热传导方程向前差分格式的MATLAB程序
导热方程求解matlab

使用差分方法求解下面的热传导方程2(,)4(,)0100.2t xx T x t T x t x t =<<<<初值条件:2(,0)44T x x x =-边值条件:(0,)0(1,)0T t T t ==使用差分公式1,,1,222(,)2(,)(,)2(,)()i j i j i j i j i j i j xx i j T x h t T x t T x h t T T T T x t O h h h -+--++-+=+≈,1,(,)(,)(,)()i j i j i j i jt i j T x t k T x t T T T x t O k k k ++--=+≈上面两式带入原热传导方程,1,1,,1,22i j i ji j i j i jT T T T T k h +-+--+= 令224k r h=,化简上式的 ,1,1,1,(12)()i j i j i j i j T r T r T T +-+=-++ix jt j编程MATLAB 程序,运行结果如下x t Tfunction mypdesolutionc=1;xspan=[0 1];tspan=[0 0.2];ngrid=[100 10];f=@(x)4*x-4*x.^2;g1=@(t)0;g2=@(t)0;[T,x,t]=rechuandao(c,f,g1,g2,xspan,tspan,ngrid);[x,t]=meshgrid(x,t);mesh(x,t,T);xlabel('x')ylabel('t')zlabel('T')function [U,x,t]=rechuandao(c,f,g1,g2,xspan,tspan,ngrid)% 热传导方程:% Ut(x,t)=c^2*Uxx(x,t) a<x<b ts<t<tf% 初值条件:% u(x,0)=f(x)% 边值条件:% u(a,t)=g1(t)% u(b,t)=g2(t)%% 参数说明% c:方程中的系数% f:初值条件% g1,g2:边值条件% xspan=[a,b]:x的取值范围% tspan=[ts,tf]:t的取值范围% ngrid=[n,m]:网格数量,m为x网格点数量,n为t的网格点数量% U:方程的数值解% x,t:x和t的网格点n=ngrid(1);m=ngrid(2);h=range(xspan)/(m-1);x=linspace(xspan(1),xspan(2),m);k=range(tspan)/(n-1);t=linspace(tspan(1),tspan(2),n);r=c^2*k/h^2;if r>0.5error('为了保证算法的收敛,请增大步长h或减小步长k!')ends=1-2*r;U=zeros(ngrid);% 边界条件U(:,1)=g1(t);U(:,m)=g2(t);% 初值条件U(1,:)=f(x);% 差分计算for j=2:nfor i=2:m-1U(j,i)=s*U(j-1,i)+r*(U(j-1,i-1)+U(j-1,i+1));endend。
热传导模型方程matlab

热传导模型方程引言热传导模型方程是描述热传导过程的数学模型,它在物理学、工程学等领域中有着广泛的应用。
该方程可以用来求解物体内部的温度分布以及热量的传输过程。
本文将重点介绍热传导模型方程在Matlab中的实现方法及应用。
热传导模型方程热传导模型方程是一种偏微分方程,用于描述物体内部温度分布随时间的变化。
它的一般形式如下:∂u/∂t = κ∇²u其中,u是温度分布函数,t是时间,κ是热传导率,∇²是拉普拉斯算子。
离散化处理为了在计算机中求解热传导模型方程,我们需要对其进行离散化处理。
通常,我们将物体分成若干个小区域,每个小区域的温度可以看作是一个离散节点。
然后,我们利用数值差分方法将偏微分方程转化为差分方程。
最常用的数值差分方法是有限差分法,其中最简单的方法是二阶中心差分法。
二阶中心差分法二阶中心差分法是一种常用的数值差分方法,它能够较为准确地近似热传导模型方程。
该方法利用了节点的前后两个时间步长的温度值和空间步长的温度梯度。
