代数发展史_3

合集下载

数学的发展史3篇

数学的发展史3篇

数学的发展史第一篇:古代数学的发展史数学作为一门科学已经有着悠久的历史,其发展可以追溯到几千年前的古代文明时期。

古代文明有着许多令人惊叹的发明和创新,而数学的发展也是其中之一。

本篇文章将讲述古代数学的发展史,包括古埃及、美索不达米亚、印度和中国等社会的数学发展。

古埃及古埃及人在建造金字塔和其他伟大的建筑物时应用了数学。

他们发展了基本的计数系统,用于测量土地和其他财产。

古埃及人也了解一些三角学和几何学,这些技能在建筑和测量时非常有用。

古埃及人还发明了日历,古埃及的太阳历比我们现代的格里高里历要准确得多。

美索不达米亚美索不达米亚数学和代数学在世界范围内也是非常重要的。

例如,许多人认为美索不达米亚人是发明了零的人。

美索不达米亚人使用六十进制的计数系统,这是我们现代时钟的基础之一。

美索不达米亚人还使用了很多几何学和测量技术,被誉为“天文学之父”的巴比伦人就是典型的例子。

印度印度在数学方面的成就也非常突出,他们发展了代数和几何学。

印度的古代文献包含了一些最早的数学著作,其中许多是在吠陀时期(公元前1500年至公元前1000年)编写的。

印度人在数学中使用了许多特别的符号,如a和d,古印度代数家使用了这两个符号来代表未知量和常数。

中国中国的数学发展也非常辉煌,他们在算术、几何学、代数学和三角学方面都取得了重要成就。

中国人创造了非常高精度的计时钟,和美索不达米亚人一样,他们也采用了六十进制的计数系统。

在明朝时期,华罗庚等人开展了许多科学研究,华罗庚更是成为了一位伟大的数学家。

总之,古代数学的发展虽然在每个社会中都有所不同,但都为现代数学的发展奠定了基础。

在下一篇文章中,我们将探讨欧洲中世纪数学的发展。

从线性代数发展史上的数学家得到的启示

从线性代数发展史上的数学家得到的启示

从线性代数发展史上的数学家得到的启示线性代数是代数学的一个分支,“代数”这一个词在我国出现较晚,在清代时才传入中国,当时被人们译成“阿尔热巴拉”,直到1859年,清代著名的数学家、翻译家李善兰才将它翻译成为“代数学”,一直沿用至今。

线性代数主要处理的是线性关系的问题,通过线性代数的学习,能使学生获得应用科学中常用的矩阵、线性方程组等理论及其有关基本知识,并具有较熟练的矩阵运算能力和用矩阵方法解决一些实际问题的能力。

线代课本的前言上就说:“在现代社会,除了算术以外,线性代数是应用最广泛的数学学科了。

”我们的线代教学的一个很大的问题就是对线性代数的应用涉及太少,课本上涉及最多的只能算解线性方程组了,但这只是线性代数很初级的应用。

我自己对线性代数的应用了解的也不多。

但是,线性代数在计算机数据结构、算法、密码学、对策论等等中都有着相当大的作用。

没有应用到的内容很容易忘,我现在高数还基本记得。

因为高数在很多课程中都有广泛的应用,比如在国贸专业中的会计课中。

线性代数被不少同学称为“天书”,足见这门课给同学们造成的困难。

线代是一门比较费脑子的课,如果你觉得上课跟不上老师的思路那么请预习。

预习时要“把更多的麻烦留给自己”,即遇到公式、定理、结论马上把证明部分盖住,自己试着证一下,可以不用写详细的过程,想一下思路即可;还要多猜猜预习的部分会有什么公式、定理、结论;还要想一想预习的内容能应用到什么领域。

