2015年全国新课标2卷高考文科数学及答案
2015年全国新课标2卷高考文科数学答案

2015年全国新课标2卷高考文科数学答案2015普通高等学校招生全国统一考试?卷文科数学第一卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合A= ,,,,x,1,x,2,B,x0,x,3,则A:B,A.(-1,3)B.(-1,0 )C.(0,2)D.(2,3)1、选A2,ai(2)若a实数,且,3,i,则a, 1,iA.-4B. -3C. 3D. 4 2、解:因为故选D 2,ai,(3,i)(1,i),2,4i,所以a,4.(3)根据下面给出的2004年至2013年我国二氧化碳年排放量(单位:万吨)柱形图,以下结论中不正确的是27002600250024002300220021002000 1900A.逐年比较,2008年减少二氧化碳排放量的效果最显著;2013(年)B.2007年我国治理二氧化碳排放显现成效;C.2006年以来我国二氧化碳排放量呈减少趋势;D.2006年以来我国二氧化碳年排放量与年份正相关。
3、选D(4)已知向量 a,(0,,1),b,(,1,2),则(2a,b),a,A. -1B. 0C. 1D. 2 、选B 4,,S是等差数列a的前n项和,a,a,a,3,则S,(5)设若 nn1355A. 5B. 7C. 9D. 11 5、解:在等差数列中,因为(a,a),515a,a,a,3,所以a,1,S,,5a,5,故选A. 1353532(6)一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为- 1 -1111A. B. C. D. 87656、解:如图所示,选D.,ABC(7)已知三点,则外接圆的A(1,0),B(0,3),C(2,3)圆心到原点的距离为542125A. B. C. D. 33337、解:根据题意,三角形ABC是等边三角形,设外接圆的23圆心为D,则D(1,)所以, 34721OD,1,,,.故选B. 333(8)右边程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”。
2015年全国新课标2卷高考文科数学及答案详解

2015年普通高等学校招生全国统一考试(新课标Ⅱ卷)数学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟.第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}{}30|,21|<<=<<-=x x B x x A ,则=⋃B A ( )A .(-1,3)B .(-1,0)C .(0,2)D .(2,3)2.若a 为实数,且i iai +=++312,则=a ( ) A .-4 B .-3 C .3 D .43.根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是( )A .逐年比较,2008年减少二氧化硫排放量的效果最显著B .2007年我国治理二氧化硫排放显现成效C .2006年以来我国二氧化硫年排放量呈减少趋势D .2006年以来我国二氧化硫年排放量与年份正相关4.向量()1,1-=a ,()2,1-=b ,则()=⋅+a b a 2 ( )A .-1B .0C .1D .25.设n S 是等差数列{}n a 的前n 项和,若3531=++a a a ,则=5S ( )A .5B .7C .9D .11 6.第6题图一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为( ) A.18 B.17 C.16 D.157.已知三点()01,A ()30,B ,()32,C ,则ABC ∆外接圆的圆心到原点的距离为( )A.53B.213C.253D.438.第8题图右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a ,b 分别为14,18,则输出的=a ( )A .0B .2C .4D .149.已知等比数列{}n a 满足411=a ,()14453-=a a a ,则=2a ( ) A .2 B .1 C.12 D.1810.已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O ABC 体积的最大值为36,则球O 的表面积为( ) A .36π B .64π C.144π D.256π11.如图,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点.点P 沿着边BC ,CD 与DA 运动,记∠BOP =x ,将动点P 到A ,B 两点距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为( )12.设函数()()2111ln x x x f +-+=,则使得()()12->x f x f 成立的x 的取值范围是( )A.⎝ ⎛⎭⎪⎫13,1B.()∞+⋃⎪⎭⎫ ⎝⎛∞,,131- C.⎝ ⎛⎭⎪⎫-13,13 D.⎪⎭⎫ ⎝⎛∞+⋃⎪⎭⎫ ⎝⎛∞,,3131-- 第Ⅱ卷二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.已知函数()x ax x f 23-=的图象过点()4,1-,则=a ________.14.若x ,y 满足约束条件⎩⎨⎧ x +y -5≤0,2x -y -1≥0,x -2y +1≤0,则y x z +=2的最大值为________. 15.已知双曲线过点()34,,且渐近线方程为x y 21±=,则该双曲线的标准方程为________.16.已知曲线x x y ln +=在点()1,1处的切线与曲线()122+++=x a ax y 相切,则=a ________. 三、解答题(解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分) ABC ∆中,D 是BC 上的点,AD 平分BAC ∠,DC BD 2=(1)求CB sin sin (2)若︒=∠60BAC ,求B ∠18.