具体来说,对于一个二维网格,节点(i, j)的二阶中心差分近似可以表示为:(∂u/∂t)(i, j) ≈ (u(i+1, j) - 2u(i, j) + u(i-1, j))/(Δx²) + (u(i, j+1) - 2u(i, j) + u(i, j-1))/(Δy²)其中,Δx和Δy分别是空间步长。
Matlab实现在Matlab中,我们可以通过编写代码来求解热传导模型方程。
下面是实现该方程的一个示例代码:% 定义初始条件和边界条件N = 50; % 网格节点数L = 1; % 系统尺寸T = 1; % 总时间dx = L/N;dt = dx^2/4;x = linspace(0, L, N+1);y = linspace(0, L, N+1);[X, Y] = meshgrid(x, y);u = sin(pi*X).*sin(pi*Y); % 初始温度分布% 迭代求解热传导模型方程for t = 0:dt:Tu_new = u + dt*(del2(u)/dx^2);u = u_new;end% 可视化温度分布surf(X, Y, u)xlabel('x')ylabel('y')zlabel('Temperature')在上面的代码中,我们首先定义了初始条件和边界条件,然后利用循环迭代的方式求解热传导模型方程。
一维非定常热传导方程的求解及matlab源程序

一维非定常热传导方程的求解及matlab 源程序1、计算模型本题计算的模型示意图如图1所示,在已知两边界点温度数值的情况下,根据一维非定常热传导方程,求解整个计算域长度上的温度分布。
一维非定常热传导方程为0x Tt T 22=∂∂⋅-∂∂α,式中α=1。
总长为10m ,两端的边界数值分别为T0=100℃和Tn=300℃。
计算域内的热传导满足方程:∂T ∂t −∂∙∂2T∂X2=0图1 一维非定常热传导方程计算模型示意图2、数值分析方法在本题的计算过程中,用到的数值分析方法有:差分近似导数,追赶法解三对角方程组。
对于一维非定常热传导而言,热传导参数的分布是连续的,具有无穷多个数值,它们的数值由给定的非定常热传导方程决定。
但是微分方程无法直接求解,因此通过差分近似导数的方法,将微分方程转化成代数方程,然后通过迭代即可计算出平衡时刻各个参考点的温度。
在计算时,先由一维非定常热传导的微分方程,推导出与其对应的线性方程,将第i 个时间层上某个离散点处的温度用第i-1个时间层上某些点的温度数值来表示。
这样在求解过程中,先假定第0时间层的时刻各参考点的温度初值,然后运用线性方程组推导出第1时间层时刻,各个参考点的温度数值,再求第2时间层时刻各个参考点处的温度数值,依次类推,直到相邻时间层上的速度残差达到预先设定的收敛要求为止。
此计算模型中给定的左边界温度值为T0=100℃,右边界温度值为Tn=300℃,均恒定不变。
总长度10m 进行N 等分。
3、数值计算过程一维非定常热传导方程为:0x T t T 22=∂∂⋅-∂∂α,移项处理得:22xT t T ∂∂⋅=∂∂α一阶向前差分:t T ∂∂=t 1n ∆-+nii T T ;二阶中心差分:()211222x T x T T T ni n i n i ∆+⋅-⋅∂=∂∂⋅∂-+; 因此可化简为代数方程为:()2111n 2t x T T T T T ni n i n i n i i ∆+⋅-⋅∂=∆--++ ; 即 ()()nin i n i n i iT T T T x tT ++⋅-⋅∆∆⋅∂=-++1121n 2;用()n i n i T T 11121++++代替n i T 1+,用()n i n i T T ⋅-⋅-+22211代替n i T ⋅-2,用()ni n i T T 11121-+-+代替n i T 1-,即: ()()()()()⎥⎦⎤⎢⎣⎡++⋅-⋅-++⋅∆∂=∆+⋅-⋅∂=∆--+-++++-++n i n i n i n i n i n i n i n i n i n i i T T T T T T x x T T T T T 111111122111n 212221212t ()()()()()n i n i n i n i n i n i n i T T T x t T T x t T x t Tx t 1121121211222212-+++++-+⋅-⋅∆⋅∆⋅∂--=⋅∆⋅∆⋅∂+⋅⎪⎪⎭⎫ ⎝⎛∆∆⋅∂+-⋅∆⋅∆⋅∂因此,上式的含义是:第n+1个时间层上第i-1个,第i 