次函数的性质,y=kx+b,当k>0时,函数值y随x的增大而增大.4.(2018•湖南省永州市•4 分)函数y=中自变量 x 的取值范围是()A.x≥3 B.x<3 C.x≠3 D.x=3【分析】根据分式的意义,分母不等于0,可以求出x的范围.【解答】解:根据题意得:x﹣3≠0,解得:x≠3.故选:C.【点评】考查了函数自变量的范围,注意:函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为 0;(3)当函数表达式是二次根式时,被开方数非负.5(2018•株洲市•3分)已知一系列直线分别与直线相交于一系列点,设的横坐标为,则对于式子,下列一定正确的是()A. 大于 1B. 大于 0C. 小于-1D. 小于 0【答案】B【解析】分析:利用待定系数法求出 x i,x j即可解决问题;详解:由题意 x i=-,x j=-,∴式子>0,故选:B.点睛:本题考查一次函数图象上点的坐标特征,待定系数法等知识,解题的关键是灵活运用所学知识解决问题.6.(2018 年江苏省泰州市•3分)如图,平面直角坐标系 xOy 中,点 A 的坐标为(9,6),AB⊥y 轴,垂足为 B,点 P 从原点 O 出发向 x 轴正方向运动,同时,点 Q 从点 A 出发向点 B 运动,当点 Q 到达点 B 时,点 P、Q 同时停止运动,若点 P 与点 Q 的速度之比为 1:2,则下列说法正确的是()A.线段 PQ 始终经过点(2,3)B.线段 PQ 始终经过点(3,2)C.线段 PQ 始终经过点(2,2)D.线段 PQ 不可能始终经过某一定点【分析】当OP=t时,点P的坐标为(t,0),点Q的坐标为(9﹣2t,6).设直线PQ的解析式为y=kx+b(k≠0),利用待定系数法求出 PQ 的解析式即可判断;【解答】解:当OP=t时,点P的坐标为(t,0),点Q的坐标为(9﹣2t,6).设直线 PQ 的解析式为 y=kx+b(k≠0),将 P(t,0)、Q(9﹣2t,6)代入 y=kx+b,,解得:,∴直线PQ的解析式为y=x+.∵x=3时,y=2,∴直线PQ始终经过(3,2),故选:B.【点评】本题考查一次函数图象上的点的特征、待定系数法等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.7. (2018 年江苏省宿迁)函数 A. x≠0 B. x<1中,自变量 x 的取值范围是( C. x>1 D.x≠1)。

2018年中考总复习之一次函数及反比例函数题的经典题型汇总(含答案)

2018年中考总复习之一次函数及反比例函数题的经典题型汇总(含答案)

面积,S2 为△OAB的面积,若 = ,则b的值是

解:(1)设点 P 的坐标为(m,n),则点 Q 的坐标为(m﹣1,n+2),
依题意得:
,解得:k=﹣2.故答案 为:﹣2.
(2)∵BO⊥x 轴,CE⊥x 轴,∴BO∥CE,∴△AOB∽△AEC.
∵点 M 是一次函数 Y=2x-4 与 Y 轴的交点,∴点 M 的坐标为(0,-4) 设 C 点的坐标为(0,Yc),由题意知
点的坐标为0yc由题意知3yc41yc410解得yc4当yc40时yc45解得yc1当yc40时yc45解得yc9的坐标为01或0922已知点p在一次函数ykxbkb向左平移1个单位再向上平移2个单位得到点q点q也在该函数ykxb2如图该一次函数的图象分别与x轴y轴交于ab两点且与反比例函数y图象交于cd两点点c在第二为四边形ceob的面积s2box轴cex轴boceaobaec
并求
的面积。
(2)若反比例函数 y= (x>0)的图象经过点 M, 求该反比函数的解析式,并通过计算判断点 N 是否在该函数的图象上.
1、如图,在平面直角坐标系 xoy 中,反比例函数 y = 的图象与一次函数 y =k(x -2 )
的图象交点为 A(3,2),B(x,y)。 (1)求反比例函数与一次函数的解析式及 B 点坐标; (2)若 C 是 y 轴上的点,且满足△ABC 的面积为 10, 求 C 点坐标。
3、如图,直线 y=x+4 与双曲线 y= (k≠0)相交于 A(﹣1,a)、B 两点,在 y
轴上找一点 P,当 PA+PB 的值最小时,点 P 的坐标为?
(1)k的值是

4、如图,在直角坐标系中,直线 y=﹣ x 与反比例函数 y= 的图象交于关于原点对

2018年重庆市中考数学专项训练——一次函数、反比例函数专项训练

2018年重庆市中考数学专项训练——一次函数、反比例函数专项训练

2018年重庆市中考数学专项训练一次函数、反比例函数综合专练(第22小题)1. 若反比例函数xky =1过面积为9的正方形AMON 的顶点A ,且过点A 的直线n mx y -=2的图象与反比例函数的另一交点为B ((1)求出反比例函数与一次函数的解析式; (2)求∆AOB 的面积;2. 如图,反比例函数xky =的图象与一次函数b mx y +=的图象交于点(1,3)(,1).A B n -、 (1)求反比例函数与一次函数的解析式;(2)根据图象回答:当x 取何值时,反比例函数的值大于一次函数的值.3. 已知点A 与点B(-3,2)关于y 轴对称,反比例函数ky x=与一次函数y mx b =+的图象都经过点A ,且点C(2,0)在一次函数y mx b =+的图象上.(1)求反比例函数和一次函数的解析式;(2)若两个函数图象的另一个交点为D ,求△AOD 的面积.4. 如图,已知反比例函数y =xm的图象经过点A (1,-3),一次函数y = kx + b 的图象经过点A 与点C (0,-4),且与反比例函数的图象相交于另一点B(3,n ). (1)试确定这两个函数的解析式;(22题图)x (2)求△AOB 的面积; (3)根据图形直接写出反比例函数值大于一次函数值时自变量的取值范围.5. 如图,O 是坐标原点,直线OA 与双曲线)0(≠=k xk y 在第一象限内交于点A ,过点A 作AB ⊥x 轴,垂足为B ,若OB=4,tan ∠AOB=21. ⑴求双曲线的解析式;⑵直线AC 与y 轴交于点C (0,1),与x 轴交于点D ,求△AOD 的面积.6. 已知:如图,一次函数的图象与反比例函数的图象交于A B 、两点,过A 作x AC ⊥轴于点.C 已知,2,5AC OC OA ==且点B 的纵坐标为-3.(1)求点A 的坐标及该反比例函数的解析式; (2)求直线AB 的解析式.7. 如图,一次函数的图象与反比例函数的图象在第一象限只有—个交点A ,一次函数的图象与x 轴、y 轴分别交于B 、C 两点,AD 垂直平分OB ,垂足为D ,OA=5,sin ∠ABO=552.(1)求点A 的坐标及反比例函数解析式; (2)求一次函数的的解析式.5题图8. 如图,已知反比例函数my x=的图象经过点(1,3),A -一次函数y kx b =+的图象经过点A 与点(0,4),C -且与反比例函数的图象相交于另一点(3,).B n(1)试确定这两个函数的解析式; (2)求AOB ∆的面积;(3)根据图象直接写出反比例函数值大于一次函数值时 自变量的取值范围.9. 如图,在直角坐标系中,点A 是反比例函数1kyx=的图象上一点,AB x ⊥轴的正半轴于B 点,C 是OB 的中点,一次函数2y ax b =+的图象经过A C 、两点,并交y 轴于点(0,2),D -且AOD ∆的面积为4.(1)求反比例函数和一次函数的解析式;(2)请直接写出在y 轴的右侧,当12y y >时,x 第9题图10. 如图,已知一次函数12y kx =+的图象与y 轴交于点,C 与反比例函数2my x=的图象相交于点,A 点A 的横坐标为1. 过A 作AD y ⊥轴于点,D 且tan 1.ACD ∠= (1)求这两个函数的解析式及两图象的另一交点B 的坐标;(2)观察图象,直接写出使函数值12y y ≥的自变量x8题图11. 如图,一次函数y kx b =+的图象与反比例函数my x=的图象交于(3,1),(2,)A B n -两点,直线AB 分别交x 轴、y 轴于,D C 两点. (1)求上述反比例函数和一次函数的解析式; (2)连接,AO BO 、 求出AOB ∆的面积; (3)请由图象直接写出....,当x 满足什么条件时, 一次函数的值小于反比例函数的值?12. 如图,已知一次函数1y k x b =+的图象分别与x 轴、y 轴的正半轴交于A B 、两点,且与反比例函数2k y x=交于C E 、两点,点C 在第二象限,过点C 作CD x ⊥轴于点,D 1.OA OB OD ===(1)求反比例函数与一次函数的解析式; (2)求OCE ∆的面积.13. 如图,一次函数1y ax b =+的图象与反比例函数2ky x=的图象交于,A B两点,已知OA =1tan ,3AOC ∠= 点B 的坐标为3(,).2m -(1)求反比例函数的解析式和一次函数的解析式;(2)观察图象,直接写出使函数值12y y <成立的自变量x 的取值范围.x12题图14. 如图,将直线2y x =沿y 轴向下平移后,得到的直线与x 轴交于点5(,0),2A 与双曲线k y x =在第一象限交于点,B 且OAB ∆的面积15.4 (1)求直线AB 的解析式; (2)求双曲线的解析式.15. 如图,直线1:(0)AD y kx b k =+=/交坐标轴于点B 和点C ,交双曲线2(0)my m x==/于点A 和点D ,OB =OC =2,AB =BC . (1)求直线和双曲线的解析式;(2)请你连接AO 和DO ,并求出△AOD 的面积.15题图 16题图 16. 如图,在平面直角坐标系中,直线122y x =-与反比例函数2ky x=的图象在第一象限交于点(2,)A n ,在第三象限交于点B ,过B 作BD ⊥x 轴于D ,连接AD . (1)求反比例函数的解析式; (2)求△ABD 的面积ABD S ∆;(3)根据图象直接写出12y y >时自变量x 的取值范围. 17. 两个完全相同的矩形AOEF ABCD 、按如图所示的方式摆放,使点A D 、均在y 轴的正半轴上,点B 在第一象限,点E 在x 轴的正半轴上,点F 在函数)0(>=x xky 的图象上..4,1==AD AB (1)求k的值.(2)将矩形A B C D 绕点B 顺时针旋转90得到矩形,A B C D'''边A D '交函数)0(>=x xky 的图象于点,M 求MD '的长.18. 如图,在平面直角坐标系xOy 中,一次函数1(0)y kx b k =+=/与反比例函数)0(2<=m xmy 交于),2(n A -及另一点B ,与两坐标轴分别交于点D C 、.过A 作AH x ⊥轴于H ,若OH OC 2=,且A C H ∆的面积为9.(1)求一次函数与反比例函数的解析式及另一交点B 的坐标; (2)根据函数图象,直接写出当21y y >时自变量x 的取值范围.19. 已知:如图在平面直角坐标系xOy 中,直线AB 分别与y x 、轴交于点B 、A ,与反比例函数的图象分别交于点C 、D ,CE ⊥x 轴于点E ,21tan =∠ABO ,OB=4,OE=2。

2018-2020江苏中考数学试题汇编-一次函数、反比例函数综合(解析版)

2018-2020江苏中考数学试题汇编-一次函数、反比例函数综合(解析版)