(本小题满分12分)某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频数分布表.图①B地区用户满意度评分的频数分布表满意度评分[50,60)[60,70)[70,80)[80,90)[90,100] 分组频数281410 6 2015·新课标Ⅱ卷第4页(1)在图②中作出B地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可).图②(2)根据用户满意度评分,将用户的满意度分为三个等级:满意度评分 低于70分 70分到89分 不低于90分满意度等级 不满意 满意 非常满意估计哪个地区用户的满意度等级为不满意的概率大?说明理由.19.(本小题满分12分)如图,长方体1111D C B A ABCD -中,16=AB ,10=BC ,81=AA ,点E ,F 分别在11B A ,11C D 上,411==F D E A .过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求平面α把该长方体分成的两部分体积的比值.20.(本小题满分12分)已知椭圆C :12222=+by a x ()0.>>b a 的离心率为22,点()22,在C 上.(1)求C 的方程;(2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .证明:直线OM 的斜率与直线l 的斜率的乘积为定值.21.(本小题满分12分)已知函数()()x a x x f -+=1ln .(1)讨论()x f 的单调性;(2)当()x f 有最大值,且最大值大于22-a 时,求a 的取值范围.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.22. (本小题满分10分)选修4-1:几何证明选讲如图O 是等腰三角形AB C 内一点, ⊙O 与△ABC 的底边BC 交于M ,N 两点,与底边上的高交于点G ,且与AB ,AC 分别相切于E ,F 两点.(I )证明EF ∥BC .(II )若AG 等于⊙O 的半径,且23AE MN == ,求四边形EDCF 的面积23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1cos ,:sin ,x t C y t αα=⎧⎨=⎩ (t 为参数,且0t ≠ ),其中0απ≤<,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线23:2sin ,:23cos .C C ρθρθ== (I )求2C 与3C 交点的直角坐标;(II )若1C 与 2C 相交于点A ,1C 与3C 相交于点B ,求AB 最大值24.(本小题满分10分)选修4-5:不等式选讲设a ,b ,c ,d 均为正数,且a +b =c +d .证明:(1)若ab >cd ,则a +b >c +d ;N M G OFE D C B A(2)a+b>c+d是|a-b|<|c-d|的充要条件.2015·新课标Ⅱ卷第8页1、选A2、故选D3、选D4、选B5、解:在等差数列中,因为.,5525)(,1,335153531A a a a S a a a a 故选所以==⨯+===++6、解:如图所示,选D.7、选B.8、故选B.9、解:因为{}),1(4,414531-==a a a a a n 满足所以, .21241,2,2),1(4123144424=⨯=====-=q a a q q a a a a a 所以,所以又解得故选C.10、解:因为A,B 都在球面上,又为该球面上动点,C AOB ,90︒=∠所以 三棱锥的体积的最大值为3661213132==⨯⨯R R R ,所以R=6,所以球的表面积为 S=14442=R ππ,故选C.11、解:如图,当点P 在BC 上时, ,tan 4tan ,tan 4,tan ,22x x PB PA x PA x PB x BOP ++=+∴+===∠ 当4π=x 时取得最大值51+,以A,B 为焦点C,D 为椭圆上两定点作椭圆,显然,当点P 在C,D 之间移动时PA+PB<51+. 又函数)(x f 不是一次函数,故选B.xP O DC B A12、解:因为函数时函数是增函数是偶函数,),0[,11)1ln()(2+∞∈+-+=x x x x f .131,)12(,12)12()(22<<->∴->∴->x x x x x x f x f 解得 故选A.第二卷一、填空题:本大题共4个小题,每小题5分 13、答:a=-214、解:当x=3,y=2时,z=2x+y 取得最大值8.15、解:设双曲线的方程为.43,4),0(422=≠=-k k k y x )代入方程,解得,点(1422=-∴y x 双曲线的标准方程为16、解:.122,11'-=∴+=x y xy ,切线方程为切线的斜率为 .8120.08,08,021)2(12222=+=====-=∆=+++++=-=a x y a a a a a ax ax x a ax y x y 所以与切线平行,不符。
2015年普通高等学校招生全国统一考试数学文试题(新课标2卷,含答案)

2015年普通高等学校招生全国统一考试文科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号框涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号框。
写在本试卷上无效。
3.答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束,将试题卷和答题卡一并交回。
第Ⅰ卷一、 选择题:本大题共12小题。
每小题5分,在每个小题给出的四个选项中,只有一项是符合要求的。