个和第i+1个参考点处的温度值,与第n 个时间层上第i-1个,第i 个和第i+1个参考点处的温度值的关系式;代数关系式示意图如图2所示:图2代数方程式示意图令A=()22x t ∆⋅∆⋅∂,B=()21x t ∆∆⋅∂+ ,Ki=()()n i n i n i n i T T T x t T 11222-++⋅-⋅∆⋅∆⋅∂-- 则上式可化简为:Ki T A T B T A n i n i n i =⋅+⋅-⋅++++-11111即2321K T A T B T A =⋅+⋅-⋅'21232K T A K T A T B =⋅-=⋅+⋅-3432K T A T B T A =⋅+⋅-⋅112---=⋅+⋅-⋅n n n n K T A T B T A'1112----=⋅-=+⋅-⋅n n n n n K T A K T B T A⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⋅⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡--'16543'2165432B -A 0 0 0 0 0 00 0A B -A 0 0 00 0 0A B -A 0 00 0 0 0A B -A 00 0 0 0 0A B -A 0 0 0 0 0 0A B -n n K K K K K K T T T T T T当第0时间层时刻各个参考点温度已知时,方程式右侧的矩阵[K2’ K3 K4 K5 ……Kn-2 Kn-1’] ‘为已知量,系数矩阵U 也为已知量,则可以计算出第1时间层各个参考点的温度值[T2 T3 T4 T5 T6……Tn-1] ‘,并且T1=100,Tn=300。
matlab差分法求解传热微分方程

matlab差分法求解传热微分方程matlab差分法求解传热微分方程是一种利用有限差分法对传热微分方程进行数值求解的方法。
有限差分法是一种广泛应用于偏微分方程求解的数值方法,它将连续的空间和时间离散化,通过离散的节点上的值来逼近连续的解。
1.matlab差分法求解传热微分方程求解步骤与规则:在使用matlab差分法求解传热微分方程时,通常遵循以下步骤和规则:(1)确定问题的物理模型:首先明确传热问题的类型,如稳态或非稳态传热,以及问题的边界条件和初始条件。
(2)离散化:将求解域划分为离散的网格节点,用于表示空间坐标。
同时,根据时间步长对时间进行离散化。
(3)建立差分方程:根据离散化的空间和时间,将传热微分方程转化为差分方程。
这通常包括对空间导数和时间导数的差分处理。
(4)选择适当的差分格式:根据问题的稳定性要求,选择合适的差分格式。
常见的有限差分格式有向前差分、向后差分、中心差分等。
(5)编写matlab程序:根据所选的差分格式和差分方程,编写matlab 程序进行求解。
程序中需要包含迭代算法,如三角剖分法、平方根法等,以收敛解为最终结果。
(6)验证和分析:通过与理论解或实验数据进行对比,验证求解结果的正确性和稳定性。
此外,分析结果以了解传热过程的规律和特点。
2.matlab差分法求解传热微分方程使用场景:matlab差分法求解传热微分方程在以下场景中具有广泛应用:(1)建筑节能分析:通过求解建筑墙体内部的温度场,评估建筑物的保温性能,为建筑设计提供依据。
(2)电子散热设计:分析电子设备内部的传热过程,优化散热结构,提高设备的工作效率和可靠性。
(3)能源工程:研究能源转换和传输过程中的热损失,为提高能源利用效率提供理论支持。
(4)材料科学:研究材料的热传导性能,为新材料的开发和应用提供参考。
(5)生物医学:分析生物组织内的传热过程,辅助诊断和治疗相关疾病。
总之,matlab差分法在求解传热微分方程方面具有较高的准确性和灵活性,为各种传热问题的分析和解决提供了有力工具。
热传导方程有限差分法的MATLAB实现

热传导方程有限差分法的MATLAB实现
史策
【期刊名称】《咸阳师范学院学报》
【年(卷),期】2009(24)4
【摘要】对于有界热传导齐次方程的混合问题,用分离变量法求解往往很复杂.为了更好地理解热传导方程的解,使用MATLAB软件将方程的解用图像表示出来.通过区域转换的思想,利用MATLAB编程实现一定区域内热传导方程的有限差分方法,数值表明了方法的可行性和稳定性.
