化工传递过程基础(第三版)汇总

合集下载

化工传递过程基础(第三版)习题答案详解_部分4

化工传递过程基础(第三版)习题答案详解_部分4

·105·第九章 质量传递概论与传质微分方程9-1 在一密闭容器内装有等摩尔分数的O 2、N 2和CO 2,试求各组分的质量分数。

若为等质量分数,求各组分的摩尔分数。

解:当摩尔分数相等时,O 2,N 2和CO 2的物质的量相等,均用c 表示,则O 2的质量为32 c ,N 2的质量为28 c ,CO 2的质量为44 c ,由此可得O 2,N 2和CO 2的质量分数分别为1320.308322844a cc c c==++ 2280.269322844a cc c c==++ 3440.423322844a cc c c==++ 当质量分数相等时,O 2,N 2和CO 2的质量相等,均用m 表示,则O 2的物质的量为m /32,N 2的物质的量为m /28,CO 2的物质的量为m /44,由此可得O 2,N 2和CO 2的摩尔分数分别为1/320.3484/32/28/44x m m m m ==++2/280.3982/32/28/44x m m m m ==++ 3/440.2534/32/28/44x m m m m ==++ 9-2 含乙醇(组分A )12%(质量分数)的水溶液,其密度为980 kg/m 3,试计算乙醇的摩尔分数及物质的量浓度。

解:乙醇的摩尔分数为A AA 1/0.12/460.05070.12/460.88/18(/)i i Ni a M x a M ====+∑溶液的平均摩尔质量为0.0507460.94931819.42M =×+×= kg/kmol乙醇的物质的量浓度为A A A 9800.0507 2.55819.42c C x x Mρ===×=kmol/m 39-3 试证明由组分A 和B 组成的双组分混合物系统,下列关系式成立:(1)A B AA 2A AB B d d ()M M x a x M x M =+;(2)A A 2A B A B A B d d a x aa M M M M = +。

化工基础知识点(带答案)

化工基础知识点(带答案)

化学工程基础—李德华编著(第三版)知识点汇总第一章 化学工业与化学工程掌握:1. 化工基础的主要研究内容是(三传一反)。

可以为一个空或四个空。

2. 化工生产过程可认为是由(化学反应过程)和(单元操作)所组成。

第7页。

3. 化工数据:我国法定计量单位是以(国际单位制)为基础的。

所有物理量都可以由(7)个基本单位导出。

会简单的换算。

了解:1. 化学与化工的区别和联系; 联系:化工以化学学科研究的成果为基础,化学通过化工来实现其研究价值。

区别:规模:“三传”(传动、传热、传质)对反应的影响;实现原料预处理和产物的后处理涉及了“单元操作”;经济性;安全性;环保;等等工程问题。

2. 化工过程开发的主要研究方法有哪些? 逐级经验放大法;数学模型放大法第二章 流体流动过程第一节 概述 知识点: 1. 流体是什么?流体是气体与液体的总称。

2. 流体具有哪些性质? 具有压缩性;无固定形状,随容器形状而变化; 受外力作用时内部产生相对运动第二节 流体静力学基本方程式 知识点: 1. 概念:密度,比体积,重点是压力垂直作用在单位面积上的力称为压强,习惯上称之为压力,用符号p 表示。