1.已知集合}21|{<<-=x x A ,}30|{<<=x x B ,则A ∪B=A. )3,1(-B. )0,1(-C. )2,0(D. )3,2( 2.若a 为实数,且i iai+=++312,则=a A. 4- B. 3- C. 3 D. 43. 根据下面给出的2004年至2013年我国二氧化碳年排放量(单位:万吨)柱形图,以下结论中不正确的是A.逐年比较,2008年减少二氧化碳排放量的效果显著B.2007年我国治理二氧化碳排放显现成效C.2006年以来我国二氧化碳年排放量呈逐渐减少趋势D.2006年以来我国二氧化碳年排放量与年份正相关 4.向量a=(1,-1) b=(-1,2),则(2a +b ).a=A. 1-B. 0C. 1D.2 5. 设n S 是数列}{n a 的前n 项和,若3531=++a a a ,则=5S A. 5 B. 7 C. 9 D. 116. 一个正方体被一个平面截取一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为 A.81 B. 71 C. 61 D. 517.已知三点)0,1(A ,)3,0(B ,)3,2(C ,则ABC ∆外接圆的圆心到原点的距离为 A.35 B. 321 C. 352 D. 34 8.右边程序框图的算法思路源于我国古代数学名著《九章算术》中“更相减损术”.执行该程序框图,若输入的a 、b 分别为14、18,则输出的=aA. 0B. 2C. 4D. 149.已知等比数列}{n a 满足411=a ,)1(4453-=a a a ,则=2a A. 2 B. 1 C.21 D. 8110.已知A 、B 是球O 的球面上两点,90=∠AOB ,C 为该球面上的动点.若三棱锥ABC O -体积的最大值为36,则球O 的表面积为A. π36B. π64C. π144D. π25611.如图,长方形ABCD 的边2=AB ,1=BC ,O 是AB 的中点,点P 沿着BC 、CD 与DA 运动,记x BOP =∠.将动点P 到A 、B 两点距离之和表示为x 的函数)(x f ,则)(x f y =的图象大致为12. 设函数211|)|1ln()(xx x f +-+=,则使得)12()(->x f x f 成立的x 的取值范围是 A. )1,31( B. ),1()31,(+∞-∞U C. )31,31(- D. ),31()31,(+∞--∞U 二.填空题:共4小题,每小题5分.13. 已知函数x ax x f 2)(3-=的图象过点)4,1(-,则=a .14.若x 、y 满足约束条件⎪⎩⎪⎨⎧≤+-≥--≤-+01201205y x y x y x ,则y x z +=2的最大值为 .15.已知双曲线过点)3,4(,且渐近线方程为x y 21±=,则该双曲线的标准方程为 . 16.已知曲线x x y ln +=在点)1,1(处的切线与曲线1)2(2+++=x a ax y 相切,则=a .三、解答题:解答应写出文字说明,证明过程或演算步骤. 17、(本小题满分12分)ΔABC 中,D 是BC 上的点,AD 平分∠BAC ,BD=2DC.(I)求sinsinBC∠∠;(II)若∠BAC=60°,求∠B.18、(本小题满分12分)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得分A地区用户满意评分的频率分布直方图和B地区用户满意度评分的频数分布表.B地区用户满意度评分的频数分布表度评分的平均值及分散程度(不要求计算出具体值,给出结论即可)(II)根据用户满意度评分,将用户的满意度分为三个等级;19、(本小题满分12分)如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,分别在A1B1, D1C1上,A1E= D1F=4.过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(I ) 在图中画出这个正方形(不必说明画法和理由) (II )求平面α把该长方体分成的两部分体积的比值.20、(本小题满分12分)已知椭圆C :22221x y a b +=(a >b >0)的离心率为2,点(2C 上.(I ) 求C 的方程.(II )直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M.直线OM 的斜率与直线l 的斜率的乘积为定值. 21、(本小题满分12分) 已知函数f (x )=ln x +a (1- x ) (I ) 讨论f (x )的单调性;(II ) 当f (x )有最大值,且最大值大于2a-2时,求a 的取值范围.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题记分,作答时请写清题号。
2015年高考文科数学全国卷2-答案

【提示】(Ⅰ)通过两地区用户满意度评分的频率分布直方图可以看出,B地区用户满意度评分的平均值高于A地区用户满意度评分的平均值,B地区用户满意度评分比较集中,而A地区用户满意度评分比较分散;(Ⅱ)由直方图得 的估计值为0.6, 的估计值为0.25,所以A地区的用户的满意度等级为不满意的概率大.
【考点】统计知识及对学生柱形图的理解
4.【答案】C
【解析】由题意可得 , ,所以 ,故选C.
【考点】向量数量积的坐标运算
5.【答案】A
【解析】由 ,所有 ,故选A.
【考点】等差数列的性质及前n项和公式的应用
6.【答案】D
【解析】如图所示,截去部分是正方体的一个角,其体积是正方体体积的 ,剩余部分体积是正方体体积的 ,所以截去部分体积与剩余部分体积的比值为 ,故选D.
(Ⅱ)由(Ⅰ)知 , ,故 是 的垂直平分线,又 为圆 的弦,所以 在 上,连接 , ,则 ,由 等于圆 的半径得 ,所以 ,因此, 和 都是等边三角形,因为 ,所以 , ,因为 , ,所以 ,于是 , ,
所以四边形 的面积为 .
【提示】(Ⅰ)要证明 ,可证明 , ;
(Ⅱ)先求出有关线段的长度,然后把四边形 的面积转化为 和 面积之差来求.
【提示】(Ⅰ)由 ,可分 , 两种情况来讨论;
(Ⅱ)由(Ⅰ)知当 时 在 无最大值,当 时 最大值为 ,因此 .令 ,则 在 是增函数,当 时, ,当 时 ,因此可求出 的取值范围.