【总页数】4页(P27-29,36)
【作者】史策
【作者单位】西安建筑科技大学,理学院,陕西,西安,710055
【正文语种】中文
【中图分类】O552
【相关文献】
1.有限差分法解薛定谔方程与MATLAB实现 [J], 刘晓军
2.放射性气体扩散方程有限差分法的MATLAB实现 [J], 龙亮;张振华;姜林;周科廷;莫懿新
3.泊松方程的有限差分法的MATLAB实现 [J], 冯立伟;徐涛;屈福志
4.拉普拉斯方程有限差分法的MATLAB实现 [J], 谢焕田;吴艳
5.基于MATLAB的电磁场二维场域有限差分法分析 [J], 林向会;谢本亮
因版权原因,仅展示原文概要,查看原文内容请购买。
【毕业设计(论文)】二维热传导方程有限差分法的MATLAB实现

第1章前言1.1问题背景在史策教授的《一维热传导方程有限差分法的MATLAB实现》和曹刚教授的《一维偏微分方程的基本解》中,对偏微分方程的解得MATLAB实现问题进行过研究,但只停留在一维中,而实际中二维和三维的应用更加广泛。
诸如粒子扩散或神经细胞的动作电位。
也可以作为某些金融现象的模型,诸如布莱克-斯科尔斯模型与Ornstein-uhlenbeck过程。
热方程及其非线性的推广形式也被应用与影响分析。
在科学和技术发展过程中,科学的理论和科学的实验一直是两种重要的科学方法和手段。
虽然这两种科学方法都有十分重要的作用,但是一些研究对象往往由于他们的特性(例如太大或太小,太快或太慢)不能精确的用理论描述或用实验手段来实现。
自从计算机出现和发展以来,模拟那些不容易观察到的现象,得到实际应用所需要的数值结果,解释各种现象的规律和基本性质。
科学计算在各门自然科学和技术科学与工程科学中其越来越大的作用,在很多重要领域中成为不可缺少的重要工具。
而科学与工程计算中最重要的内容就是求解科学研究和工程技术中出现的各种各样的偏微分方程或方程组。
解偏微分方程已经成为科学与工程计算的核心内容,包括一些大型的计算和很多已经成为常规的计算。
为什么它在当代能发挥这样大的作用呢?第一是计算机本身有了很大的发展;第二是数值求解方程的计算法有了很大的发展,这两者对人们计算能力的发展都是十分重要的。
1.2问题现状近三十年来,解偏微分方程的理论和方法有了很大的发展,而且在各个学科技术的领域中应用也愈来愈广泛,在我国,偏微分方程数值解法作为一门课程,不但在计算数学专业,而且也在其他理工科专业的研究生的大学生中开设。
同时,求解热传导方程的数值算法也取得巨大进展,特别是有限差分法方面,此算法的特点是在内边界处设计不同于整体的格式,将全局的隐式计算化为局部的分段隐式计算。
而且精度上更好。
目前,在欧美各国MATLAB的使用十分普及。
在大学的数学、工程和科学系科,MATLAB苏佳园:二维热传导方程有限差分法的MATLAB实现被用作许多课程的辅助教学手段,MATLAB也成为大学生们必不可少的计算工具,甚至是一项必须掌握的基本技能。
热传导方程的差分格式讲解

热传导方程的左分格式—上机卖习报告二零一gg年五月一维抛物方程的初边值问题分别用向前差分格式、向后差分格式、六点对称格式,求解下列问题:du d2u”(兀0) = sin兀X、0 <x <1w(0,O = z/(l,O = 0, r >0在f = 0.05,0.1和0.2时刻的数值解,并与解析解u^t) = e-7:l sm(^x)进行比较。
1差分格式形式设空间步长h = l/N,时间步长r>0, T=M T,网比r = r/h2.(1)向前差分格式向前差分格式,即Z = /C\) ‘“;=0 =心),必=吆=0其中,丿= 1,2,…,N —1,R = 1,2,…,M—l. ^r^at/h2表示网比。
(1)式可改写成如下:M*+1 = + (i-2r)Uj + rw*_! + tfj此格式为显格式。