2018-2020江苏中考数学试题汇编一次函数、反比例函数综合一.选择题(共16小题)1.(2020•徐州)如图,在平面直角坐标系中,函数y=4x(x>0)与y=x﹣1的图象交于点P(a,b),则代数式1a −1b的值为()A.−12B.12C.−14D.14第1题第2题【解答】函数y=4x(x>0)与y=x﹣1的图象交于点P(a,b),∴ab=4,b=a﹣1,∴1a −1b=b−aab=−14;故选:C.2.(2019•徐州)若A(x1,y1)、B(x2,y2)都在函数y=2019x的图象上,且x1<0<x2,则()A.y1<y2B.y1=y2C.y1>y2D.y1=﹣y2【解答】∵函数y=2019 x,∴该函数图象在第一、三象限、在每个象限内y随x的增大而减小,∵A(x1,y1)、B(x2,y2)都在函数y=2019x的图象上,且x1<0<x2,∴y1<y2,故选:A.3.(2018•徐州)如图,在平面直角坐标系中,函数y =kx 与y =−2x的图象交于A ,B 两点,过A 作y 轴的垂线,交函数y =4x的图象于点C ,连接BC ,则△ABC 的面积为( ) A .2B .4C .6D .8【解答】∵正比例函数y =kx 与反比例函数y =−2x 的图象交点关于原点对称, ∴设A 点坐标为(x ,−2x ),则B 点坐标为(﹣x ,2x),C (﹣2x ,−2x ),∴S △ABC =12×(﹣2x ﹣x )•(−2x −2x )=12×(﹣3x )•(−4x )=6. 故选:C .4.(2020•苏州)如图,平行四边形OABC 的顶点A 在x 轴的正半轴上,点D (3,2)在对角线OB 上,反比例函数y =kx (k >0,x >0)的图象经过C 、D 两点.已知平行四边形OABC 的面积是152,则点B 的坐标为( )A .(4,83)B .(92,3) C .(5,103) D .(245,165)【解答】∵反比例函数y =kx (k >0,x >0)的图象经过点D (3,2), ∴2=k3, ∴k =6,∴反比例函数y =6x , ∵OB 经过原点O ,∴设OB 的解析式为y =mx , ∵OB 经过点D (3,2), 则2=3m , ∴m =23,∴OB 的解析式为y =23x , ∵反比例函数y =6x 经过点C , ∴设C (a ,6a ),且a >0,∵四边形OABC 是平行四边形,∴BC∥OA,S平行四边形OABC=2S△OBC,∴点B的纵坐标为6a ,∵OB的解析式为y=23x,∴B(9a ,6a),∴BC=9a−a,∴S△OBC=12×6a×(9a−a),∴2×12×6a×(9a−a)=152,解得:a=2,∴B(92,3),故选:B.5.(2019•苏州)若一次函数y=kx+b(k,b为常数,且k≠0)的图象经过点A(0,﹣1),B(1,1),则不等式kx+b>1的解集为()A.x<0B.x>0C.x<1D.x>1第4题第6题【解答】如图所示:不等式kx+b>1的解为:x>1.故选:D.6.(2018•苏州)如图,矩形ABCD的顶点A,B在x轴的正半轴上,反比例函数y=k x在第一象限内的图象经过点D,交BC于点E.若AB=4,CE=2BE,tan∠AOD=34,则k的值为()A.3B.2√3C.6D.12【解答】∵tan∠AOD=ADOA=34,∴设AD=3a、OA=4a,则BC=AD=3a,点D坐标为(4a,3a),∵CE=2BE,∴BE=13BC=a,∵AB=4,∴点E(4+4a,a),∵反比例函数y=kx经过点D、E,∴k=12a2=(4+4a)a,解得:a=12或a=0(舍),则k=12×14=3,故选:A.7.(2020•常州)如图,点D是▱OABC内一点,CD与x轴平行,BD与y轴平行,BD=√2,∠ADB=135°,S△ABD=2.若反比例函数y=kx(x>0)的图象经过A、D两点,则k的值是()A.2√2B.4C.3√2D.6第7题第9题【解答】作AM⊥y轴于M,延长BD,交AM于E,设BC与y轴的交点为N,∵四边形OABC是平行四边形,∴OA∥BC,OA=BC,∴∠AOM=∠CNM,∵BD∥y轴,∴∠CBD=∠CNM,∴∠AOM=∠CBD,∵CD与x轴平行,BD与y轴平行,∴∠CDB=90°,BE⊥AM,∴∠CDB=∠AMO,∴△AOM≌△CBD(AAS),∴OM=BD=√2,∵S△ABD=12BD⋅AE=2,BD=√2,∴AE=2√2,∵∠ADB=135°,∴∠ADE=45°,∴△ADE是等腰直角三角形,∴DE=AE=2√2,∴D的纵坐标为3√2,设A(m,√2),则D(m﹣2√2,3√2),∵反比例函数y =kx(x >0)的图象经过A 、D 两点, ∴k =√2m =(m ﹣2√2)×3√2, 解得m =3√2, ∴k =√2m =6. 故选:D .8.(2019•扬州)若反比例函数y =−2x 的图象上有两个不同的点关于y 轴的对称点都在一次函数y =﹣x +m 的图象上,则m 的取值范围是( ) A .m >2√2B .m <﹣2√2C .m >2√2或m <﹣2√2D .﹣2√2<m <2√2【解答】∵反比例函数y =−2x 的图象上有两个不同的点关于y 轴的对称点在反比例函数y =2x的图象上,∴解方程组{y =2x y =−x +m得x 2﹣mx +2=0,∵y =2x的图象与一次函数y =﹣x +m 有两个不同的交点, ∴方程x 2﹣mx +2=0有两个不同的实数根, ∴△=m 2﹣8>0, ∴m >2√2或m <﹣2√2, 故选:C .9.(2019•无锡)如图,已知A 为反比例函数y =kx (x <0)的图象上一点,过点A 作AB ⊥y 轴,垂足为B .若△OAB 的面积为2,则k 的值为( ) A .2 B .﹣2 C .4 D .﹣4【解答】 ∵AB ⊥y 轴, ∴S △OAB =12|k |, ∴12|k |=2,∵k <0,∴k=﹣4.故选:D.10.(2018•无锡)已知点P(a,m),Q(b,n)都在反比例函数y=−2x的图象上,且a<0<b,则下列结论一定正确的是()A.m+n<0B.m+n>0C.m<n D.m>n【解答】y=−2x的k=﹣2<0,图象位于二四象限,∵a<0,∴P(a,m)在第二象限,∴m>0;∵b>0,∴Q(b,n)在第四象限,∴n<0.∴n<0<m,即m>n,故D正确;故选:D.11.(2019•淮安)当矩形面积一定时,下列图象中能表示它的长y和宽x之间函数关系的是()A.B.C.D.【解答】∵根据题意xy=矩形面积(定值),∴y是x的反比例函数,(x>0,y>0).故选:B.12.(2020•宿迁)如图,在平面直角坐标系中,Q是直线y=−12x+2上的一个动点,将Q绕点P (1,0)顺时针旋转90°,得到点Q ',连接OQ ',则OQ '的最小值为( ) A .4√55B .√5C .5√23D .6√55第12题第13题【解答】作QM ⊥x 轴于点M ,Q ′N ⊥x 轴于N , 设Q (m ,−12m +2),则PM =m ﹣1,QM =−12m +2, ∵∠PMQ =∠PNQ ′=∠QPQ ′=90°, ∴∠QPM +∠NPQ ′=∠PQ ′N +∠NPQ ′, ∴∠QPM =∠PQ ′N 在△PQM 和△Q ′PN 中,{∠PMQ =∠PNQ ′=90°∠QPM =∠PQ′N PQ =PQ′∴△PQM ≌△Q ′PN (AAS ),∴PN =QM =−12m +2,Q ′N =PM =m ﹣1, ∴ON =1+PN =3−12m , ∴Q ′(3−12m ,1﹣m ),∴OQ ′2=(3−12m )2+(1﹣m )2=54m 2﹣5m +10=54(m ﹣2)2+5, 当m =2时,OQ ′2有最小值为5, ∴OQ ′的最小值为√5, 故选:B .13.(2019•宿迁)如图,在平面直角坐标系xOy 中,菱形ABCD 的顶点A 与原点O 重合,顶点B 落在x 轴的正半轴上,对角线AC 、BD 交于点M ,点D 、M 恰好都在反比例函数y =kx(x >0)的图象上,则AC BD的值为( )A .√2B .√3C .2D .√5【解答】设D (m ,k m),B (t ,0), ∵M 点为菱形对角线的交点, ∴BD ⊥AC ,AM =CM ,BM =DM , ∴M (m+t 2,k 2m),把M (m+t2,k2m)代入y =kx 得m+t 2•k 2m=k ,∴t =3m ,∵四边形ABCD 为菱形, ∴OD =AB =t ,∴m 2+(km )2=(3m )2,解得k =2√2m 2,∴M (2m ,√2m ),在Rt △ABM 中,tan ∠MAB =BMAM =√2m2m =1√2,∴AC BD=√2.故选:A .14.(2020•镇江)如图①,AB =5,射线AM ∥BN ,点C 在射线BN 上,将△ABC 沿AC 所在直线翻折,点B 的对应点D 落在射线BN 上,点P ,Q 分别在射线AM 、BN 上,PQ ∥AB .设AP =x ,QD =y .若y 关于x 的函数图象(如图②)经过点E (9,2),则cos B 的值等于( )A .25B .12C .35D .710【解答】∵AM ∥BN ,PQ ∥AB ,∴四边形ABQP 是平行四边形, ∴AP =BQ =x ,由图②可得当x =9时,y =2,此时点Q 在点D 下方,且BQ =x =9时,y =2,如图①所示,∴BD =BQ ﹣QD =x ﹣y =7,∵将△ABC 沿AC 所在直线翻折,点B 的对应点D 落在射线BN 上, ∴BC =CD =12BD =72,AC ⊥BD ,∴cos B =BC AB =725=710,故选:D .15.(2018•镇江)如图,一次函数y =2x 与反比例函数y =kx(k >0)的图象交于A ,B 两点,点P 在以C (﹣2,0)为圆心,1为半径的⊙C 上,Q 是AP 的中点,已知OQ 长的最大值为32,则k 的值为( )A .4932B .2518C .3225D .98第15题第16题【解答】连接BP , 由对称性得:OA =OB , ∵Q 是AP 的中点, ∴OQ =12BP ,∵OQ 长的最大值为32,∴BP 长的最大值为32×2=3,如图,当BP 过圆心C 时,BP 最长,过B 作BD ⊥x 轴于D , ∵CP =1, ∴BC =2,∵B 在直线y =2x 上,设B (t ,2t ),则CD =t ﹣(﹣2)=t +2,BD =﹣2t , 在Rt △BCD 中,由勾股定理得:BC 2=CD 2+BD 2, ∴22=(t +2)2+(﹣2t )2, t =0(舍)或−45, ∴B (−45,−85),∵点B 在反比例函数y =k x(k >0)的图象上, ∴k =−45×(−85)=3225; 故选:C .16.(2018•连云港)如图,菱形ABCD 的两个顶点B 、D 在反比例函数y =kx的图象上,对角线AC 与BD 的交点恰好是坐标原点O ,已知点A (1,1),∠ABC =60°,则k 的值是( ) A .﹣5B .﹣4C .﹣3D .﹣2【解答】∵四边形ABCD 是菱形, ∴BA =BC ,AC ⊥BD , ∵∠ABC =60°, ∴△ABC 是等边三角形, ∵点A (1,1),∴OA =√2,∴BO =OAtan30°=√6, ∵直线AC 的解析式为y =x , ∴直线BD 的解析式为y =﹣x , ∵OB =√6,∴点B 的坐标为(−√3,√3), ∵点B 在反比例函数y =kx 的图象上, ∴√3=k−√3, 解得,k =﹣3, 故选:C .二.填空题(共13小题)17.(2020•南京)将一次函数y =﹣2x +4的图象绕原点O 逆时针旋转90°,所得到的图象对应的函数表达式是 .【解答】在一次函数y =﹣2x +4中,令x =0,则y =4,令y =0,则x =2, ∴直线y =﹣2x +4经过点(0,4),(2,0)将一次函数y =﹣2x +4的图象绕原点O 逆时针旋转90°,则点(0,4)的对应点为(﹣4,0),(2,0)的对应点是(0,2) 设对应的函数解析式为:y =kx +b ,将点(﹣4,0)、(0,2)代入得{−4k +b =0b =2,解得{k =12b =2, ∴旋转后对应的函数解析式为:y =12x +2, 故答案为y =12x +2.18.将双曲线y =3x 向右平移1个单位长度,再向下平移2个单位长度,得到的新双曲线与直线y =kx ﹣2﹣k (k >0)相交于两点,其中一个点的横坐标为a ,另一个点的纵坐标为b ,则(a ﹣1)(b +2)= .【解答】一次函数y =kx ﹣2﹣k (k >0)的图象过定点P (1,﹣2),而点P (1,﹣2)恰好是原点(0,0)向右平移1个单位长度,再向下平移2个单位长度得到的,因此将双曲线y =3x 向右平移1个单位长度,再向下平移2个单位长度,得到的新双曲线与直线y =kx ﹣2﹣k (k >0)相交于两点,在没平移前是关于原点对称的, 平移前,这两个点的坐标为为(a ﹣1,3a−1),(3b+2,b +2),∴a ﹣1=−3b+2, ∴(a ﹣1)(b +2)=﹣3, 故答案为:﹣3.19.(2019•南通)如图,过点C (3,4)的直线y =2x +b 交x 轴于点A ,∠ABC =90°,AB =CB ,曲线y =kx (x >0)过点B ,将点A 沿y 轴正方向平移a 个单位长度恰好落在该曲线上,则a 的值为 .第19题第20题【解答】作CD ⊥x 轴于D ,BF ⊥x 轴于F ,过B 作BE ⊥CD 于E , ∵过点C (3,4)的直线y =2x +b 交x 轴于点A , ∴4=2×3+b ,解得b =﹣2, ∴直线为y =2x ﹣2, 令y =0,则求得x =1, ∴A (1,0),∵BF ⊥x 轴于F ,过B 作BE ⊥CD 于E , ∴BE ∥x 轴, ∴∠ABE =∠BAF , ∵∠ABC =90°,∴∠ABE +∠EBC =90°, ∵∠BAF +∠ABF =90°, ∴∠EBC =∠ABF , 在△EBC 和△FBA 中 {∠EBC =∠ABF∠BEC =∠BFA =90°BC =AB∴△EBC ≌△FBA (AAS ), ∴CE =AF ,BE =BF , 设B (m ,km ),∵4−k m =m ﹣1,m ﹣3=km, ∴4﹣(m ﹣3)=m ﹣1, 解得m =4,k =4,∴反比例函数的解析式为y =4x, 把x =1代入得y =4, ∴a =4﹣0=4, ∴a 的值为4. 