2. 压力中需掌握单位换算,以及绝对压力、真空度、表压、当地大气压之间的关系。

atm 1(标准大气压)O mH mmHg Pa 2533.1076010013.1==⨯=3.流体静力学方程式及适用条件,19页2-9。

(1)适用于重力场中静止、连续的同种不可压缩性流体;4.静力学方程在U形管上的压力测量。

重点是会选取等压面,等压面选取的条件是(静止的,连通的,同一种流体的同一水平面)。

第三节流体流动的基本方程式1.体积流量,质量流量,体积平均流速及它们之前的关系,并会简单的单位换算。

掌握公式22页的2-15,2-16。

2.定态流动时的连续性方程,即为质量流量为常数。

23页的2-20。

3.背过实际流体的伯努利方程,并理解每一项的物理意义。

化工传递过程基础(第三版)第十章

化工传递过程基础(第三版)第十章

被测液体A注入管底部, 气体B吹过管口。液体 A 汽化 并通过气层B进行扩散。
z z0
NA
z1 ( 0 ) z1 ( 1 )
液体 A
四、气体扩散系数
A扩散到管口处,立即被大 量气体B带走,故 pA2≈0 气体 B
液面处组分A的分压pA1 为在测定条件下组分A的饱 和蒸气压。
z z0
N
A
相界面----------- 液相
NB
易挥发组分
二、等分子反方向稳态扩散
2. 扩散的数学模型 由
N A DAB
dcA xA ( N A N B ) dz
对于等分子反方向扩散
NA=-NB
N A D AB dc A dz
二、等分子反方向稳态扩散
N A D AB
数学模型
CDAB C cA1 N B 2 ln z C cA2
三、伴有化学反应的气体稳态扩散
2.反应控制过程 如果在催化剂表面上,化学反应进行的极为缓 慢,化学反应速率>>扩散速率,此过程的速率由 化学反应速率来确定,组分A的传质通量为
N A k1cA2
式中 k1— 一级化学反应速度常数;
四、气体扩散系数
2.气体扩散系数的计算公式 (1)双组分气体混合物中扩散系数的理论公式
bT 3/ 2 ( DAB 1 1 1/ 2 ) MA MB PSav
T—热力学温度,K; P—总压力,atm; MA、MB—组分A、B的摩尔质量,kg/kmol; Sav—物质 A、B的分子平均截面积,m2; b—常数,由实验确定。
v A、vB —组分A、B的分子扩散体积,cm3/mol, 查有关手册。
四、气体扩散系数
赫虚范特-克蒂斯-伯德(Hirschfelder-Curtiss-Bird)公式

化工传递过程基础3

化工传递过程基础3
2 2
在球坐标系中固体热传导方程式为:
1 t 1 2 t 2 (r ) r r r
1 t 1 t q 2 (sin ) 2 2 2 r sin r sin k
2
第八章
热传导
热传导是指介质不发生宏观运动时,依靠分子运动而传递热量的过程,严 格讲固体中内部的传热才是纯粹的热传导。本章讨论固体内部的导热问题, 推导温度与时间、位置的函数关系及其导热速率、影响因素。
3、球体的一维稳态热传导
采用球坐标系,方程式简化为:
d 2 dt (r )0 dr dr
其边界条件为:r=r1,t=t1 ;r=r2,t=t2 代入边界条件得: r r (t t ) 积分: t = -C1/r + C2
r2 (t1 t2 ) C2 t1 r2 r1 r2 r1 所以温度分布方程式: r1r2 (t1 t2 ) 1 r2 (t1 t2 ) t t1 r2 r1 r r2 r1 C1
a11t1 a12t 2 a1n t n c1 a21t1 a22t 2 a2 n t n c2 an1t1 an 2t 2 ann t n cn
称为Laplace方程式;
t t t q 2 2 2 x y z k
2 2 2
即: 2 t
称为Possion方程式;
在柱坐标系中固体热传导方程式为:
1 t 1 t 1 t t q (r ) 2 2 2 r r r r z k
2、固体中的热传导 固体内部不存在宏观流动, u x u y u z 0 ; 而且:
D ; 0 D
DU U t (c p t ) c p D

陈敏恒《化工原理》(第3版)课后习题(含考研真题)(热、质同时传递的过程 课后习题详解)

陈敏恒《化工原理》(第3版)课后习题(含考研真题)(热、质同时传递的过程  课后习题详解)

13.2 课后习题详解(一)习题过程的方向和极限13-1 温度为30℃、水汽分压为2kPa的湿空气吹过如表13-1所示三种状态的水的表面时,试用箭头表示传热和传质的方向。

表13-1解:已知:t=30℃,P=2kPa,与三种状态水接触。

求:传热、传质方向(用箭头表示)查水的饱和蒸汽压以Δt为传热条件,为传质条件,得:表13-213-2 在常压下一无限高的填料塔中,空气与水逆流接触。

入塔空气的温度为25℃、湿球温度为20℃。

水的入塔温度为40℃。

试求:气、液相下列情况时被加工的极限。

(1)大量空气,少量水在塔底被加工的极限温度;(2)大量水,少量空气在塔顶被加工的极限温度和湿度。

解:已知:P=101.3kPa,,逆流接触。

求:(1)大量空气,少量水,(2)大量水,少量空气,(1)大量空气处理少量水的极限温度为空气的湿球温度(2)大量水处理少量空气的极限温度为水的温度且湿度为查40℃下,过程的计算13-3 总压力为320kPa的含水湿氢气干球温度t=30℃,湿球温度为t w=24℃。