当然,这对一些同学有困难,可以根据个人的实际情况适当调整,但要尽量多地自己思考。

一定要重视上课听讲,不能使线代的学习退化为自学。

上课时一定要“虚心”,即使老师讲的某个题自己会做也要听一下老师的思路。

上完课后不少同学喜欢把上课的内容看一遍再做作业。

实际上应该先试着做题,不会时看书后或做完后看书。

这样,作业可以帮你回忆老师讲的内容,重要的是这些内容是自己回忆起来的,这样能记得更牢,而且可以通过作业发现自己哪些部分还没掌握好。

近世代数基础课件

近世代数基础课件
37
第3讲 特殊的唯一分解环 1 主理想环 2 欧氏环 3 唯一分解环上的一元多项式环 4 因子分解与多项式的根
38
第六章 群论补充
39
第1讲 共轭元与共轭子群 1 第2讲 群的直积 第3讲 群在集合上的作用 第4讲 西罗定理
40
第1讲 共轭元与共轭子群
研究群内一些特殊类型的元素和子群
1 中心和中心化子 2 共轭元和共轭子群 3 共轭子群与正规化子
53
四 代数学发展的四个阶段
代数学经历了漫长的发展过程,抽象代 数(近世代数)是19世纪最后20年直到20世 纪前30年才发展起来的现代数学分支. 1 最初的文字叙述阶段 2 代数的简化文字阶段 3 符号代数阶段 4 结构代数阶段
54
1 最初的文字叙述阶段
古希腊之前直到丢番图(Diophantine,公元250年)时 代,代数学处于最初的文字叙述阶段,这一阶段除古希腊 数学之外还包括古巴比伦、古埃及与古代中国的数学. 此时算术或代数尚未形成任何简化的符号表达法,代数 运算则都采用通常的语言叙述方式表达,因而代数推理 也都采用直观的方法.在中国古代则有著名的筹算法,而 在古希腊则借助于几何图形的变换方法.最典型的代表 是毕达哥拉斯(Pythagoras,公元前585-497)几何数论方 法.例如通过图形的组合可以得到
}
} }
映射相关概念及举例
映射的运算 映射及其相关概念的推广
}
特殊映射
6
第3讲 基本概念之代数运算适应的规则 ——运算律 运算律
1 与一种代数运算发生关系的运算律 (1)结合律 (2)交换律 (3)消去律 2 与两种代数运算发生关系的运算律 (1)第一分配律 (2)第二分配律
7
第4讲 基本概念之与代数运算发生关系的映射 ——同态映射 同态映射 1 同态映射 2 同态满射 3 同构映射 4 自同构映射 5 举例

数学发展史时间轴

数学发展史时间轴

数学发展史时间轴
数学发展史可以追溯到人类文明的起源,几乎与人类思维和社会发展同步进行。

下面是一个简要的数学发展史时间轴:
1. 古代数学(约公元前3000年-公元5世纪):
古代数学主要集中在古巴比伦、古埃及、古希腊、古印度和古中国等地。

这个时期的数学主要涉及算术、几何和代数等基本概念和方法的发展。

2. 中世纪数学(公元5世纪-15世纪):
中世纪数学主要由阿拉伯数学家和欧洲学者推动。

阿拉伯人引入了印度-阿拉伯数字系统和代数的进一步发展。

欧洲学者则致力于恢复和传播古代数学知识,推动了几何学的发展。

3. 文艺复兴时期(15世纪-17世纪):
文艺复兴时期是数学发展的黄金时期,涌现出许多伟大的数学家。

代表性的有勒内·笛卡尔和伽利略·伽利雷,他们为代数和几何学的发展做出了重要贡献。

4. 近代数学(17世纪-19世纪):
近代数学的突破主要来自于微积分学的发展。

牛顿和莱布尼茨同
时独立发现了微积分的基本原理。

这一时期还涌现出许多其他重要的数学家,如欧拉、高斯和拉格朗日等。

5. 现代数学(20世纪至今):
现代数学涉及的领域非常广泛,包括数学分析、代数学、几何学、概率论、统计学、拓扑学等。

数学家们不断提出新的理论、方法和应用,推动着数学的不断发展和应用的扩展。

这只是一个简要的数学发展史时间轴,数学的发展一直在不断演进,影响着我们的生活和科学技术的进步。

代数发展史

代数发展史

•对于两鼠穿墙问题,《九章算术》给出的解法便是享誉 古今的“盈不足术”。(回忆一下,这是我们小学时学过 •的)具体解法如下:
• 解:假设两只老鼠打洞2天,则仍差5寸(1寸为0.1 尺),不能把墙打穿,假设打洞3天,就会多 出3尺7寸半,这样一来,便化繁为简,成为 了典型的“盈不足”问题:
两只老鼠相遇的 23.7530.522
3.2 代数运算
• 引入数学符号之后,人们开始对于方程,方程组的叙 述做到了简约而不简单,而这个极大的简化也正式将 代数运算推上了历史的舞台。
• 而各种算术中的运算法则在代数运算中的通用性更是 大大的加速了人们对于方程求解这一类在日常生活和 科学研究中占据重要地位的数学问题的研究,最终导 致了新的数学学科的发现。
• 今有垣厚五尺,两鼠对穿,大鼠日一尺, 小鼠亦日一尺,大鼠日自倍,小鼠日自半, 问几何日相逢?各穿几尺?
• 用今天的办法,设大鼠和小鼠在x日后相逢: • 我们得出这样的一个用数列求和的等式:
1 2 4 2 x 1 1 1 1 5 24 2 x
1.1.3 求解过程
• 由数列求和公式得:
代数发展史
整体脉络
• 1.算术与数的进制 • 2.数的表示与数的扩充 • 3.数学符号与代数运算 • 4.方程求解与抽象代数
1.1 算术
• 高斯说:“算术给予我们一个用之不竭、 充满乐趣的宝库。”
• 中国古代的政治制度,很大程度决定了 中国数学中“算”占据了最主要的地位, 所以毋庸置疑的是,中国古代数学对于 算术的重视程度和取得的成就都是世界 上数一数二的,而传承下来的著作,解 决掉的难题和让人拍案叫绝的计算方法 仍是当今数学界的瑰宝。
• 在这其中,丢番图,以及我们熟知的韦达,笛卡尔都做了 巨大的贡献,他们将繁琐的文字表达方式改进为使用 x,y,z代表未知量,用a,b,c代表已知量。