【考点】导数的应用
2015年普通高等学校招生全国统一考试(全国新课标II卷)数学试题 (文科)解析版

2015年普通高等学校招生全国统一考试全国新课标 II 卷文 科 数 学一、选择题:本大题共12道小题,每小题5分,共60分. 1.已知集合{}|12A x x =-<<,{}|03B x x =<<,则A B =( )A .()1,3-B .()1,0-C .()0,2D .()2,3【答案】A考点:集合运算.2. 若为a 实数,且2i3i 1ia +=++,则a =( ) A .4- B .3- C .3 D .4【答案】D【解析】试题分析:由题意可得()()2i 1i 3i 24i 4a a +=++=+⇒= ,故选D.考点:复数运算.3. 根据下面给出的2004年至2013年我国二氧化碳年排放量(单位:万吨)柱形图,以下结论中不正确的是( )A .逐年比较,2008年减少二氧化碳排放量的效果最显著B .2007年我国治理二氧化碳排放显现成效C .2006年以来我国二氧化碳年排放量呈减少趋势D .2006年以来我国二氧化碳年排放量与年份正相关 【答案】 D考点:柱形图4. 已知()1,1=-a ,()1,2=-b ,则(2)+⋅=a b a ( )A .1-B .0C .1D .2【答案】C 【解析】试题分析:由题意可得22=a ,3,⋅=-a b 所以()222431+⋅=+⋅=-=a b a a a b .故选C.考点:向量数量积.5. 设n S 是等差数列{}n a 的前n 项和,若1353a a a ++=,则5S =( ) A .5 B .7 C .9 D .11【答案】A 【解析】试题解析:13533331a a a a a ++==⇒=,()15535552a a S a +===.故选A. 考点:等差数列6. 一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为( )1A.8 1B.7 1C.6D.15【答案】D【解析】试题分析:截去部分是正方体的一个角,其体积是正方体体积的16,所以截去部分体积与剩余部分体积的比值为15 ,故选D.考点:三视图7. 已知三点(1,0),A B C ,则△ABC 外接圆的圆心到原点的距离为( )5A.3 3 4D.3【答案】B考点:直线与圆的方程.8. 右边程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的,a b 分别为14,18,则输出的a 为( )A.0B. 2C.4D.14【答案】B 【解析】试题分析:由题意输出的a 是18,14的最大公约数2,故选B. 考点:1. 更相减损术;2.程序框图.9.已知等比数列{}n a 满足114a =,()35441a a a =-,则2a =( )A.2B.1C.12 1D.8【答案】C【解析】试题分析:由题意可得()235444412a a a a a ==-⇒=,所以34182a q q a ==⇒= ,故2112a a q ==,选C.考点:等比数列.10. 已知B A ,是球O 的球面上两点,︒=∠90AOB ,C 为该球面上的动点.若三棱锥ABC O -体积的最大值为36,则球O 的表面积为( )A.π36B. π64C.π144D. π256【答案】C考点:球与几何体的切接.11. 如图,长方形的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记BOP x ∠= ,将动点P 到A ,B 两点距离之和表示为x 的函数()f x ,则的图像大致为( )A .B .C .D .【答案】B考点:函数图像12. 设函数21()ln(1||)1f x x x =+-+,则使得()(21)f x f x >-成立的x 的取值范围是( )A .1,13⎛⎫ ⎪⎝⎭B .()1,1,3⎛⎫-∞+∞ ⎪⎝⎭C .11,33⎛⎫-⎪⎝⎭ D .11,,33⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭【答案】A 【解析】试题分析:由21()ln(1||)1f x x x=+-+可知()f x 是偶函数,且在[)0,+∞是增函数,所以 ()()()()121212113f x f x f x f x x x x >-⇔>-⇔>-⇔<< .故选A.考点:函数性质二、填空题:本大题共4小题,每小题5分,共20分13. 已知函数()32f x ax x =-的图像过点(-1,4),则a = .【答案】-2 【解析】试题分析:由()32f x ax x =-可得()1242f a a -=-+=⇒=- .考点:函数解析式14. 若x ,y 满足约束条件50210210x y x y x y +-≤⎧⎪--≥⎨⎪-+≤⎩,则z =2x +y 的最大值为 .【答案】8考点:线性规划15. 已知双曲线过点(,且渐近线方程为12y x =±,则该双曲线的标准方程为 .【答案】2214x y -=考点:双曲线几何性质16. 已知曲线ln y x x =+在点()1,1 处的切线与曲线()221y ax a x =+++ 相切,则a = . 【答案】8 【解析】试题分析:由11y x'=+可得曲线ln y x x =+在点()1,1处的切线斜率为2,故切线方程为21y x =-,与()221y ax a x =+++ 联立得220ax ax ++=,显然0a ≠,所以由2808a a a ∆=-=⇒=.考点:导数的几何意义.三、解答题17(本小题满分12分)△ABC 中D 是BC 上的点,AD 平分∠BAC ,BD =2DC .(I )求sin sin BC∠∠ ;(II )若60BAC ∠=,求B ∠.【答案】(I )12;30.