故答案为4.20.(2020•苏州)如图,在平面直角坐标系中,点A 、B 的坐标分别为(﹣4,0)、(0,4),点C (3,n )在第一象限内,连接AC 、BC .已知∠BCA =2∠CAO ,则n = . 【解答】作CD ⊥x 轴于D ,CE ⊥y 轴于E ,∵点A 、B 的坐标分别为(﹣4,0)、(0,4),点C (3,n )在第一象限内,则E (0,n ),D (3,0),∴BE =4﹣n ,CE =3,CD =n ,AD =7, ∵CE ∥OA , ∴∠ECA =∠CAO , ∵∠BCA =2∠CAO , ∴∠BCE =∠CAO ,在Rt △CAD 中,tan ∠CAO =CD AD ,在Rt △CBE 中,tan ∠BCE =BE CE, ∴CD AD=BE CE ,即n3+4=4−n 3,解得n =145, 故答案为145.21.(2018•扬州)如图,在等腰Rt △ABO ,∠A =90°,点B 的坐标为(0,2),若直线l :y =mx +m (m ≠0)把△ABO 分成面积相等的两部分,则m 的值为 .第21题第22题【解答】∵y =mx +m =m (x +1), ∴函数y =mx +m 一定过点(﹣1,0), 当x =0时,y =m , ∴点C 的坐标为(0,m ),由题意可得,直线AB 的解析式为y =﹣x +2, {y =−x +2y =mx +m,得{x =2−mm+1y =3m m+1, ∵直线l :y =mx +m (m ≠0)把△ABO 分成面积相等的两部分, ∴(2−m)⋅2−m m+12=2×12×12,解得,m 1=5−√132,m 2=5+√132(舍去), 故答案为:5−√132.22.(2020•泰州)如图,点P 在反比例函数y =3x的图象上,且横坐标为1,过点P 作两条坐标轴的平行线,与反比例函数y =kx (k <0=的图象相交于点A 、B ,则直线AB 与x 轴所夹锐角的正切值为 .【解答】点P 在反比例函数y =3x 的图象上,且横坐标为1,则点P (1,3), 则点A 、B 的坐标分别为(1,k ),(13k ,3),设直线AB 的表达式为:y =mx +t ,将点A 、B 的坐标代入上式得{k =m +t3=13km +t ,解得m=﹣3,故直线AB 与x 轴所夹锐角的正切值为3, 故答案为3.23.(2019•无锡)已知一次函数y =kx +b 的图象如图所示,则关于x 的不等式3kx ﹣b >0的解集为 .第23题第24题【解答】∵图象过(﹣6,0),则0=﹣6k +b , 则b =6k ,故3kx ﹣b =3kx ﹣6k >0, ∵k <0, ∴x ﹣2<0, 解得:x <2. 故答案为:x <2.24.(2020•盐城)如图,已知点A (5,2)、B (5,4)、C (8,1).直线l ⊥x 轴,垂足为点M (m ,0).其中m <52,若△A ′B ′C ′与△ABC 关于直线l 对称,且△A ′B ′C ′有两个顶点在函数y =k x(k ≠0)的图象上,则k 的值为 .【解答】∵点A (5,2)、B (5,4)、C (8,1),直线l ⊥x 轴,垂足为点M (m ,0).其中m <52,△A ′B ′C ′与△ABC 关于直线l 对称, ∴A ′(2m ﹣5,2),B ′(2m ﹣5,4),C ′(2m ﹣8,1), ∵A ′、B ′的横坐标相同,∴在函数y =k x (k ≠0)的图象上的两点为,A ′、C ′或B ′、C ′,当A ′、C ′在函数y =kx (k ≠0)的图象上时,则k =2(2m ﹣5)=2m ﹣8,解得m =1, ∴k =﹣6;当B ′、C ′在函数y =kx (k ≠0)的图象上时,则k =4(2m ﹣5)=2m ﹣8,解得m =2, ∴k =﹣4,综上,k 的值为﹣6或﹣4, 故答案为﹣6或﹣4.25.(2019•盐城)如图,在平面直角坐标系中,一次函数y =2x ﹣1的图象分别交x 、y 轴于点A 、B ,将直线AB 绕点B 按顺时针方向旋转45°,交x 轴于点C ,则直线BC 的函数表达式是 .第25题第26题第27题【解答】∵一次函数y =2x ﹣1的图象分别交x 、y 轴于点A 、B , ∴令x =0,得y =﹣1,令y =0,则x =12, ∴A (12,0),B (0,﹣1),∴OA =12,OB =1,过A 作AF ⊥AB 交BC 于F ,过F 作FE ⊥x 轴于E , ∵∠ABC =45°,∴△ABF 是等腰直角三角形, ∴AB =AF ,∵∠OAB +∠ABO =∠OAB +∠EAF =90°, ∴∠ABO =∠EAF , ∴△ABO ≌△F AE (AAS ), ∴AE =OB =1,EF =OA =12, ∴F (32,−12),设直线BC 的函数表达式为:y =kx +b ,∴{32k +b =−12b =−1,∴{k =13b =−1, ∴直线BC 的函数表达式为:y =13x ﹣1, 故答案为:y =13x ﹣1.26.(2018•盐城)如图,点D 为矩形OABC 的AB 边的中点,反比例函数y =kx (x >0)的图象经过点D ,交BC 边于点E .若△BDE 的面积为1,则k = . 【解答】设D (a ,ka ),∵点D 为矩形OABC 的AB 边的中点, ∴B (2a ,ka ),∴E (2a ,k2a),∵△BDE 的面积为1, ∴12•a •(ka −k 2a)=1,解得k =4.故答案为4.27.(2020•淮安)如图,等腰△ABC 的两个顶点A (﹣1,﹣4)、B (﹣4,﹣1)在反比例函数y=k1x(x<0)的图象上,AC=BC.过点C作边AB的垂线交反比例函数y=k1x(x<0)的图象于点D,动点P从点D出发,沿射线CD方向运动3√2个单位长度,到达反比例函数y=k2x(x>0)图象上一点,则k2=.【解答】把A(﹣1,﹣4)代入y=k1x中得,k1=4,∴反比例函数y=k1x为y=4x,∵A(﹣1,﹣4)、B(﹣4,﹣1),∴AB的垂直平分线为y=x,联立方程驵{y=4xy=x,解得{x=−2y=−2,或{x=2y=2,∵AC=BC,CD⊥AB,∴CD是AB的垂直平分线,∵CD与反比例函数y=k1x(x<0)的图象于点D,∴D(﹣2,﹣2),∵动点P从点D出发,沿射线CD方向运动3√2个单位长度,到达反比例函数y=k2x(x>0)图象上一点,∴设移动后的点P的坐标为(m,m)(m>﹣2),则√(m+2)2+(m+2)2=(3√2)2,∴m=1,∴P(1,1),把P(1,1)代入y=k2x(x>0)中,得k2=1,故答案为:1.28.(2020•宿迁)如图,点A在反比例函数y=kx(x>0)的图象上,点B在x轴负半轴上,直线AB交y轴于点C,若ACBC =12,△AOB的面积为6,则k的值为.第28题第29题【解答】过点A 作AD ⊥y 轴于D ,则△ADC ∽△BOC , ∴DC OC =AC BC =12,∵AC BC=12,△AOB 的面积为6,∴S △AOC =13S △AOB =2, ∴S △ACD =12S △AOC =1, ∴△AOD 的面积=3,根据反比例函数k 的几何意义得,12|k|=3,∴|k |=6, ∵k >0, ∴k =6. 故答案为:6.29.(2018•宿迁)如图,在平面直角坐标系中,反比例函数y =2x (x >0)的图象与正比例函数y =kx 、y =1k x (k >1)的图象分别交于点A 、B .若∠AOB =45°,则△AOB 的面积是 .【解答】如图,过B 作BD ⊥x 轴于点D ,过A 作AC ⊥y 轴于点C设点A横坐标为a,则A(a,2a)∵A在正比例函数y=kx图象上∴2a=ka∴k=2 a2同理,设点B横坐标为b,则B(b,2b )∴2b =1kb∴k=b2 2∴2a2=b22∴ab=2当点A坐标为(a,2a )时,点B坐标为(2a,a)∴OC=OD将△AOC绕点O顺时针旋转90°,得到△ODA′∵BD⊥x轴∴B、D、A′共线∵∠AOB=45°,∠AOA′=90°∴∠BOA′=45°∵OA=OA′,OB=OB∴△AOB≌△A′OB∵S△BOD=S△AOC=2×12=1∴S△AOB=2故答案为:2三.解答题(共19小题)30.(2020•南通)如图,直线l1:y=x+3与过点A(3,0)的直线l2交于点C(1,m),与x轴交于点B.(1)求直线l2的解析式;(2)点M 在直线l 1上,MN ∥y 轴,交直线l 2于点N ,若MN =AB ,求点M 的坐标.【解答】(1)在y =x +3中,令y =0,得x =﹣3, ∴B (﹣3,0),把x =1代入y =x +3得y =4, ∴C (1,4),设直线l 2的解析式为y =kx +b , ∴{k +b =43k +b =0,解得{k =−2b =6, ∴直线l 2的解析式为y =﹣2x +6; (2)AB =3﹣(﹣3)=6,设M (a ,a +3),由MN ∥y 轴,得N (a ,﹣2a +6), MN =|a +3﹣(﹣2a +6)|=AB =6, 解得a =3或a =﹣1, ∴M (3,6)或(﹣1,2).31.(2020•徐州)如图,在平面直角坐标系中,一次函数y =kx +b 的图象经过点A (0,﹣4)、B (2,0),交反比例函数y =mx (x >0)的图象于点C (3,a ),点P 在反比例函数的图象上,横坐标为n (0<n <3),PQ ∥y 轴交直线AB 于点Q ,D 是y 轴上任意一点,连接PD 、QD .(1)求一次函数和反比例函数的表达式; (2)求△DPQ 面积的最大值.【解答】(1)把A (0,﹣4)、B (2,0)代入一次函数y =kx +b 得,{b =−42k +b =0,解得,{k =2b =−4, ∴一次函数的关系式为y =2x ﹣4, 当x =3时,y =2×3﹣4=2, ∴点C (3,2),∵点C在反比例函数的图象上,∴k=3×2=6,∴反比例函数的关系式为y=6 x,答:一次函数的关系式为y=2x﹣4,反比例函数的关系式为y=6 x;(2)点P在反比例函数的图象上,点Q在一次函数的图象上,∴点P(n,6n),点Q(n,2n﹣4),∴PQ=6n−(2n﹣4),∴S△PDQ=12n[6n−(2n﹣4)]=﹣n2+2n+3=﹣(n﹣1)2+4,∵﹣1<0,∴当n=1时,S最大=4,答:△DPQ面积的最大值是4.32.(2019•徐州)如图,平面直角坐标系中,O为原点,点A、B分别在y轴、x轴的正半轴上.△AOB的两条外角平分线交于点P,P在反比例函数y=9x的图象上.P A的延长线交x轴于点C,PB的延长线交y轴于点D,连接CD.(1)求∠P的度数及点P的坐标;(2)求△OCD的面积;(3)△AOB的面积是否存在最大值?若存在,求出最大面积;若不存在,请说明理由.【解答】(1)如图,作PM⊥OA于M,PN⊥OB于N,PH⊥AB于H.∴∠PMA=∠PHA=90°,∵∠P AM=∠P AH,P A=P A,∴△P AM≌△P AH(AAS),∴PM=PH,∠APM=∠APH,同理可证:△BPN ≌△BPH , ∴PH =PN ,∠BPN =∠BPH , ∴PM =PN ,∵∠PMO =∠MON =∠PNO =90°, ∴四边形PMON 是矩形, ∴∠MPN =90°,∴∠APB =∠APH +∠BPH =12(∠MPH +∠NPH )=45°, ∵PM =PN ,∴可以假设P (m ,m ), ∵P (m ,m )在y =9x 上, ∴m 2=9, ∵m >0, ∴m =3, ∴P (3,3).(2)设OA =a ,OB =b ,则AM =AH =3﹣a ,BN =BH =3﹣b , ∴AB =6﹣a ﹣b , ∵AB 2=OA 2+OB 2, ∴a 2+b 2=(6﹣a ﹣b )2, 可得ab =6a +6b ﹣18, ∴3a +3b ﹣9=12ab , ∵PM ∥OC , ∴CO PM =OA AM , ∴OC 3=a3−a ,∴OC =3a3−a ,同法可得OD =3b3−b , ∴S △COD =12•OC •DO =12•9ab (3−a)(3−b)=12•9ab9−3a−3b+ab=12•9ab−12ab+ab=9.(3)设OA =a ,OB =b ,则AM =AH =3﹣a ,BN =BH =3﹣b , ∴AB =6﹣a ﹣b , ∴OA +OB +AB =6, ∴a +b +√a 2+b 2=6, ∴2√ab +√2ab ≤6, ∴(2+√2)√ab ≤6, ∴√ab ≤3(2−√2), ∴ab ≤54﹣36√2,∴S △AOB =12ab ≤27﹣18√2,∴△AOB 的面积的最大值为27﹣18√2.33.(2019•苏州)如图,A 为反比例函数y =kx (其中x >0)图象上的一点,在x 轴正半轴上有一点B ,OB =4.连接OA ,AB ,且OA =AB =2√10. (1)求k 的值;(2)过点B 作BC ⊥OB ,交反比例函数y =k x (其中x >0)的图象于点C ,连接OC 交AB 于点D ,求AD DB的值.【解答】(1)过点A 作AH ⊥x 轴,垂足为点H ,AH 交OC 于点M ,如图所示. ∵OA =AB ,AH ⊥OB , ∴OH =BH =12OB =2, ∴AH =√OA 2−OH 2=6, ∴点A 的坐标为(2,6).∵A 为反比例函数y =kx图象上的一点, ∴k =2×6=12.(2)∵BC ⊥x 轴,OB =4,点C 在反比例函数y =12x 上, ∴BC =kOB =3. ∵AH ∥BC ,OH =BH , ∴MH =12BC =32,∴AM =AH ﹣MH =92. ∵AM ∥BC , ∴△ADM ∽△BDC , ∴AD DB=AM BC=32.。