求湿氢气的湿度H(kg水/kg干氢气)。

已知氢-水系统的α/k H≈17.4kJ/(kg·℃)。

解:已知:P=320kPa,t=30℃,氢水-水系统,求:H(kg水/kg干氢气)查得24℃下,13-4 常压下气温30℃、湿球温度28℃的湿空气在淋水室中与大量冷水充分接触后,被冷却成10℃的饱和空气,试求:(1)每千克干气中的水分减少了多少?(2)若将离开淋水室的气体再加热至30℃,此时空气的湿球温度是多少?图13-1解:已知:P=101.3 kPa,求:(1)析出的水分W(kg水/kg干气)(1)查水的饱和蒸汽压(2)设查得与所设基本相符,13-5 在t1=60℃,H1=0.02kg/kg的常压空气中喷水增湿,每千克的干空气的喷水量为0.006kg,这些水在气流中全部汽化。

若不计喷入的水本身所具有的热焓,求增湿后的气体状态(温度t2和湿度H2)。

化工传递过程基础第三

化工传递过程基础第三

计算:在流动截面上任取一微分面积dA,其点流速为ux,则通过该微元面积 的体积流率dVs?通过整个流动截面积A的体积流率Vs?
求解: 1.体积流率定义式: dVs uxdA
??
2.体积流率积分: 3.质量流率(w):
Vs uxdA
A
w Vs
主体平均流速(ub): 截面上各点流速的平均值
单位:SI单位和物理单位
SI单位制:

u /
y

N / m2 m/s

N s m2

Pa s
m
物理单位制:

u / y

dyn / cm2 cm / s

dyn s cm2

g cm s

P(泊)
cm
特性:是温度、压力的函数; f T , P

ux
y



kgm/ s m3 m

重要
(动量通量)= —(动量扩散系数)x (动量浓度梯度)
(二)热量通量
q k d cpt d cpt
A cp dy
dy
※ q/A:热量通量

q A

J m2
s

p Y
y
z方向微分平衡方程:
p Z
z
自己推?
※ 静止流体平衡微分方程(欧拉平衡微分方程)


fB
p
重要
单位体积流体的质量力 静压力梯度
(五)流体静压力学方程
欧拉平衡微分方程
p X p Y
x
y
p Z
z
质量力:X = 0,Y = 0,Z = - g