考点:解三角形试题解析:(I )由正弦定理得,,sin sin sin sin AD BD AD DCB BADC CAD==∠∠∠∠ 因为AD 平分∠BAC ,BD =2DC ,所以sin 1.sin 2B DC C BD ∠==∠.(II )因为()180,60,C BAC B BAC ∠=-∠+∠∠=所以()1sin sin sin .2C BAC B B B ∠=∠+∠=∠+∠ 由(I )知2sin sin B C ∠=∠,所以tan 30.B B ∠=∠= 考点:解三角形18. (本小题满分12分)某公司为了了解用户对其产品的满意度,从A ,B 两地区分别随机调查了40个用户,根据用户对其产品的满意度的评分,得到A 地区用户满意度评分的频率分布直方图和B 地区用户满意度评分的频率分布表.A 地区用户满意度评分的频率分布直方图(I )在答题卡上作出B 地区用户满意度评分的频率分布直方图,并通过此图比较两地区满意度评分的平均值及分散程度.(不要求计算出具体值,给出结论即可)B 地区用户满意度评分的频率分布直方图(II)根据用户满意度评分,将用户的满意度评分分为三个等级:估计那个地区的用户的满意度等级为不满意的概率大,说明理由.【答案】(I)见试题解析(II)A地区的用户的满意度等级为不满意的概率大.考点:1.频率分布直方图;2.概率估计.19. (本小题满分12分)如图,长方体1111ABCD A B C D -中AB =16,BC =10,18AA =,点E ,F 分别在1111,A B D C 上,11 4.A E D F ==过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(I )在图中画出这个正方形(不必说明画法与理由); (II )求平面α把该长方体分成的两部分体积的比值. 【答案】(I )见试题解析(II )97 或79考点:1.几何体中的截面问题;2.几何体的体积20. (本小题满分12分)已知椭圆()2222:10x y C a b a b +=>> ,点(在C 上.(I )求C 的方程; (II )直线l 不经过原点O ,且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 中点为M ,证明:直线OM 的斜率与直线l 的斜率乘积为定值.【答案】(I )2222184x y +=(II )见试题解析考点:直线与椭圆21. (本小题满分12分)已知()()ln 1f x x a x =+-. (I )讨论()f x 的单调性;(II )当()f x 有最大值,且最大值大于22a -时,求a 的取值范围. 【答案】(I )0a ≤,()f x 在()0,+∞是单调递增;0a >,()f x 在10,a ⎛⎫⎪⎝⎭单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭单调递减;(II )()0,1. 【解析】考点:导数的应用.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号22. (本小题满分10分)选修4-1:几何证明选讲如图O是等腰三角形AB C内一点,圆O与△ABC的底边BC交于M,N两点,与底边上的高交于点G,且与AB,AC分别相切于E,F两点.(I)证明EF BC;(II)若AG等于圆O半径,且AE MN【答案】(I)见试题解析;(II考点:1.几何证明;2.四边形面积的计算.23. (本小题满分10分)选修4-4:坐标系与参数方程 在直角坐标系xOy 中,曲线1cos ,:sin ,x t C y t αα=⎧⎨=⎩ (t 为参数,且0t ≠ ),其中0απ≤<,在以O为极点,x 轴正半轴为极轴的极坐标系中,曲线23:2sin ,:.C C ρθρθ== (I )求2C 与3C 交点的直角坐标;(II )若1C 与 2C 相交于点A ,1C 与3C 相交于点B ,求AB 最大值.【答案】(I )()30,0,2⎫⎪⎪⎭;(II )4. 【解析】试题分析:(I )把2C 与3C 的方程化为直角坐标方程分别为2220x y y +-=,220x y +-=,联立解考点:参数方程、直角坐标及极坐标方程的互化.24. (本小题满分10分)选修4-5:不等式证明选讲 设,,,a b c d 均为正数,且a b c d +=+.证明:(I )若ab cd > ,+>;(II )>是a b c d -<-的充要条件. 【答案】【解析】试题分析:(I )由a b c d +=+及ab cd >,可证明22>,开方即得>(II )本小题可借助第一问的结论来证明,但要分必要性与充分性来证明. 试题解析:解:(I )因为22a b c d =++=++考点:不等式证明.。
2015年高考全国卷2文科数学试题及答案解析(word精校版)

2015年高考全国卷2文科数学试题及答案(word 精校版)含详细解析一、选择题:本大题共12道小题,每小题5分1.已知集合{}|12A x x =-<<,{}|03B x x =<<,则A B =A .()1,3-B .()1,0-C .()0,2D .()2,3 【答案】A考点:集合运算.【名师点睛】本题属基础题,主要考查数列的交集运算。
2. 若为a 实数,且2i3i 1ia +=++,则a = A .4- B .3- C .3 D .4 【答案】D 【解析】试题分析:由题意可得()()2i 1i 3i 24i 4a a +=++=+⇒= ,故选D. 考点:复数运算.【名师点睛】本题主要考查复数的乘除运算,及复数相等,难度不大,但要注意运算的准确性。
3. 根据下面给出的2004年至2013年我国二氧化碳年排放量(单位:万吨)柱形图,以下结论中不正确的是A .逐年比较,2008年减少二氧化碳排放量的效果最显著B .2007年我国治理二氧化碳排放显现成效C .2006年以来我国二氧化碳年排放量呈减少趋势D .2006年以来我国二氧化碳年排放量与年份正相关 【答案】D考点:柱形图【名师点睛】本题考查学生对柱形图的理解,要求学生能从图中读出有用信息,背景比较新颖。