2018北京中考真题(一次函数与反比例)

2018北京中考真题(一次函数与反比例)

17.如图,在平面直角坐标系xO y 中, 一交函数2yx =-的图象与反比例函数ky x =的图象的一个交点为()1,A n -。

⑴ 求反比例函数ky x =的解析式;⑵ 若P 是坐标轴上一点,且满足P AO A =,直接写出点P 的坐标。

(2012)17.如图,在平面直角坐标系xO y 中,函数()40yx x =>的图象与一次函数y kx k =-的图象的交点为()2A m ,.(1)求一次函数的解析式;(2)设一次函数y kx k =-的图象与y 轴交于点B ,若P 是x 轴上一点,且满足P A B △的面积是4,直接写出点P 的坐标.18. 如图,直线y =2x +3与x 轴交于点A ,与y 轴交于点B 。

(1) 求A 、B 两点的坐标;(2) 过B 点作直线BP 与x 轴交于点P ,且使OP =2OA ,求△ABP 的面积。

18.已知关于x 的一元二次方程04222=-++k x x 有两个不相等的实数根(1)求k 的取值范围;(2)若k 为正整数,且该方程的根都是整数,求k 的值。

17. 已知关于X 的方程2(2)20(0)m x m x m -++=≠。

(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m 的值。

17. 如图,A 、B 两点在函数()0my x x =>的图象上.(1)求m 的值及直线AB 的解析式;(2)如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.请直接写出图中阴影部分(不包括边界)所含格点的个数。

16. 已知关于x 的一元二次方程x 2-4x +m -1=0有两个相等的实数根,求m 的值及方程的根。

2018年河南数学中考复习:一次函数与反比例函数

2018年河南数学中考复习:一次函数与反比例函数

一次函数与反比例函数——例题分析例1.如图,直线l⊥x轴于点P,且与反比例函数y1=(x>0)及y2=(x>0)的图象分别交于点A,B,连接OA,OB,已知△OAB 的面积为2,则k1﹣k2=.例2. 如图,在平面直角坐标系中,矩形ABCD的边AB:BC=3:2,点A(3,0),B(0,6)分别在x轴,y轴上,反比例函数y=(x >0)的图象经过点D,且与边BC交于点E,则点E的坐标为(2,7).解:过点D作DF⊥x轴于点F,则∠AOB=∠DF A=90°,∴∠OAB+∠ABO=90°,∵四边形ABCD是矩形,∴∠BAD=90°,AD=BC,∴∠OAB+∠DAF=90°,∴∠ABO=∠DAF,∴△AOB∽△DF A,∴OA:DF=OB:AF=AB:AD,∵AB:BC=3:2,点A(3,0),B(0,6),∴AB:AD=3:2,OA=3,OB=6,∴DF=2,AF=4,∴OF=OA+AF=7,∴点D的坐标为:(7,2),∴反比例函数的解析式为:y=①,点C的坐标为:(4,8),设直线BC的解析式为:y=kx+b,则,解得:,∴直线BC的解析式为:y=x+6②,联立①②得:或(舍去),∴点E的坐标为:(2,7).故答案为:(2,7).例3.如图,直线y=x+与两坐标轴分别交于A、B两点.(1)求∠ABO的度数;(2)过A的直线l交x轴半轴于C,AB=AC,求直线l的函数解析式.【考点】待定系数法求一次函数解析式.【分析】(1)根据函数解析式求出点A、B的坐标,然后在Rt△ABO 中,利用三角函数求出tan∠ABO的值,继而可求出∠ABO的度数;(2)根据题意可得,AB=AC,AO⊥BC,可得AO为BC的中垂线,根据点B的坐标,得出点C的坐标,然后利用待定系数法求出直线l 的函数解析式.【解答】解:(1)对于直线y=x+,令x=0,则y=,令y=0,则x=﹣1,故点A的坐标为(0,),点B的坐标为(﹣1,0),则AO=,BO=1,在Rt△ABO中,∵tan∠ABO==,∴∠ABO=60°;(2)在△ABC中,∵AB=AC,AO⊥BC,∴AO为BC的中垂线,即BO=CO,则C点的坐标为(1,0),设直线l的解析式为:y=kx+b(k,b为常数),则,解得:,即函数解析式为:y=﹣x+.【点评】本题考查了待定系数法求一次函数解析式,涉及了的知识点有:待定系数法确定一次函数解析式,一次函数与坐标轴的交点,坐标与图形性质,熟练掌握待定系数法是解答本题的关键.例4. 如图1,一次函数y=kx﹣3(k≠0)的图象与y轴交于点A,与反比例函数y=(x>0)的图象交于点B(4,b).(1)b=1;k=1;(2)点C是线段AB上的动点(于点A、B不重合),过点C且平行于y轴的直线l交这个反比例函数的图象于点D,求△OCD面积的最大值;(3)将(2)中面积取得最大值的△OCD沿射线AB方向平移一定的距离,得到△O′C′D′,若点O的对应点O′落在该反比例函数图象上(如图2),则点D′的坐标是(,).【考点】反比例函数综合题.【分析】(1)由点B的横坐标利用反比例函数图象上点的坐标特征即可求出b值,进而得出点B的坐标,再将点B的坐标代入一次函数解析式中即可求出k值;(2)设C(m,m﹣3)(0<m<4),则D(m,),根据三角形的面积即可得出S△OCD关于m的函数关系式,通过配方即可得出△OCD 面积的最大值;(3)由(1)(2)可知一次函数的解析式以及点C、D的坐标,设点C′(a,a﹣3),根据平移的性质找出点O′、D′的坐标,由点O′在反比例函数图象上即可得出关于a的方程,解方程求出a的值,将其代入点D′的坐标中即可得出结论.【解答】解:(1)把B(4,b)代入y=(x>0)中得:b==1,∴B(4,1),把B(4,1)代入y=kx﹣3得:1=4k﹣3,解得:k=1,故答案为:1,1;(2)设C(m,m﹣3)(0<m<4),则D(m,),∴S△OCD=m(﹣m+3)=﹣m2+m+2=﹣+,∵0<m<4,﹣<0,∴当m=时,△OCD面积取最大值,最大值为;(3)由(1)知一次函数的解析式为y=x﹣3,由(2)知C(,﹣)、D(,).设C′(a,a﹣3),则O′(a﹣,a﹣),D′(a,a+),∵点O′在反比例函数y=(x>0)的图象上,∴a﹣=,解得:a=或a=﹣(舍去),经检验a=是方程a﹣=的解.∴点D′的坐标是(,).。

2018年全国各地中考数学真题汇编:一次函数(含答案)

【答案】B中考数学真题汇编:一次函数、选择题1.在平面直角坐标系中,过点(1,2)作直线I ,若直线I 与两坐标轴围成的三角形面积为 4,则满足条件的直线I 的条数是()。

A.5 B.4C.3D.2【答案】CA.C.【答案】A3. 把函数y=x 向上平移3个单位,下列在该平移后的直线上的点是 ()A. B.C.D.【答案】D4. 给出下列函数:①y=- 3x+2:②y=冷:③y=2x 2:④y=3x ,上述函数中符合条作 当x > 1时,函数值y随自变量x 增大而增大的是() A.①③ 【答案】B5. 如图,函数 m 心一上十i 和丁一小•:" 是常数,且> -1 :-)在同一平面直角坐标系的图象可能是()2.如果规定[x]表示不大于x 的最大整数,例如 [2.3]=2,那么函数y=x - [x]的图象为((②④7. 如图,菱形啲边长是4厘米,—外,动点以i厘米/秒的速度自点出发沿方向运动至点停止,动点以2厘米/秒的速度自点出发沿折线予匚二运动至点停止若点同时出发运动了秒,记」於討的面积为下面图象中能表示S与r之间的函数关系的是()6. 如图,二次函数y=ax2+bx的图象开口向下,且经过第三象限的点P.若点P的横坐标为-1,则一次函数【答案】D【答案】D8. 如图,直线讣宀都与直线I垂直,垂足分别为M , N, MN=1,正方形ABCD的边长为,对角线AC 在直线I上,且点C位于点M处,将正方形ABCD沿I向右平移,直到点A与点N重合为止,记点C平移的距离为X,正方形ABCD的边位于之间分的长度和为y,则y关于x的函数图象大致为()\h-V z【答案】A9•一次函数「一 2 &和反比例函数:.一斗在同一直角坐标系中大致图像是()【答案】A10•如图,平面直角坐标系中,点的坐标为I丸佥,.•止一-7轴,垂足为,点从原点出发向轴正方向运动,同时,点::F从点r出发向点弓运动,当点到达点云时,点、同时停止运D线段不可能始终经过某一定点,则下列说法正确的是()E线段始终经过点C.线段始终经过点【答案】BA.每月上网时间不足 25 h 时,选择A 方式最省钱 B •每月上网费用为60元时,B 方式可上网的时间比A 方式多C.每月上网时间为35h 时,选择B 方式最省钱 D •每月上网时间超过 70h 时,选择C 方式最省钱【答案】D二、填空题12. 将直线y 二兀向上平移2个单位长度,平移后直线的解析式为 _____________ • 【答案】 wa 13.已知点A (x i , y i )、B (x 2 , y 2)在直线y=kx+b 上,且直线经过第一、二、四象限,当 x i <X 2时,y i与y 2的大小关系为 __________ . 【答案】y 1>y 214. 已知点 是直线/ - - i 上一点,其横坐标为 若点 与点 关于轴对称,则点亦的坐标为15. 星期天,小明上午 8: 00从家里出发,骑车到图书馆去借书,再骑车回到家,他离家的距离y (千米)【答案】()o4D与时间t (分钟)的关系如图所示,则上午8: 45小明离家的距离是_________ 千米。