其矩阵表达式如下:Q-2r r)r l-2r(j、r 1一2广rl吐7、厂1一2、用丿加(2)向后差分格式(1)向后差分格式,即=0=久形)上:=WN =a其中j = 12・・\N_l,k = H,M_L (2)式可改写成- rw :[: + (l+2r )叶' -中;;=0 + 叭此种差分格式被称为隐格式。
其矩阵表达式如下:rl + 2r -r( j \ I”-r l + 2r-r l + 2r -rW.V-1-r 1 + 2广丿MJ< UN >(3) 六点对称格式六点差分格式:喟-0 _ a加:-2喟+唸;唏- 2”; +吃,—T2L戸 戸 J眄=0产久XJM=H ;=O.将(3)式改写成-g 唸;+ (1 + 时-1 昭=g 略 + (1 - 诃 * * 咯 + /其矩阵表达式如下:(1 + r -r/2<l-r r/2 ) ( j\ -r/2 l + rr/2 1-rui-r/2 l + r -r/2r/2 1-r r/2X-r 1+2匚M丿r/2 l-2r ;E >2利用MATLAB 求解问题的过程对每种差分格式依次取N = 40., r=l/1600, r=l/3200, el/6400,用 MATLAB 求解并图形比较数值解与精确解,用表格列出不同剖分时的Z?误差。
利用matlab程序解决热传导问题-推荐下载

1、题目及要求
1. 原始题目及要求 2. 各节点的离散化的代数方程 3. 源程序 4. 不同初值时的收敛快慢 5. 上下边界的热流量(λ=1W/(m℃)) 6. 计算结果的等温线图 7. 计算小结 题目:已知条件如下图所示:
二、各节点的离散化的代数方程
各温度节点的代数方程
ta=(300+b+e)/4 ; tb=(200+a+c+f)/4; tc=(200+b+d+g)/4; td=(2*c+200+h)/4 te=(100+a+f+i)/4; tf=(b+e+g+j)/4; tg=(c+f+h+k)/4 ; th=(2*g+d+l)/4 ti=(100+e+m+j)/4; tj=(f+i+k+n)/4; tk=(g+j+l+o)/4; tl=(2*k+h+q)/4
0,0,-2,4,0,0,0,-1,0,0,0,0,0,0,0,0; -1,0,0,0,4,-1,0,0,-1,0,0,0,0,0,0,0; 0,-1,0,0,-1,4,-1,0,0,-1,0,0,0,0,0,0; 0,0,-1,0,0,-1,4,-1,0,0,-1,0,0,0,0,0; 0,0,0,-1,0,0,-2,4,0,0,0,-1,0,0,0,0; 0,0,0,0,-1,0,-1,0,4,0,0,0,-1,0,0,0; 0,0,0,0,0,-1,0,0,-1,4,-1,0,0,-1,0,0; 0,0,0,0,0,0,-1,0,0,-1,4,-1,0,0,-1,0; 0,0,0,0,0,0,0,-1,0,0,-2,4,0,0,0,-1; 0,0,0,0,0,0,0,0,-2,0,0,0,24,-1,0,0; 0,0,0,0,0,0,0,0,0,-2,0,0,-1,24,-1,0; 0,0,0,0,0,0,0,0,0,0,-2,0,0,-1,24,-1; 0,0,0,0,0,0,0,0,0,0,0,-1,0,0,-1,12]; b=[300,200,200,200,100,0,0,0,100,0,0,0,300,200,200,100]'; [x,n]=gauseidel(A,b,[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]',1.0e-6) xx=1:1:4; yy=xx; [X,Y]=meshgrid(xx,yy); Z=reshape(x,4,4); Z=Z' contour(X,Y,Z,30) Z= 139.6088 150.3312 153.0517 153.5639