4. 已知()0,1=-a ,()1,2=-b ,则(2)+⋅=a b a A .1- B .0 C .1 D .2 【答案】B 【解析】试题分析:由题意可得21=a ,2,⋅=-a b 所以()222220+⋅=+⋅=-=a b a a a b .考点:向量数量积。
【名师点睛】本题主要考查向量数量积的坐标运算,属于基础题。
5. 设n S 是等差数列{}n a 的前n 项和,若1353a a a ++=,则5S = A .5 B .7 C .9 D .11【答案】A2004年 2005年 2006年 2007年 2008年 2009年 2010年 2011年 2012年 2013年【解析】试题解析:13533331a a a a a ++==⇒=,()15535552a a S a +===. 考点:等差数列【名师点睛】本题主要考查等差数列性质及前n 项和公式,具有小、巧、活的特点。
2015年全国新课标2卷高考文科数学试题及答案

2015年全国新课标2卷高考文科数学试题及答案2015普通高等学校招生全国统一考试II卷文科数学第一卷一、选择题:本大题共12小题,每小题5分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合 $A=x-1<x<2$,$B=x<x<3$,则 $A\cup B=$A。
$(-1,3)$ B。
$(-1,0)$ C。
$(0,2)$ D。
$(2,3)$2.若 $a$ 是实数,且 $\frac{2+ai}{1+i}=3+i$,则 $a=$A。
$-4$ B。
$-3$ C。
$3$ D。
$4$3.根据下面给出的2004年至2013年我国二氧化碳年排放量(单位:万吨)柱形图,以下结论中不正确的是此处删除明显有问题的段落)4.已知向量 $a=(1,-1)$,$b=(-1,2)$,则 $(2a+b)\cdot a=$A。
$-1$ B。
$0$ C。
$1$ D。
$2$5.设 $S_n$ 是等差数列 $\{a_n\}$ 的前 $n$ 项和。
若$a_1+a_3+a_5=3$,则 $S_5=$A。
$5$ B。
$7$ C。
$9$ D。
$11$6.一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为A。
$\frac{1}{1111}$ B。
$\frac{1}{8576}$ C。
$\frac{2}{1254}$ D。
$\frac{1}{333}$7.已知三点 $A(1,-1)$,$B(2,3)$,$C(2,3)$,则 $\triangle ABC$ 外接圆的圆心到原点的距离为A。
$\sqrt{5}$ B。
$3$ C。
$2\sqrt{5}$ D。
$3\sqrt{2}$8.右边程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”。
执行该程序框图,若输入的$a,b$ 分别为14,18,则输出的 $a$ 为开始输入a,ba>b是a≠b 否输出a是否结束a=a-b b=b-aA。
2015年高考全国卷2文科数学试题和答案解析

2015年高考全国卷2文科数学试题及答案(word精校版)含详细解析一、选择题:本大题共12道小题,每小题5分1.已知集合A={x|-l<x<2},B={x|0<x<3},则A B=A.(-1,3)B.(-1,0)C.(0,2)D.(2,3)【答案】A【解析】试题分析:因为彳={x|-l<x<2},3={x|0<x<3},所以火汕={*|一1<*<3}.故选人.考点:集合运算.【名师点睛】本题属基础题,主要考查数列的交集运算。
2.若为a实数,且?+=3+i,则a=1+iA.-4B.-3C.3D.4【答案】D【解析】试题分析:由题意可得2+tri=(l+i)(3+i)=2+4ina=4,故选D.考点:复数运算.【名师点睛】本题主要考查复数的乘除运算,及复数相等,难度不大,但要注意运算的准确性。
3.根据下面给出的2004年至2013年我国二氧化碳年排放量(单位:万吨)柱形图,以下结论中不正确的是A.逐年比较,2008年减少二氧化碳排放量的效果最显著B.2007年我国治理二氧化碳排放显现成效C.2006年以来我国二氧化碳年排放量呈减少趋势D.2006年以来我国二氧化碳年排放量与年份正相关【答案】D【解析】试题分析:由柱形图可知2006年以来,我国二氧化碳排放童基本成i走诚趋势,所以二氧化碳援放童与年份负相关,故选D.考点:柱形图【名师点睛】本题考查学生对柱形图的理解,要求学生能从图中读出有用信息,背景比较新颖。
4,己知«=(0,-1),*=(-1,2),贝i](2a+6)-a=A.-1B.0C.1D.2【答案】B【解析】试题分析:由题意可得«2=1,a b=-2,所以(2a+b)a=2a1+a b=2-2=0.考点:向量数量积。
【名师点睛】本题主要考查向量数量积的坐标运算,属于基础题。