2018年中考题型四反比例函数和一次函数综合题

题型四 反比例函数与一次函数综合题针对演练1. 如图,一次函数y =kx +1(k ≠0)与反比例函数y =m x(m ≠0)的图象有公共点A (1,2),直线l ⊥x 轴于点N (3,0),与一次函数和反比例函数的图象分别相交于点B ,C ,连接AC .(1)求k 和m 的值;(2)求点B 的坐标;(3)求△ABC 的面积.第1题图2. 已知正比例函数y =2x 的图象与反比例函数y =k x(k ≠0)在第一象限内的图象交于点A ,过点A 作x 轴的垂线,垂足为点P ,已知△OAP 的面积为1.(1)求反比例函数的解析式;(2)有一点B 的横坐标为2,且在反比例函数图象上,则在x 轴上是否存在一点M ,使得MA +MB 最小?若存在,请求出点M 的坐标;若不存在,请说明理由.第2题图3. 如图,反比例函数2yx=的图象与一次函数y=kx+b的图象交于点A、B,点A、B的横坐标分别为1、-2,一次函数图象与y轴交于点C,与x轴交于点D.(1)求一次函数的解析式;(2)对于反比例函数2yx=,当y<-1时,写出x的取值范围;(3)在第三象限的反比例函数图象上是否存在一点P,使得S△ODP=2S△OCA?若存在,请求出点P的坐标;若不存在,请说明理由.第3题图4. (2016巴中10分)已知,如图,一次函数y =kx +b (k 、b 为常数,k ≠0)的图象与x 轴、y 轴分别交于A 、B 两点,且与反比例函数y =n x(n 为常数且n ≠0)的图象在第二象限交于点C .CD ⊥x 轴,垂足为D .若OB =2OA =3OD =6.(1)求一次函数与反比例函数的解析式;(2)求两函数图象的另一个交点坐标;(3)直接写出不等式:kx +b ≤n x 的解集.第4题图5. 如图,点A (-2,n ),B(1,-2)是一次函数y =kx +b 的图象和反比例函数y =m x的图象的两个交点. (1)求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值小于反比例函数的值的x 的取值范围;(3)若C 是x 轴上一动点,设t =CB -CA ,求t 的最大值,并求出此时点C 的坐标.第5题图6. 如图,直线y 1=14x +1与x 轴交于点A ,与y 轴交于点C ,与反比例函数y 2=m x(x >0)的图象交于点P ,过点P 作PB ⊥x 轴于点B ,且AC =BC .(1)求点P 的坐标和反比例函数y 2的解析式;(2)请直接写出y 1>y 2时,x 的取值范围;(3)反比例函数y 2图象上是否存在点D ,使四边形BCPD 为菱形?如果存在,求出点D 的坐标;如果不存在,说明理由.第6题图7. 如图,直线y =x +b 与x 轴交于点C(4,0),与y 轴交于点B ,并与双曲线y =m x(x <0)交于点A (-1,n ). (1)求直线与双曲线的解析式;(2)连接OA ,求∠OAB 的正弦值;(3)若点D 在x 轴的正半轴上,是否存在以点D 、C 、B 构成的三角形△OAB 相似?若存在求出D 点的坐标,若不存在,请说明理由.第7题图8. (2016金华8分)如图,直线y=33x-3与x,y轴分别交于点A,B,与反比例函数y=kx(k>0)图象交于点C,D,过点A作x轴的垂线交该反比例函数图象于点E.(1)求点A的坐标;(2)若AE=AC.①求k的值;②试判断点E与点D是否关于原点O成中心对称?并说明理由.第8题图9. 如图,已知双曲线y =k x经过点D (6,1),点C 是双曲线第三象限上的动点,过点C 作CA ⊥x 轴,过点D 作DB ⊥y 轴,垂足分别为A ,B ,连接AB ,BC .(1)求k 的值;(2)若△BCD 的面积为12,求直线CD 的解析式;(3)判断AB 与CD 的位置关系,并说明理由.第9题图10. 如图,点B 为双曲线y =k x(x >0)上一点,直线AB 平行于y 轴,交直线y =x 于点A ,交x 轴于点D ,双曲线y =k x与直线y =x 交于点C ,若OB 2-AB 2=4.(1)求k 的值;(2)点B 的横坐标为4时,求△ABC 的面积;(3)双曲线上是否存在点P ,使△APC ∽△AOD ?若存在,求出点P 的坐标;若不存在,请说明理由.第10题图【答案】1.解:(1)∵点A (1,2)是一次函数y =kx +1与反比例函数y=mx的公共点, ∴k +1=2,1m=2,∴k =1,m =2;(2)∵直线l ⊥x 轴于点N (3,0),且与一次函数的图象交于点B , ∴点B 的横坐标为3,将x =3代入y =x +1,得y =3+1=4, ∴点B 的坐标为(3,4);(3)如解图,过点A 作AD ⊥直线l ,垂足为点D , 由题意得,点C 的横坐标为3, ∵点C 在反比例函数图象上,∴y =2x =23, ∴C 点坐标为(3,23),∴BC =BN -CN =4-23=103,又∵AD =3-1=2,∴S △ABC =12BC ·AD =12×103×2=103.第1题解图2.解:(1)设A 点的坐标为(x ,y ),则OP =x ,PA =y , ∵△OAP 的面积为1, ∴12xy =1, ∴xy =2,即k =2, ∴反比例函数的解析式为2y x=; (2)存在,如解图,作点A 关于x 轴的对称点A ′,连接A ′B ,交x 轴于点M ,此时MA +MB 最小,∵点B 的横坐标为2, ∴点B 的纵坐标为y =22=1,即点B 的坐标为(2,1).又∵两个函数图象在第一象限交于A 点, ∴22x x=, 解得x 1=1,x 2=-1(舍去). ∴y =2,∴点A 的坐标为(1,2),∴点A 关于x 轴的对称点A ′(1,-2),设直线A ′B 的解析式为y =kx +b ,代入A ′(1,-2),B (2,1)得,23,215k b k k b b +=-=⎧⎧⎨⎨+==-⎩⎩解得, ∴直线A ′B 的解析式为y =3x -5,令y =0,得x =53,∴直线y =3x -5与x 轴的交点为(53,0),即点M 的坐标为(53,0).第2题解图3.解:(1)∵反比例函数y =2x图象上的点A 、B 的横坐标分别为1、-2,∴点A 的坐标为(1,2),点B 的坐标为(-2,-1), ∵点A (1,2)、B (-2,-1)在一次函数y =kx +b 的图象上,∴21,211k b k k b b +==⎧⎧⎨⎨-+=-=⎩⎩解得,∴一次函数的解析式为y =x +1; (2)由图象知,对于反比例函数2y x=,当y <-1时,x 的取值范围是-2<x <0;(3)存在.对于y =x +1,当y =0时,x =-1,当x =0时,y =1, ∴点D 的坐标为(-1,0),点C 的坐标为(0,1), 设点P (m ,n ),∵S △ODP =2S △OCA , ∴12×1×(-n )=2×12×1×1, ∴n =-2,∵点P (m ,-2)在反比例函数图象上,∴-2= 2m ,∴m =-1,∴点P 的坐标为(-1,-2). 4.解:(1)∵OB =2OA =3OD =6, ∴OA =3,OD =2.∴A (3,0),B (0,6),D (-2,0). 将点A (3,0)和B (0,6)代入y =kx +b 得,302,66k b k b b +==-⎧⎧⎨⎨==⎩⎩解得, ∴一次函数的解析式为y =-2x +6. ……………………(3分)将x =-2代入y =-2x +6,得y =-2×(-2)+6=10, ∴点C 的坐标为(-2,10).将点C (-2,10)代入y =nx,得10=2n-,解得n =-20,∴反比例函数的解析式为20y x=-;………………………(5分)(2)将两个函数解析式组成方程组,得26,20y x y x =-+⎧⎪⎨=-⎪⎩解得x 1=-2,x 2=5. ………………………………………(7分)将x =5代入204,y x=-=- ∴两函数图象的另一个交点坐标是(5,-4); …………… (8分)(3)-2≤x <0或x ≥5. …………………………………… (10分)【解法提示】不等式kx +b ≤nx的解集,即是直线位于双曲线下方的部分所对应的自变量x 的取值范围,也就是-2≤x <0或x ≥5.5.解:(1)∵点A (-2,n ),B (1,-2)是一次函数y =kx +b 的图象和反比例函数y =mx的图象的两个交点,∴m =-2,∴反比例函数解析式为2y x=-, ∴n =1, ∴点A (-2,1),将点A (-2,1),B (1,-2)代入y =kx +b ,得211,21k b k k b b -+==-⎧⎧⎨⎨+=-=-⎩⎩解得, ∴一次函数的解析式为y =-x -1;(2)结合图象知:当-2<x <0或x >1时,一次函数的值小于反比例函数的值;(3)如解图,作点A 关于x 轴的对称点A ′,连接BA ′延长交x 轴于点C ,则点C 即为所求,∵A (-2,1), ∴A ′(-2,-1),设直线A ′B 的解析式为y =mx +n , 1123,253m m n m n n ⎧=-⎪-=-+⎧⎪⎨⎨-=+⎩⎪=-⎪⎩解得, ∴y =-13x -53,令y =0,得x =-5, 则C 点坐标为(-5,0),∴t 的最大值为A ′B =(-2-1)2+(-1+2)2=10.第5题解图6.解:(1)∵一次函数y 1=14x +1的图象与x 轴交于点A ,与y 轴交于点C ,∴A(-4,0),C(0,1),又∵AC=BC,CO⊥AB,∴O为AB的中点,即OA=OB=4,且BP=2OC=2,∴点P的坐标为(4,2),将点P(4,2)代入y2=mx,得m=8,∴反比例函数的解析式为y2=8 x;(2)x>4;【解法提示】由图象可知,当y1>y2时,即是直线位于双曲线上方的部分,所对应的自变量x的取值范围是x>4.(3)存在.假设存在这样的D点,使四边形BCPD为菱形,如解图,连接DC与PB交于点E,∵四边形BCPD为菱形,∴CE=DE=4,∴CD=8,∴D点的坐标为(8,1),将D(8,1)代入反比例函数8yx,D点坐标满足函数关系式,即反比例函数图象上存在点D,使四边形BCPD为菱形,此时D点坐标为(8,1).第6题解图7.解:(1)∵直线y =x +b 与x 轴交于点C (4,0), ∴把点C (4,0)代入y =x +b ,得b =-4, ∴直线的解析式为y =x -4, ∵直线也过A 点,∴把点A (-1,n )代入y =x -4,得n =-5, ∴A (-1,-5),将A (-1,-5)代入y =mx(x <0),得m =5,∴双曲线的解析式为5y x; (2)如解图,过点O 作OM ⊥AC 于点M , ∵点B 是直线y =x -4与y 轴的交点, ∴令x =0,得y =-4, ∴点B (0,-4),∴OC =OB =4, ∴△OCB 是等腰直角三角形, ∴∠OBC =∠OCB =45°,∴在△OMB 中,sin45°=OM OB =4OM,∴OM =22,∵AO =12+52=26,∴在△AOM 中,sin ∠OAB =OM OA =2226=21313;第7题解图(3)存在.如解图,过点A作AN⊥y轴于点N,则AN=1,BN=1,∴AB=12+12=2,∵OB=OC=4,∴BC=42+42=42,又∵∠OBC=∠OCB=45°,∴∠OBA=∠BCD=135°,∴△OBA∽△BCD或△OBA∽△DCB,∴OBBC=BACD或OBDC=BABC,即442=CD或4DC=242,∴CD=2或CD=16,∵点C(4,0),∴点D的坐标是(6,0)或(20,0).8.解:(1)当y=0时,得0=33x-3,解得x=3.∴点A的坐标为(3,0);……………………………………(2分)(2)①如解图,过点C作CF⊥x轴于点F.设AE=AC=t, 点E的坐标是(3,t).在Rt△AOB中, tan∠OAB=OBOA=33,∴∠OAB=30°.在Rt△ACF中,∠CAF=30°,∴CF=12t,AF=AC·cos30°=32t,∴点C的坐标是(3+32t,12t).∵点C、E在y=kx的图象上,∴(3+32t)×12t=3t,解得t1=0(舍去),t2=23,∴k=3t=63;…………………………………………… (5分)②点E与点D关于原点O成中心对称,理由如下:由①知,点E的坐标为(3,23),设点D的坐标是(x,33x-3),∴x(33x-3)=63,解得x1=6(舍去),x2=-3,∴点D的坐标是(-3,-23),∴点E与点D关于原点O成中心对称.…………………(8分)第8题解图9.解:(1)∵双曲线y =k x经过点D (6,1), ∴6k =1,解得k =6; (2)设点C 到BD 的距离为h ,∵点D 的坐标为(6,1),DB ⊥y 轴,∴BD =6,∴S △BCD =12×6×h =12, 解得h =4,∵点C 是双曲线第三象限上的动点,点D 的纵坐标为1, ∴点C 的纵坐标为1-4=-3, ∴6x=-3,解得x =-2, ∴点C 的坐标为(-2,-3),设直线CD 的解析式为y =kx +b ,则123,2612k b k k b b ⎧-+=-=⎧⎪⎨⎨+=⎩⎪=-⎩解得,∴直线CD 的解析式为y =12x -2; (3)AB ∥CD .理由如下:∵CA ⊥x 轴,DB ⊥y 轴,点D 的坐标为(6,1),设点C 的坐标为(c ,6c), ∴点A 、B 的坐标分别为A (c ,0),B (0,1),设直线AB 的解析式为y =mx +n ,则10,11mc n m c n n ⎧+==-⎧⎪⎨⎨=⎩⎪=⎩解得, ∴直线AB 的解析式为y =-1x c+1, 设直线CD 的解析式为y =ex +f ,则16,661e ec f c c c e f f c ⎧=-⎧⎪+=⎪⎪⎨⎨+⎪⎪+==⎩⎪⎩解得, ∴直线CD 的解析式为y =-1x c +6c c+, ∵AB 、CD 的解析式中k 都等于1c-, ∴AB 与CD 的位置关系是AB ∥CD .10.解:(1)设D 点坐标为(a ,0),∵AB ∥y 轴,点A 在直线y =x 上,B 为双曲线y =k x(x >0)上一点,∴A 点坐标为(a ,a ),B 点坐标为(a ,k a), ∴AB =a -k a ,BD =k a, 在Rt △OBD 中,OB 2=BD 2+OD 2=(k a )2+a 2, ∵OB 2-AB 2=4,∴(k a )2+a 2-(a -k a)2=4, ∴k =2;(2)如解图,过点C 作CM ⊥AB 于点M ,,2y x y x =⎧⎪⎨=⎪⎩联立x x y y ⎧⎧==⎪⎪⎨⎨==⎪⎪⎩⎩解得 ∴C 点坐标为(2,2),∵点B 的横坐标为4,∴A 点坐标为(4,4),B 点坐标为(4,12), ∴AB =4-12=72,CM =4-2, ∴S △ABC =12CM ·AB =12×(4-2)×72=7-724;第10题解图(3)不存在,理由如下:若△APC ∽△AOD ,∵△AOD 为等腰直角三角形,∴△APC 为等腰直角三角形,∠ACP =90°,∴CM =12AP , 设P 点坐标为(a ,2a),则A 点坐标为(a ,a ), ∴AP =|a -2a|, ∵C 点坐标为(2,2),∴CM =|a -2|,∴|a -2|=12|a -2a|,∴(a-2)2=14×222 (2)aa-,即(a-2)2=14×222((a aa+⨯-,∴4a2-(a+2)2=0,解得a=2或a=-23(舍去),∴P点坐标为(2,2),则此时点C与点P重合,所以不能构成三角形,故不存在.。