化工传递过程基础

化工传递过程基础

化工传递过程基础概述化工传递过程是指在化工工艺过程中,物质的质量、能量、动量等通过传递方式从一个系统传递到另一个系统的过程。

化工传递过程是化工工艺的基础,对于化工工艺的设计、优化和控制都起着重要的作用。

在化工过程中,常见的传递过程包括质量传递、能量传递和动量传递。

质量传递是指物质在化工过程中的传递过程,常用的传递方式包括传递过程基础(如扩散、对流和反应等)及相关的传递机制(如浓度差、温度差、压力差等)。

能量传递是指热能在化工过程中的传递过程,常用的传递方式包括传导、对流和辐射。

动量传递是指动量在化工过程中的传递过程,常用的传递方式包括流动、压力和阻力。

质量传递扩散扩散是质量在化工过程中传递的一种基本方式。

在扩散过程中,物质会沿着浓度梯度从高浓度区域向低浓度区域传递。

扩散过程的速度与浓度差、扩散系数和传递距离等因素有关。

常见的扩散方程有弥散方程和菲克定律。

对流对流是质量传递中常用的一种方式,通过流体的运动将物质从一个地方传递到另一个地方。

对流传递可以分为自然对流和强制对流两种方式。

在自然对流中,传递过程由于密度差产生的浮力驱动;而在强制对流中,传递过程由外部施加的力(如搅拌、泵送等)驱动。

反应是化工过程中重要的一种质量传递方式。

在化学反应中,物质通过反应转化成另一种物质,并伴随着质量的传递过程。

反应速率常常与反应的浓度、温度和反应物之间的反应机理等因素有关。

能量传递传导传导是能量传递中的一种方式,是指通过物质的直接接触将热能从一个地方传递到另一个地方。

传导过程的速度与热传导系数、温度差和传递距离等因素有关。

常见的传导方程有傅里叶定律和斯廷定律。

对流对流也是能量传递中常用的一种方式,通过流体的运动将热能从一个地方传递到另一个地方。

对流传递可以分为自然对流和强制对流两种方式,原理与质量传递中的对流类似。

辐射是能量传递中的一种方式,是指通过电磁辐射将能量从一个地方传递到另一个地方。

辐射能量的传递与物体的温度、表面特性和辐射波长等因素有关。

化工传递过程基础总结

化工传递过程基础总结

化工传递过程基础总结化工传递过程是化学工程学科的基础,它是研究化学物质在不同状态下的传递现象的学科。

化工传递过程包括物质的传质、热传、动量传递等。

在化学工程中,化工传递过程是实现化学反应和物料加工的关键环节。

本文将介绍化工传递过程的基础知识,包括传质、热传和动量传递。

一、传质传质是指物质在不同相之间的传递现象,包括气体、液体、固体之间的传递。

传质过程是化学反应、物料加工等过程中的重要环节。

传质的速率取决于传质物质的性质、传质界面的性质、传质系统的温度、压力、浓度等因素。

1. 传质的基本概念传质过程可以分为扩散、对流和传递过程的组合。

扩散是指物质通过分子扩散的方式在不同相之间传递,其速率与浓度梯度成正比。

对流是指物质在流体中的传递,其速率与流体速度成正比。

传递过程是扩散和对流的组合,其速率取决于扩散和对流的贡献。

2. 传质的速率传质速率可以用传质通量来表示,传质通量是单位时间内通过传质界面的物质量。

传质通量可以用菲克定律来计算,菲克定律是指在扩散过程中,单位时间内通过单位面积传递物质的量与浓度梯度成正比,与传质物质的性质和传质界面的性质有关。

传质速率还可以用对流传质公式来计算,对流传质公式是指在对流过程中,传质通量与速度梯度成正比,与流体的性质和传质界面的性质有关。

3. 传质的机理传质的机理包括分子扩散、对流传递和物理吸附等。

分子扩散是指物质通过分子间的碰撞在不同相之间传递。

对流传递是指物质在流体中的传递,其速率受到流体的速度、流动方式、物质的性质等因素的影响。

物理吸附是指物质在传质界面上的吸附现象,吸附物质的性质、传质界面的性质等因素会影响吸附的速率。

二、热传热传是指热量在不同相之间的传递现象,包括传导、对流和辐射三种方式。

热传过程是化学反应、物料加工等过程中的重要环节。

热传的速率取决于热传物质的性质、热传界面的性质、热传系统的温度、压力等因素。

1. 热传的基本概念热传过程可以分为传导、对流和辐射三种方式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.2流体力学(水力学)的主要研究内容
1. 流体在外力作用下,静止与运动的规 律;
关于流体平衡的规律,即流体静力学; 关于流体运动的规律,即流体运动学和流 体动力学;
2. 流体与边界的相互作用。
1.3与流体力学相关的工程领域和学科
空气和水是地球上广泛存在的物质,所以与流体运动关 联的力学问题是很普遍的。流体力学在许多学科和工程领 域有着广泛的应用,其重要性不言而能量转换关 系,探讨平衡过程的规律,能否进行,到 何程度、如何影响
• 热力学平衡条件: 1. 热平衡:体系各部分温度相等 2.力学平衡:边界不发生相对移动 3.相平衡:相间没有物质转移 4. 化学平衡:体系组成不随时间变化
平衡过程和传递过程
1.动量传递过程:在流体中,若两个相邻的 流体层速度不同,则发生由高速层向低速 层的动量传递