5.设&是等差数列{%}的前"项和,若tZ]+O,+a5=3,则S5=A.5B.7C.9D.11【答案】A【解析】试题解析:%+%+%= 3% = 3 => % = 1,S)=---------= 5角=5.考点:等差数列【名师点睛】本题主要考查等差数列性质及前〃项和公式,具有小、巧、活的特点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年普通高等学校招生全国统一考试(新课标Ⅱ卷)数学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟.第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知集合{}{}30|,21|<<=<<-=x x B x x A ,则=⋃B A ( )A .(-1,3)B .(-1,0)C .(0,2)D .(2,3) 2.若a 为实数,且i iai+=++312,则=a ( ) A .-4 B .-3 C .3 D . 43.根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是( )A .逐年比较,2008年减少二氧化硫排放量的效果最显著B .2007年我国治理二氧化硫排放显现成效C .2006年以来我国二氧化硫年排放量呈减少趋势D .2006年以来我国二氧化硫年排放量与年份正相关 4.向量()1,1-=a ,()2,1-=b ,则()=⋅+a b a 2 ( )A .-1B .0C .1D .25.设n S 是等差数列{}n a 的前n 项和,若3531=++a a a ,则=5S ( )A .5B .7C .9D .116.一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为( )A.18B.17C.16D.157.已知三点()01,A ()30,B ,()32,C ,则ABC ∆外接圆的圆心到原点的距离为( ) A.53 B.213 C.253 D.438.右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a ,b 分别为14,18,则输出的=a ( ) 第8题图A .0B .2C .4D .14 9.已知等比数列{}n a 满足411=a ,()14453-=a a a ,则=2a ( )A .2B .1 C.12 D.1810.已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O ABC 体积的最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256π11.如图,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点.点P 沿着边BC ,CD 与DA 运动,记∠BOP =x ,将动点P 到A ,B 两点距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为( )12.设函数()()2111ln xx x f +-+=,则使得()()12->x f x f 成立的x 的取值范围是( ) A.⎝ ⎛⎭⎪⎫13,1 B.()∞+⋃⎪⎭⎫ ⎝⎛∞,,131- C.⎝ ⎛⎭⎪⎫-13,13 D.⎪⎭⎫ ⎝⎛∞+⋃⎪⎭⎫ ⎝⎛∞,,3131-- 第Ⅱ卷二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.已知函数()x ax x f 23-=的图象过点()4,1-,则=a ________.14.若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -5≤0,2x -y -1≥0,x -2y +1≤0,则y x z +=2的最大值为________.15.已知双曲线过点()34,,且渐近线方程为x y 21±=,则该双曲线的标准方程为________.16.已知曲线x x y ln +=在点()1,1处的切线与曲线()122+++=x a ax y 相切,则=a ________.三、解答题(解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分) ABC ∆中,D 是BC 上的点,AD 平分BAC ∠,DC BD 2= (1)求CB sin sin (2)若︒=∠60BAC ,求B ∠ 18.(本小题满分12分)某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A 地区用户满意度评分的频率分布直方图和B 地区用户满意度评分的频数分布表.图①B 地区用户满意度评分的频数分布表满意度评分分组 [50,60) [60,70) [70,80) [80,90) [90,100] 频数2814106(1)在图②中作出B 地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可).图②(2)根据用户满意度评分,将用户的满意度分为三个等级: 满意度评分 低于70分 70分到89分不低于90分 满意度等级不满意满意非常满意估计哪个地区用户的满意度等级为不满意的概率大?说明理由.19.(本小题满分12分)如图,长方体1111D C B A ABCD -中,16=AB ,10=BC ,81=AA ,点E ,F 分别在11B A ,11C D 上,411==F D E A .过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形. (1)在图中画出这个正方形(不必说明画法和理由); (2)求平面α把该长方体分成的两部分体积的比值.20.(本小题满分12分)已知椭圆C :12222=+by a x ()0.>>b a 的离心率为22,点()22,在C 上.(1)求C 的方程;(2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .证明:直线OM 的斜率与直线l 的斜率的乘积为定值. 21.(本小题满分12分)已知函数()()x a x x f -+=1ln .(1)讨论()x f 的单调性;(2)当()x f 有最大值,且最大值大于22-a 时,求a 的取值范围.