2018年全国中考数学真题汇编:函数与一次函数(含详细解析)

全国中考数学真题汇编:函数与一次函数
一 .选择题
1.( 上海 ,第 3 题 4 分)下列 y 关于 x 的函数中,是正比例函数的为(
C、y= x ; 2
D、 y= x 1 . 2
【答案】 C
【解析】 y
x
1 x ,是正比例函数,选
C。
22
2、( ·湖南省常德市,第 5 题 3 分)一次函数 y
③2< x≤3;分别求出 y 关于 x 的函数解析式,然后根据函数的图象与性质即可求解.
解答:
解:由题意可得 BQ=x.
①0≤x≤1时, P 点在 BC 边上, BP=3x,
则△ BPQ 的面积 = BP?BQ,
解 y= ?3x?x= x2;故 A 选项错误; ②1< x≤2时, P 点在 CD 边上, 则△ BPQ 的面积 = BQ?BC,
7.( 湖北鄂州第 7 题 3 分)
如图,直线 y=x-2 与 y 轴交于点 C,与 x 轴交于点 B,与反比例函数
的图象在第一象
限交于点 A,连接 OA,若 S△AOB S△ BOC = 1:2 ,则 k 的值为( )
A.2
B.3
C. 4
D.6
【答案】 B.
第 6 页 共 93 页
考点:反比例函数与一次函数的交点问题 . 8. ( ?浙江衢州 ,第 6 题 3 分) 下列四个函数图象中,当 是【 】
(即 2 千米),这一段图象由左至右呈上升趋势一条线段 ,线段末端点的坐标为( 5,2);原地
休息的 6 分钟内都是距离原地 2 千米(即纵坐标为 2 不变),这一段图象表现出来是平行 x 轴
的一条线段 .6 分钟之后 S (千米 )是随时间 t (分)增大而减小至距离原地为 0 千米(回到原

2018年中考数学真题分类汇编(第三期)专题12 反比例函数试题(含解析)