平衡过程和传递过程
• 传递过程的速率可以用通式表示如下
第一章 传递过程概论(动量传递)
1.1流体的定义和特征
• 物质存在的形态有三种:固体、液体和气体。 • 我们通常把能够流动的液体和气体统称为流体。 • 从力学角度来说,流体在受到微小的剪切力作用时,
将连续不断地发生变形(即流动),直到剪切力的作用 消失为止。所以,流体可以这样来定义: • 在任何微小剪切力作用下能够连续变形的物质叫作流 体。 • 流体和固体由于分子结构和分子间的作用力不同,因 此,它们的性质也不同。在相同体积的固体和流体中, 流体所含有的分子数目比固体少得多,分子间距就大 得多,因此,流体分子间的作用力很小,分子运动强 烈,从而决定了流体具有流动性,而且流体也没有固 定的形状。
1.5 流体力学发展简史
• 第一阶段(17世纪中叶以前):流体力学成为一门独立 学科的基础阶段
• 第二阶段( 17世纪末-19世纪末)流体力学沿着两个方向 发展——理论、应用
• 第三阶段(20世纪初-20世纪中叶)理论分析与实验相结 合
• 第四阶段(20世纪中叶以来)流体力学飞跃发展
第一阶段(17世纪中叶以前)流体力学成为一门独 立学科的基础阶段
(2)固体的应变与应力的作用时间无关,只要不超过弹性 极限,作用力不变时,固体的变形也就不再变化,当外力去除 后,形变也就消失;对于流体,只要有应力作用,它将连续 变形(流动),当应力去除后,它也不再能恢复到原来的形状。
1.1流体的定义和特征
液体和气体虽都属于流体,但两者之间也有所不同。液体的 分子间距和分子的有效直径相当。当对液体加压时,只要分子 间距稍有缩小,分子间的排斥力就会增大,以抵抗外压力。所 以液体的分子间距很难缩小,即液体很难被压缩。以致一定质 量的液体具有一定的体积。液体的形状取决于容器的形状,并 且由于分子间吸引力的作用,液体有力求自己表面积收缩到最 小的特性。所以,当容器的容积大于液体的体积时,液体不能 充满容器,故在重力的作用下,液体总保持一个自由表面,通 常称为水平面。
化工传递过程基础
第一章 传递过程概论
本章主要论述流体流动的基本概念, 动量、热量与质量传递的类似性及衡算 方法等内容。
1. 传递过程基本概念
• 1.1 概论 系统状态:非平衡状态(传递物理现量象) 平衡状态
物理量: c, T, v…
传递种类:质量、能量、动量 时空间物理量的差异→ 梯度 →流体流动、
1.1流体的定义和特征
流体不能承受集中力,只能承受分布力。
流体的上述物理力学特性使流体力学(水 力学)成为宏观力学的一个独特分支。
1.1流体的定义和特征
流体与固体相比有以下区别:
(1)固体既能够抵抗法向力——压力和拉力,也能够抵抗 切向力。而流体仅能够抵抗压力,不能够承受拉力,也不能抵 抗拉伸变形。另外,流体即使在微小的切向力作用下,也很容 易变形或流动。
气体的分子间距比液体大,在标准状态(0℃,101325Pa)下, 气体的平均分子间距约为3.3×10-6mm,其分子的平均直径
1.1流体的定义和特征
约为2.5×10-7 mm。分子间距比分子平均直径约大十倍。因 此,只有当分子间距缩小得很多时,分子间才会出现排斥力。 可见,气体是很容易被压缩的。此外,因气体分子间距与分子 平均直径相比很大,以致分子间的吸引力很微小,而分子热运 动起决定性作用,所以气体没有一定的形状,也没有固定的 体积,它总是能均匀地充满容纳它的容器而形成不了自由表 面。
1.4 与其他课程之间的联系 • 流体力学是继《高等数学》、《大学物理》《理论
力学》之后开设,同时又成为学习许多后续专业课 程计算流体力学和从事专业研究的必备基础。
• 高等数学要求复习掌握:微分(偏导数、导数)、 积分(曲面积分、定积分、曲线积分)、多元函数 的泰勒公式、势函数、微分方程。
• 理论力学要求复习掌握:质量守恒定律、能量守恒 定律、动量定律。
1452-1519年 达.芬奇——物体的沉浮、孔口出流、物体的 运动阻力以及管道、明渠中水流等
• 1586年 斯蒂芬——水静力学原理 • 1650年 帕斯卡——“帕斯卡原理” • 1686年 牛顿——牛顿内摩擦定律 • 1738年 伯努利——出版《流体动力学》,建立了伯努
利方程
第二阶段(17世纪末-19世纪末)流体力学沿着两个 方向发展——理论流体力学、应用流体力学
• 两个相邻流体层的动量传递
平衡过程和传递过程
2.热量传递过程: • 物体各部分存在温度差,热量由高温区向
低温区传递
平衡过程和传递过程
3. 质量传递:当体系中的物质存在化学势差 异时,则发生由高化学势区向低化学势区 域的传递
• 化学势的差异可以由浓度、温度、压力或 电场力所引起。常见的是浓度差引起质量 传递过程,即混合物种某个组分由高浓度 向低浓度区扩散
热量传递、质量传递
平衡过程和传递过程
• 传递过程:物理量向平衡转移 • 平衡状态:强度性质的物理量不存在梯度
• 补充: • 体系的宏观可测性质可分为两类:
1. 广度性质,与体系的数量成正比,如体积、质量等,具 有加和性 2. 强度性质:不具有加和性,其数值取决于体系自身特性, 与体系数量无关,如温度、压力、密度等
相关文档
最新文档