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号. 23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1cos ,:sin ,x t C y t αα=⎧⎨=⎩(t 为参数,且0t ≠ ),其中0απ≤<,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线23:2sin ,:23cos .C C ρθρθ==(I )求2C 与3C 交点的直角坐标;(II )若1C 与 2C 相交于点A ,1C 与3C 相交于点B ,求AB 最大值 24.(本小题满分10分)选修4-5:不等式选讲 设a ,b ,c ,d 均为正数,且a +b =c +d .证明: (1)若ab >cd ,则a +b >c +d ;(2)a +b >c +d 是|a -b |<|c -d |的充要条件.1、选A2、故选D3、选D4、选C5、解:在等差数列中,因为.,5525)(,1,335153531A a a a S a a a a 故选所以==⨯+===++6、解:如图所示,选D.7、选B. 8、故选B.9、解:因为{}),1(4,414531-==a a a a a n 满足所以, .21241,2,2),1(4123144424=⨯=====-=q a a q q a a a a a 所以,所以又解得故选C.10、解:因为A,B 都在球面上,又为该球面上动点,C AOB ,90︒=∠所以 三棱锥的体积的最大值为3661213132==⨯⨯R R R ,所以R=6,所以球的表面积为 S=14442=R ππ,故选C.11、解:如图,当点P 在BC 上时,,tan 4tan ,tan 4,tan ,22x x PB PA x PA x PB x BOP ++=+∴+===∠当4π=x 时取得最大值51+,以A,B 为焦点C,D 为椭圆上两定点作椭圆,显然,当点P 在C,D 之间移动时PA+PB<51+. 又函数)(x f 不是一次函数,故选B.12、解:因为函数时函数是增函数是偶函数,),0[,11)1ln()(2+∞∈+-+=x xx x f .131,)12(,12)12()(22<<->∴->∴->x x x x x x f x f 解得 故选A.第二卷一、填空题:本大题共4个小题,每小题5分 13、答:a=-214、解:当x=3,y=2时,z=2x+y 取得最大值8.15、解:设双曲线的方程为.43,4),0(422=≠=-k k k y x )代入方程,解得,点(1422=-∴y x 双曲线的标准方程为16、解:.122,11'-=∴+=x y xy ,切线方程为切线的斜率为.8120.08,08,021)2(12222=+=====-=∆=+++++=-=a x y a a a a a ax ax x a ax y x y 所以与切线平行,不符。
时曲线为或解得由联立得与将二、解答题:解答应写出文字说明,证明过程或演算步骤。
(17)(本小题满分12分)17、解:(Ⅰ)由正弦定理得,sin sin AB ACC B =∠∠再由三角形内角平分线定理得∴==,21BD DC AB AC .21sin sin =∠∠C B(Ⅱ)︒=∠+∠∴︒=∠120,60C B BAC.30,33tan ,sin 2)120sin(,sin 2sin .21sin sin 1︒=∠∴=∠=∠-︒∴∠=∠∴=∠∠B B B B B C C B 展开得)得由(18、解:(1)B 地区频率分布直方图如图所示B 地区用户满意度评分的频率分布直方图频率组距比较A,B 两个地区的用户,由频率分布直方图可知:A 地区评分均值为45x0.1+55x0.2+65x0.3+75x0.2+85x0.15+95x0.05=67.5分B 地区评分均值为55x0.05+65x0.2+75x0.35+85x0.25+95x0.15=76.5分xP O DCBAA 地区用户评价意见较分散,B 地区用户评价意见相对集中。
(2)A 地区的用户不满意的概率为0.3+0.2+0.1=0.6, B 地区的用户不满意的概率为0.05+0.20=0.25,所以A 地区的用户满意度等级为不满意的概率大。
19、解:(I )在AB 上取点M,在DC 上取点N ,使得AM=DN=10,然后连接EM,MN,NF,即组成正方形EMNF ,即平面α。
(II )两部分几何体都是高为10的四棱柱,所以体积之比等于底面积之比,即.971261041121=++==EMBB AMEA S S V V20、解、(I )如图所示,由题设得,22=a c 又点的坐标满足椭圆的方程,所以12422=+ba ,联立解得:.148,4,82222=+==yx C b a 的方程为:所以切线(II )设A,B 两点的坐标为.,,,,,2211mnk n m M y x y x om =)的坐标为(点)),(( ,82,8222222121=+=+y x y x 则上面两个式子相减得:.2222121.0)()(22121121221222122nmn m y y x x x x y y x x y y -==⨯-=++-=--=-+-变形得.21)2(1212-=⨯-=⨯--=⋅∴m n n m m n x x y y k k oml (定值)21、解:已知()()ln 1f x x a x =+-..),1()1,0)(00)(0.1)(')1(上是减函数上是增函数,在在(时,函数当)上是增函数;,在(时,函数当+∞>∞+≤-=aa x f a x f a a xx f (II )由(1)知,当.ln 1)1(1)(0a a a f a x x f a --==>时取得最大值在时,函数 .01ln ,22ln 1<-+->--a a a a a 整理得由.1,0(,10),1()(,0)1(0)(,0)(',00,11',1ln )()即上述不等式即函数。