反比例函数一.选择题1. (2018·广西贺州·3分)如图,在同一平面直角坐标系中,一次函数y1=kx+b(k、b 是常数,且k≠0)与反比例函数y2=(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,则不等式y1>y2的解集是()A.﹣3<x<2 B.x<﹣3或x>2 C.﹣3<x<0或x>2 D.0<x<2【解答】解:∵一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,∴不等式y1>y2的解集是﹣3<x<0或x>2.故选:C.2. (2018·湖北十堰·3分)如图,直线y=﹣x与反比例函数y=的图象交于A,B两点,过点B作BD∥x轴,交y轴于点D,直线AD交反比例函数y=的图象于另一点C,则的值为()A.1:3 B.1:2C.2:7 D.3:10【分析】联立直线AB与反比例函数解析式成方程组,通过解方程组可求出点A.B的坐标,由BD∥x轴可得出点D的坐标,由点A.D的坐标利用待定系数法可求出直线AD的解析式,联立直线AD与反比例函数解析式成方程组,通过解方程组可求出点C的坐标,再结合两点间的距离公式即可求出的值.【解答】解:联立直线AB及反比例函数解析式成方程组,,解得:,,∴点B的坐标为(﹣,),点A的坐标为(,﹣).∵BD∥x轴,∴点D的坐标为(0,).设直线AD的解析式为y=mx+n,将A(,﹣)、D(0,)代入y=mx+n,,解得:,∴直线AD的解析式为y=﹣2+.联立直线AD及反比例函数解析式成方程组,,解得:,,∴点C的坐标为(﹣,2).∴==.故选:A.【点评】本题考查了反比例函数与一次函数的交点问题、两点间的距离公式以及待定系数法求一次函数解析式,联立直线与反比例函数解析式成方程组,通过解方程组求出点 A.B.C 的坐标是解题的关键.3.(2018·云南省昆明·4分)如图,点A在双曲线y═(x>0)上,过点A作AB⊥x轴,垂足为点B,分别以点O和点A为圆心,大于OA的长为半径作弧,两弧相交于D,E两点,作直线DE交x轴于点C,交y轴于点F(0,2),连接AC.若AC=1,则k的值为()A.2 B.C.D.【分析】如图,设OA交CF于K.利用面积法求出OA的长,再利用相似三角形的性质求出AB.OB即可解决问题;【解答】解:如图,设OA交CF于K.由作图可知,CF垂直平分线段OA,∴OC=CA=1,OK=AK,在Rt△OFC中,CF==,∴AK=OK==,∴OA=,由△FOC∽△OBA,可得==,∴==,∴OB=,AB=,∴A(,),∴k=.故选:B.【点评】本题考查作图﹣复杂作图,反比例函数图象上的点的坐标特征,线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.4.(2018·云南省曲靖·4分)如图,在平面直角坐标系中,将△OAB(顶点为网格线交点)绕原点O顺时针旋转90°,得到△OA′B′,若反比例函数y=的图象经过点A的对应点A′,则k的值为()A.6 B.﹣3 C.3 D.6【解答】解:如图所示:∵将△OAB(顶点为网格线交点)绕原点O顺时针旋转90°,得到△OA′B′,反比例函数y=的图象经过点A的对应点A′,∴A′(3,1),则把A′代入y=,解得:k=3.故选:C.5.(2018·辽宁省沈阳市)(2.00分)点A(﹣3,2)在反比例函数y=(k≠0)的图象上,则k的值是()A.﹣6 B.﹣ C.﹣1 D.6【分析】根据点A的坐标,利用反比例函数图象上点的坐标特征求出k值,此题得解.【解答】解:∵A(﹣3,2)在反比例函数y=(k≠0)的图象上,∴k=(﹣3)×2=﹣6.故选:A.【点评】本题考查了反比例函数图象上点的坐标特征,反比例函数图象上所有点的坐标均满足该函数的解析式.5.(2018·辽宁省盘锦市)如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,顶点A.C分别在x轴、y轴上,反比例函数y=(k≠0,x>0)的图象与正方形OABC 的两边AB.BC分别交于点M、N,ND⊥x轴,垂足为D,连接OM、ON、MN,则下列选项中的结论错误的是()A.△ONC≌△OAMB.四边形DAMN与△OMN面积相等C.ON=MND.若∠MON=45°,MN=2,则点C的坐标为(0, +1)【解答】解:∵点M、N都在y=的图象上,∴S△ONC=S△OAM=k,即OC•NC=OA•AM.∵四边形ABCO为正方形,∴OC=OA,∠OCN=∠OAM=90°,∴NC=AM,∴△OCN≌△OAM,∴A 正确;∵S△OND=S△OAM=k,而S△OND+S四边形DAMN=S△OAM+S△OMN,∴四边形DAMN与△MON面积相等,∴B正确;∵△OCN≌△OAM,∴ON=OM.∵k的值不能确定,∴∠MON的值不能确定,∴△ONM只能为等腰三角形,不能确定为等边三角形,∴ON≠MN,∴C错误;作NE⊥OM于E点,如图所示:∵∠MON=45°,∴△ONE为等腰直角三角形,∴NE=OE,设NE=x,则ON=x,∴OM=x,∴EM=x﹣x=(﹣1)x.在Rt△NEM中,MN=2.∵MN2=NE2+EM2,即22=x2+[(﹣1)x]2,∴x2=2+,∴ON2=(x)2=4+2.∵CN=AM,CB=AB,∴BN=BM,∴△BMN为等腰直角三角形,∴BN=MN=,设正方形ABCO 的边长为a,则OC=a,CN=a﹣.在Rt△OCN中,∵OC2+CN2=ON2,∴a2+(a﹣)2=4+2,解得a1=+1,a2=﹣1(舍去),∴OC=+1,∴C点坐标为(0, +1),∴D正确.故选C.6.(2018·辽宁省阜新市)反比例函数y=的图象经过点(3,﹣2),下列各点在图象上的是()A.(﹣3,﹣2)B.(3,2)C.(﹣2,﹣3)D.(﹣2,3)【解答】解:∵反比例函数y=的图象经过点(3,﹣2),∴xy=k=﹣6,A.(﹣3,﹣2),此时xy=﹣3×(﹣2)=6,不合题意;B.(3,2),此时xy=3×2=6,不合题意;C.(﹣2,﹣3),此时xy=﹣3×(﹣2)=6,不合题意;D.(﹣2,3),此时xy=﹣2×3=6,符合题意;故选D.7.(2018·辽宁省抚顺市)(3.00分)如图,菱形ABCD的边AD与x轴平行,A.B两点的横坐标分别为1和3,反比例函数y=的图象经过A.B两点,则菱形ABCD的面积是()A.4 B.4 C.2 D.2【分析】作AH⊥BC交CB的延长线于H,根据反比例函数解析式求出A的坐标、点B的坐标,求出AH、BH,根据勾股定理求出AB,根据菱形的面积公式计算即可.【解答】解:作AH⊥BC交CB的延长线于H,∵反比例函数y=的图象经过A.B两点,A.B两点的横坐标分别为1和3,∴A.B两点的纵坐标分别为3和1,即点A的坐标为(1,3),点B的坐标为(3,1),∴AH=3﹣1=2,BH=3﹣1=2,由勾股定理得,AB==2,∵四边形ABCD是菱形,∴BC=AB=2,∴菱形ABCD的面积=BC×AH=4,故选:A.【点评】本题考查的是反比例函数的系数k的几何意义、菱形的性质,根据反比例函数解析式求出A的坐标、点B的坐标是解题的关键.8. (2018•乐山•3分)如图,曲线C2是双曲线C1:y=(x>0)绕原点O逆时针旋转45°得到的图形,P是曲线C2上任意一点,点A在直线l:y=x上,且PA=PO,则△POA的面积等于()A.B.6 C.3 D.12解:如图,将C2及直线y=x绕点O逆时针旋转45°,则得到双曲线C3,直线l与y轴重合.双曲线C3,的解析式为y=﹣过点P作PB⊥y轴于点B∵PA=PB∴B为OA中点,∴S△PAB=S△POB由反比例函数比例系数k的性质,S△POB=3∴△POA的面积是6故选B.9.(2018·江苏镇江·3分)如图,一次函数y=2x与反比例函数y=(k>0)的图象交于A,B两点,点P在以C(﹣2,0)为圆心,1为半径的⊙C上,Q是AP的中点,已知OQ长的最大值为,则k的值为()A.B.C.D.【解答】解:连接BP,由对称性得:OA=OB,∵Q是AP的中点,∴OQ=BP,∵OQ长的最大值为,∴BP长的最大值为×2=3,如图,当BP过圆心C时,BP最长,过B作BD⊥x轴于D,∵CP=1,∴BC=2,∵B在直线y=2x上,设B(t,2t),则CD=t﹣(﹣2)=t+2,BD=﹣2t,在Rt△BCD中,由勾股定理得:BC2=CD2+BD2,∴22=(t+2)2+(﹣2t)2,t=0(舍)或﹣,∴B(﹣,﹣),∵点B在反比例函数y=(k>0)的图象上,∴k=﹣=;故选:C.10.(2018·吉林长春·3分)如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A.B 分别在x轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数y=(x>0)的图象上,若AB=2,则k的值为()A.4 B.2 C.2 D.【分析】作BD⊥AC于D,如图,先利用等腰直角三角形的性质得到AC=AB=2,BD=AD=CD=,再利用AC⊥x轴得到C(,2),然后根据反比例函数图象上点的坐标特征计算k的值.【解答】解:作BD⊥AC于D,如图,∵△ABC为等腰直角三角形,∴AC=AB=2,∴BD=AD=CD=,∵AC⊥x轴,∴C(,2),把C(,2)代入y=得k=×2=4.故选:A.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了等腰直角三角形的性质.11.(2018·辽宁大连·3分)如图,一次函数y=k1x+b的图象与反比例函数y=的图象相交于A(2,3),B(6,1)两点,当k1x+b<时,x的取值范围为()A.x<2 B.2<x<6 C.x>6 D.0<x<2或x>6 解:由图象可知,当k1x+b<时,x的取值范围为0<x<2或x>6.故选D.二.填空题1. (2018·广西梧州·3分)已知直线y=ax(a≠0)与反比例函数y=(k≠0)的图象一个交点坐标为(2,4),则它们另一个交点的坐标是(﹣2,﹣4).【分析】反比例函数的图象是中心对称图形,则经过原点的直线的两个交点一定关于原点对称,据此进行解答.【解答】解:∵反比例函数的图象与经过原点的直线的两个交点一定关于原点对称,∴另一个交点的坐标与点(2,4)关于原点对称,∴该点的坐标为(﹣2,﹣4).故答案为:(﹣2,﹣4).【点评】本题主要考查了反比例函数图象的中心对称性,要求同学们要熟练掌握关于原点对称的两个点的坐标的横、纵坐标都互为相反数.2. (2018·湖北荆州·3分)如图,正方形ABCD的对称中心在坐标原点,AB∥x轴,AD.BC 分别与x轴交于E.F,连接BE.DF,若正方形ABCD有两个顶点在双曲线y=上,实数a 满足a3﹣a=1,则四边形DEBF的面积是.【解答】解:由a3﹣a=1得a=1,或a=﹣1,a=3.①当a=1时,函数解析式为y=,由正方形ABCD的对称中心在坐标原点,得B点的横坐标等于纵坐标,x=y=,四边形DEBF的面积是2x•y=2×=6②当a=﹣1时,函数解析式为y=,由正方形ABCD的对称中心在坐标原点,得B点的横坐标等于纵坐标,x=y=1,四边形DEBF的面积是2x•y=2×1×1=2;③当a=3时,函数解析式为y=,由正方形ABCD的对称中心在坐标原点,得B点的横坐标等于纵坐标,x=y=,四边形DEBF的面积是2x•y=2×=10,故答案为:6或2或10.3.(2018·四川省攀枝花·3分)如图,已知点A在反比例函数y=(x>0)的图象上,作Rt△ABC,边BC在x轴上,点D为斜边AC的中点,连结DB并延长交y轴于点E,若△BCE 的面积为4,则k= .解:∵BD为Rt△ABC的斜边AC上的中线,∴BD=DC,∠DBC=∠ACB,又∠DBC=∠EBO,∴∠EBO=∠ACB,又∠BOE=∠CBA=90°,∴△BOE∽△CBA,∴,即BC×OE=BO×AB.又∵S△BEC=4,∴BC•EO=4,即BC×OE=8=BO×AB=|k|.∵反比例函数图象在第一象限,k>0,∴k=8.故答案为:8.4.(2018·云南省·3分)已知点P(a,b)在反比例函数y=的图象上,则ab= 2 .【分析】接把点P(a,b)代入反比例函数y=即可得出结论.【解答】解:∵点P(a,b)在反比例函数y=的图象上,∴b=,∴ab=2.故答案为:2【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.5. (2018•陕西•3分)若一个反比例函数的图象经过点A(m,m)和B(2m,-1),则这个反比例函数的表达式为______【答案】【解析】【分析】根据反比例函数图象上点的横、纵坐标之积不变可得关于m的方程,解方程即可求得m的值,再由待定系数法即可求得反比例函数的解析式.【详解】设反比例函数解析式为y=,由题意得:m2=2m×(-1),解得:m=-2或m=0(不符题意,舍去),所以点A(-2,-2),点B(-4,1),所以k=4,所以反比例函数解析式为:y=,故答案为:y=.【点睛】本题考查了反比例函数,熟知反比例函数图象上点的横、纵坐标之积等于比例系数k是解题的关键.6.(2018·江苏镇江·2分)反比例函数y=(k≠0)的图象经过点A(﹣2,4),则在每一个象限内,y随x的增大而增大.(填“增大”或“减小”)【解答】解:∵反比例函数y=(k≠0)的图象经过点(﹣2,4),∴4=,解得k=﹣8<0,∴函数图象在每个象限内y随x的增大而增大.故答案为:增大.三.解答题1. (2018·湖北江汉·8分)如图,在平面直角坐标系中,直线y=﹣x与反比例函数y=(k≠0)在第二象限内的图象相交于点A(m,1).(1)求反比例函数的解析式;(2)将直线y=﹣x向上平移后与反比例函数图象在第二象限内交于点B,与y轴交于点C,且△ABO的面积为,求直线BC的解析式.【分析】(1)将A点坐标代入直线y=﹣x中求出m的值,确定出A的坐标,将A的坐标代入反比例解析式中求出k的值,即可确定出反比例函数的解析式;(2)根据直线的平移规律设直线BC的解析式为y=﹣x+b,由同底等高的两三角形面积相等可得△ACO与△ABO面积相等,根据△ABO的面积为列出方程OC•2=,解方程求出OC=,即b=,进而得出直线BC的解析式.【解答】解:(1)∵直线y=﹣x过点A(m,1),∴﹣m=1,解得m=﹣2,∴A(﹣2,1).∵反比例函数y=(k≠0)的图象过点A(﹣2,1),∴k=﹣2×1=﹣2,∴反比例函数的解析式为y=﹣;(2)设直线BC的解析式为y=﹣x+b,∵三角形ACO与三角形ABO面积相等,且△ABO的面积为,∴△ACO的面积=OC•2=,∴OC=,∴b=,∴直线BC的解析式为y=﹣x+.2. (2018·湖北荆州·8分)探究函数y=x+(x>0)与y=x+(x>0,a>0)的相关性质.(1)小聪同学对函数y=x+(x>0)进行了如下列表、描点,请你帮他完成连线的步骤;观察图象可得它的最小值为,它的另一条性质为;(2)请用配方法求函数y=x+(x>0)的最小值;(3)猜想函数y=x+(x>0,a>0)的最小值为.【解答】解:(1)由图象可得,函数y=x+(x>0)的最小值是2,它的另一条性质是:当x>1时,y随x的增大而增大,故答案为:2,当x>1时,y随x的增大而增大;(2)∵y=x+(x>0),∴y=,∴当时,y取得最小值,此时x=1,y=2,即函数y=x+(x>0)的最小值是2;(3)∵y=x+(x>0,a>0)∴y=,∴当时,y取得最小值,此时y=2,故答案为:2.3.(2018·四川省攀枝花)如图,在平面直角坐标系中,A点的坐标为(a,6),AB⊥x轴于点B,cos∠OAB═,反比例函数y=的图象的一支分别交AO、AB于点C.D.延长AO交反比例函数的图象的另一支于点E.已知点D的纵坐标为.(1)求反比例函数的解析式;(2)求直线EB的解析式;(3)求S△OEB.解:(1)∵A点的坐标为(a,6),AB⊥x轴,∴AB=6.∵cos∠OAB═=,∴,∴OA=10,由勾股定理得:OB=8,∴A(8,6),∴D(8,).∵点D在反比例函数的图象上,∴k=8×=12,∴反比例函数的解析式为:y=;(2)设直线OA的解析式为:y=bx.∵A(8,6),∴8b=6,b=,∴直线OA的解析式为:y=x,则,x=±4,∴E(﹣4,﹣3),设直线BE的解式为:y=mx+n,把B(8,0),E(﹣4,﹣3)代入得:,解得:,∴直线BE的解式为:y=x﹣2;(3)S△OEB=OB•|y E|=×8×3=12.4.(2018·浙江省台州·8分)如图,函数y=x的图象与函数y=(x>0)的图象相交于点P(2,m).(1)求m,k的值;(2)直线y=4与函数y=x的图象相交于点A,与函数y=(x>0)的图象相交于点B,求线段AB长.【分析】(1)将点P(2,m)代入y=x,求出m=2,再将点P(2,2)代入y=,即可求出k 的值;(2)分别求出A.B两点的坐标,即可得到线段AB的长.【解答】解:(1)∵函数y=x的图象过点P(2,m),∴m=2,∴P(2,2),∵函数y=(x>0)的图象过点P,∴k=2×2=4;(2)将y=4代入y=x,得x=4,∴点A(4,4).将y=4代入y=,得x=1,∴点B(1,4).∴AB=4﹣1=3.【点评】本题考查了利用待定系数法求函数解析式以及函数图象上点的坐标特征,解题时注意:点在图象上,点的坐标就一定满足函数的解析式.5.(2018·辽宁省葫芦岛市) 如图,一次函数y=kx+b(k≠0)的图象与反比例函数y=(a≠0)的图象在第二象限交于点A(m,2).与x轴交于点C(﹣1,0).过点A作AB⊥x 轴于点B,△ABC的面积是3.(1)求一次函数和反比例函数的解析式;(2)若直线AC与y轴交于点D,求△BCD的面积.【解答】解:(1)∵AB⊥x轴于点B,点A(m,2),∴点B(m,0),AB=2.∵点C(﹣1,0),∴BC=﹣1﹣m,∴S△ABC=AB•BC=﹣1﹣m=3,∴m=﹣4,∴点A(﹣4,2).∵点A在反比例函数y=(a≠0)的图象上,∴a=﹣4×2=﹣8,∴反比例函数的解析式为y=﹣.将A(﹣4,2)、C(﹣1,0)代入y=kx+b,得:,解得:,∴一次函数的解析式为y=﹣x﹣.(2)当x=0时,y=﹣x﹣=﹣,∴点D(0,﹣),∴OD=,∴S△BCD=BC•OD=×3×=1.6. (2018•呼和浩特•6分)已知变量x、y对应关系如下表已知值呈现的对应规律.(2)在这个函数图象上有一点P(x,y)(x<0),过点P分别作x轴和y轴的垂线,并延长与直线y=x﹣2交于A.B两点,若△PAB的面积等于,求出P点坐标.解:(1)由图可知:y=(2)设点P(x,),则点A(x,x﹣2)由题意可知△PAB是等腰三角形,∵S△PAB=,∴PA=PB=5,∵x<0,∴PA=y P﹣y A=﹣x+2即﹣x+2=5解得:x1=﹣2,x2=﹣1∴点P(﹣2,1)或(﹣1,2)7. (2018•乐山•10分)某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x(h)之间的函数关系,其中线段AB.BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天的温度y与时间x(0≤x≤24)的函数关系式;(2)求恒温系统设定的恒定温度;(3)若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?解:(1)设线段AB解析式为y=k1x+b(k≠0)∵线段AB过点(0,10),(2,14)代入得解得∴AB解析式为:y=2x+10(0≤x<5)∵B在线段AB上当x=5时,y=20∴B坐标为(5,20)∴线段BC的解析式为:y=20(5≤x<10)设双曲线CD解析式为:y=(k2≠0)∵C(10,20)∴k2=200∴双曲线CD解析式为:y=(10≤x≤24)∴y关于x的函数解析式为:y=(2)由(1)恒温系统设定恒温为20°C(3)把y=10代入y=中,解得:x=20∴20﹣10=10答:恒温系统最多关闭10小时,蔬菜才能避免受到伤害.8. (2018•广安•6分)如图,一次函数y1=ax+b(a≠0)的图象与反比例函数y2=(k为常数,k≠0)的图象交于A.B两点,过点A作AC⊥x轴,垂足为C,连接OA,已知OC=2,tan ∠AOC=,B(m,﹣2)(1)求一次函数和反比例函数的解析式.(2)结合图象直接写出:当y1>y2时,x的取值范围.【分析】(1)求得A(2,3),把A(2,3)代入y2=可得反比例函数的解析式为y=,求得B(﹣3,﹣2),把A(2,3),B(﹣3,﹣2)代入一次函数y1=ax+b,可得一次函数的解析式为y=x+1.(2)由图可得,当y1>y2时,x的取值范围为﹣3<x<0或x>2.【解答】解:(1)∵OC=2,tan∠AOC=,∴AC=3,∴A(2,3),把A(2,3)代入y2=可得,k=6,∴反比例函数的解析式为y=,把B(m,﹣2)代入反比例函数,可得m=﹣3,∴B(﹣3,﹣2),把A(2,3),B(﹣3,﹣2)代入一次函数y1=ax+b,可得,解得,∴一次函数的解析式为y=x+1.(2)由图可得,当y1>y2时,x的取值范围为﹣3<x<0或x>2.【点评】本题考查一次函数与反比例函数的交点问题,解题的关键是学会利用待定系数法确定函数解析式,知道两个函数图象的交点坐标可以利用解方程组解决,学会利用图象确定自变量取值范围.9. (2018·湖北咸宁·8分)如图,在平面直角坐标系中,矩形OABC的顶点B的坐标为(4,2),直线y=﹣x+与边AB,BC分别相交于点M,N,函数y=(x>0)的图象过点M.(1)试说明点N也在函数y=(x>0)的图象上;(2)将直线MN沿y轴的负方向平移得到直线M′N′,当直线M′N′与函数y═(x>0)的图象仅有一个交点时,求直线M'N′的解析式.【答案】(1)说明见解析;(2)直线M'N′的解析式为y=﹣x+2.【解析】【分析】(1)根据矩形OABC的顶点B的坐标为(4,2),可得点M的横坐标为4,点N的纵坐标为2,把x=4代入y=﹣x+,得y=,可求点M的坐标为(4,),把y=2代入y=﹣x+,得x=1,可求点N的坐标为(1,2),由函数y=(x>0)的图象过点M,根据待定系数法可求出函数y=(x>0)的解析式,把N(1,2)代入y=,即可作出判断;(2)设直线M'N′的解析式为y=﹣x+b,由得x2﹣2bx+4=0,再根据判别式即可求解.【详解】(1)∵矩形OABC的顶点B的坐标为(4,2),∴点M的横坐标为4,点N的纵坐标为2,把x=4代入y=﹣x+,得y=,∴点M的坐标为(4,),把y=2代入y=﹣x+,得x=1,∴点N的坐标为(1,2),∵函数y=(x>0)的图象过点M,∴k=4×=2,∴y=(x>0),把N(1,2)代入y=,得2=2,∴点N也在函数y=(x>0)的图象上;(2)设直线M'N′的解析式为y=﹣x+b,由得x2﹣2bx+4=0,∵直线y=﹣x+b与函数y=(x>0)的图象仅有一个交点,∴△=(﹣2b)2﹣4×4=0,解得b=2,b2=﹣2(舍去),∴直线M'N′的解析式为y=﹣x+2.【点睛】本题考查了反比例函数图象上点的坐标特征,矩形的性质,直线与双曲线的交点等,综合性较强,弄清题意熟练掌握和灵活运用反比例函数的相关知识进行解题是关键. 10.(2018·江苏常州·8分)如图,已知点A在反比例函数y=(x>0)的图象上,过点A作AC⊥x轴,垂足是C,AC=OC.一次函数y=kx+b的图象经过点A,与y轴的正半轴交于点B.(1)求点A的坐标;(2)若四边形ABOC的面积是3,求一次函数y=kx+b的表达式.【分析】(1)根据反比例函数k值的几何意义可求点A的坐标;(2)根据梯形的面积公式可求点B的坐标,再根据待定系数法可求一次函数y=kx+b的表达式.【解答】解:(1)∵点A在反比例函数y=(x>0)的图象上,AC⊥x轴,AC=OC,∴AC•OC=4,∴AC=OC=2,∴点A的坐标为(2,2);(2)∵四边形ABOC的面积是3,∴(OB+2)×2÷2=3,解得OB=1,∴点B的坐标为(0,1),依题意有,解得.故一次函数y=kx+b的表达式为y=x+1.【点评】考查了反比例函数与一次函数的交点问题,关键是熟练掌握反比例函数k值的几何意义、梯形的面积、待定系数法求一次函数解析式.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年中考数学真题专题汇编—一次函数、反比例函数综合题24.(2018山东滨州)如图,在平面直角坐标系中,点O 为坐标原点,菱形OABC 的顶点A 在x 轴的正半轴上,顶点C的坐标为(. (1)求图象过点B 的反比例函数的解析式, (2)求图象过点A B 、的一次函数的解析式;(3)在第一象限内,当以上所求一次函数的图象 在所求反比例函数的图象下方时,请直接写出自变量x 的取值范围.24(2018湖南株洲)如图已知函数(0,0)ky k x x=>>的图象与一次函数5(0)y mx m =+<的图象相交不同的点A 、B ,过点A 作AD ⊥x 轴于点D,连接AO ,其中点A 的横坐标为0x ,△AOD 的面积为2。

(1)求k 的值及0x =4时m 的值;(2)记[]x 表示为不超过x 的最大整数,例如:[]1.41=,[]22=,设.t OD DC =,若3524m -<<-,求2m t ⎡⎤⎣⎦值20.(2018山东青岛 )已知反比例函数的图象经过三个点()()()124,3,2,,6,A B m y C m y --,其中0m >.(1)当124y y -=时,求m 的值;(2)如图,过点B C 、分别作x 轴、y 轴的垂线,两垂线相交于点D ,点P 在x 轴上, 若三角形PBD 的面积是8,请写出点P 坐标(不需要写解答过程).25.(2018甘肃武威)如图,一次函数4y x =+的图象与反比例函数ky x=(k 为常数且0k ≠)的图象交于(1,)A a -,B 两点,与x 轴交于点C .(1)求此反比例函数的表达式;(2)若点P 在x 轴上,且32ACP BOC S S ∆∆=,求点P 的坐标. 23.(2018四川达州)矩形AOBC 中,3,4==OA OB .分别以OA OB ,所在直线为x 轴,y 轴,建立如图1所示的平面直角坐标系.F 是BC 边上一个动点(不与C B ,重合),过点F 的反比例函数xky =(0>k )的图象与边AC 交于点E . (1)当点F 运动到边BC 的中点时,求点E 的坐标; (2)连接EF ,求EFC ∠的正切值;(3)如图2,将CEF ∆沿EF 折叠,点C 恰好落在边OB 上的点G 处,求此时反比例函数的解析式.23.(2018浙江金华)如图,四边形ABCD 的四个顶点分别在反比例函数y=与y=(x >0,0<m <n )的图象上,对角线BD ∥y 轴,且BD ⊥AC 于点P .已知点B 的横坐标为4. (1)当m=4,n=20时.①若点P 的纵坐标为2,求直线AB 的函数表达式.②若点P 是BD 的中点,试判断四边形ABCD 的形状,并说明理由.(2)四边形ABCD 能否成为正方形?若能,求此时m ,n 之间的数量关系;若不能,试说明理由.17.(2018江西省)如图,反比例函数(0)ky k x=≠的图象与正比例函数2y x =的图象相交于(1,)A a ,B 两点,点C 在第四象限,//CA y 轴,90ABC ∠=.(1)求k 的值及点B 的坐标; (2)求tan C 的值.22.(2018重庆B 卷)如图,在平面直角坐标系中直线11:2l y x =与直线2l 交点A 的横坐标为2.将直线1l ,沿y 轴向下平移4个单位长度得到直线3l ,直线3l 与y 轴交于点B ,与直线2l 交于点C .点C 的纵坐标为-2直线2l 与y 轴交于点D . (1)求直线2l 的解析式; (2)求△BDC 的面积20.(2018四川南充)已知关于x 的一元二次方程22(22)(2)0x m x m m --+-=. (1)求证:方程有两个不相等的实数根.(2)如果方程的两实数根为1x ,2x ,且221210x x +=,求m 的值. 21.如图,直线(0)y kx b k =+≠与双曲线(0)m y m x =≠交于点1(,2)2A -,(,1)B n -.(1)求直线与双曲线的解析式;(2)点P 在x 轴上,如果3ABP S ∆=,求点P 的坐标.22.(2018四川绵阳)如图,一次函数1522y x =-+的图象与反比例函数ky x=(0k >)的图象交于A ,B 两点,过A 点作x 轴的垂线,垂足为M ,AOM ∆面积为1. (1)求反比例函数的解析式;(2)在y 轴上求一点P ,使PA PB +的最小值,并求出其最小值和P 点的坐标.21.(2018山东枣庄)如图,一次函数b kx y +=(b k ,为常数,0≠k )的图象与x 轴、y 轴分别交于B A ,两点,且与反比例函数xny =(n 为常数,且0≠n )的图象在第二象限交于点C ,⊥CD x 轴,垂足为D ,若1232===OD OA OB . (1)求一次函数与反比例函数的解析式;(2)记两函数图象的另一个交点为E ,求CDE ∆的面积; (3)直接写出不等式xnb kx ≤+的解集.22(2018浙江金华)如图,四边形ABCD 的四个顶点分别在反比例函数yxm=与y xn=(x >0,0<m <n )的图象上,对角线BD ∥y 轴,且BD ⊥AC 于点P .已知点B 的横坐标为4. (1)当m =4,n =20时.①若点P 的纵坐标为2,求直线AB 的函数表达式.②若点P 是BD 的中点,试判断四边形ABCD 的形状,并说明理由. (2)四边形ABCD 能否成为正方形?若能, 求此时m,n 之间的数量关系;若不能,试说明理由.PyxOABCDm y x=n y x=20.(2018浙江台州)如图,函数y x =的图象与函数(0)ky x x=>的图象相交于点(2,)P m .(1)求m ,k 的值;(2)直线4y =与函数y x =的图象相交于点A ,与函数(0)ky x x=>的图象相交于点B ,求线段AB 长.20.(2018湖南常德)如图7,已知一次函数111(0)y k x b k =+≠与反比例函数222(0)k y k x=≠的图像交于(4,1)A ,(,2)B n -两点.(1) 求一次函数与反比例函数的解析式; (2) 请根据图像直接写出12y y <时x 的取值范围.23.(2018四川达州)矩形AOBC 中,3,4==OA OB .分别以OA OB ,所在直线为x 轴,y 轴,建立如图1所示的平面直角坐标系.F 是BC 边上一个动点(不与C B ,重合),过点F 的反比例函数xky =(0>k )的图象与边AC 交于点E . (1)当点F 运动到边BC 的中点时,求点E 的坐标; (2)连接EF ,求EFC ∠的正切值;(3)如图2,将CEF ∆沿EF 折叠,点C 恰好落在边OB 上的点G 处,求此时反比例函数的解析式.24.(2018浙江衢州25.如图,一次函数4y x=+的图象与反比例函数kyx=(k为常数且0k≠)的图象交于(1,)A a-,B两点,与x轴交于点C.(1)求此反比例函数的表达式;(2)若点P在x轴上,且32ACP BOCS S∆∆=,求点P的坐标.23(2018甘肃白银)如图,Rt△OAB的直角边OA在x轴上,顶点B的坐标为(6,8),直线CD交AB于点D(6,3),交x轴于点C(12,0).(1)求直线CD的函数表达式;(2)动点P在x轴上从点(﹣10,0)出发,以每秒1个单位的速度向x轴正方向运动,过点P 作直线l垂直于x轴,设运动时间为t.①点P在运动过程中,是否存在某个位置,使得∠PDA=∠B?若存在,请求出点P的坐标;若不存在,请说明理由;②请探索当t为何值时,在直线l上存在点M,在直线CD上存在点Q,使得以OB为一边,O,B,M,Q为顶点的四边形为菱形,并求出此时t的值.25(2018湖南长沙)如图,在平面直角坐标系 x Oy 中,函数m y x=( m 为常数, m 1 , x 0 )的图象经过点 P ( m ,1)和 Q (1 , m ),直线 P Q 与 x 轴, y 轴分别交于 C ,D 两点,点 M ( x , y )是该函数图象上的一个动点,过点 M 分别作 x 轴和 y 轴的垂线,垂足分别为 A ,B 。

(1)求∠OCD 的度数;(2)当 m 3 ,1 x 3 时,存在点 M 使得△OPM ∽△OCP ,求此时点 M 的坐标; (3)当 m 5 时,矩形 O AMB 与△OPQ 的重叠部分的面积能否等于 4.1?请说明你的理由。

23. (2018四川泸州)一次函数y kx b =+的图象经过点A(-2,12),B(8,-3) . (1)求该一次函数的解析式;(2)如图9,该一次函数的图象与反比例函数my x=(0m >)的图象相交于点C (11,x y ), D (22,x y),与y 轴交于点E ,且CD=CE ,求m 的值.22.(2018四川宜宾)如图,已知反比例函数)0(≠=m x m y 的图象经过点)4,1(,一次函数b x y +-=的图象经过反比例函数图象上的点),4(n -.(1)求反比例函数与一次函数的表达式;(2)一次函数的图象分别与x 轴、y 轴交于B A ,两点,与反比例函数图象的另一个交点为P ,连结OQ OP ,.求OPQ ∆的面积.。

相关文档
最新文档