世界数学发展史

世界数学发展史

第一节数学发展的主要阶段2009—10-12 10:05:28 来源:中外数学网浏览:7次乔治·萨顿曾说过:“科学史是人类认识自然的经验的历史回顾.”数学史是数学发展历史的回顾,它研究数学产生发展的历史过程,探求其发展的规律。

研究数学史,可以通过历史留下的丰富材料,了解数学何时兴旺发达,何时停滞衰退,从中总结经验教训,以利于数学更进一步的发展。

关于数学发展史的分期,一般来说,可以按照数学本身由低级到高级分阶段进行,也就是分成四个本质不同的发展时期,每一新时期的开始都以卓越的科学成就作标志,这些成就确定了数学向本质上崭新的状态过渡.这里我们主要介绍世界数学史的发展。

一、数学的萌芽时期这一时期大体上从远古到公元前六世纪.根据目前考古学的成果,可以追溯到几十万年以前.这一时期可以分为两段,一是史前时期,从几十万年前到公元前大约五千年;二是从公元前五千年到公元前六世纪.数学萌芽时期的特点,是人类在长期的生产实践中,逐步形成了数的概念,并初步掌握了数的运算方法,积累了一些数学知识.由于土地丈量和天文观测的需要,几何知识初步兴起,但是这些知识是片断和零碎的,缺乏逻辑因素,基本上看不到命题的证明.这个时期的数学还未形成演绎的科学.这一时期对数学的发展作出贡献的主要是中国、埃及、巴比伦和印度.从很久以前的年代起,我们中华民族勤劳的祖先就已经懂得数和形的概念了.在漫长的萌芽时期中,数学迈出了十分重要的一步,形成了最初的数学概念,如自然数、分数;最简单的几何图形,如正方形、矩形、三角形、圆形等.一些简单的数学计算知识也开始产生了,如数的符号、记数方法、计算方法等等.中小学数学中关于算术和几何的最简单的概念,就是在这个时期的日常生活实践基础上形成的.总之,这一时期是最初的数学知识积累时期,是数学发展过程中的渐变阶段.二、初等数学时期从公元前六世纪到公元十七世纪初,是数学发展的第二个时期,通常称为常量数学或初等数学时期.这一时期也可以分成两段,一是初等数学的开创时代,二是初等数学的交流和发展时代.1.初等数学的开创时代.这一时代主要是希腊数学.从泰勒斯(Thales,公元前636—前546)到公元641年亚历山大图书馆被焚,前后延续千余年之久,一般把它划分为以下几个阶段:(1)爱奥尼亚阶段(公元前600—前480年);(2)雅典阶段(公元前480—前330年);(3)希腊化阶段(公元前330—前200年);(4)罗马阶段(公元前200—公元600年).爱奥尼亚阶段的主要代表有米利都学派、毕达哥拉斯(Pythagoras,公元前572-前497)学派和巧辩学派.在这个阶段上数学取得了极为重要的成就,其中有:开始了命题的逻辑证明,发现了不可通约量,提出了几何作图的三大难题——三等分任意角、倍立方和化圆为方,并且试图用“穷竭法”去解决化圆为方的问题.所有这些成就,对数学后来的发展产生了深远的影响.雅典阶段的主要代表有柏拉图(Plato,公元前427—前347)学派、亚里斯多德(Aristotle,公元前384-前322)的吕园学派、埃利亚学派和原子学派.他们在数学上取得的成果,十分令人赞叹,如柏拉图强调几何对培养逻辑思维能力的重要作用;亚里斯多德建立了形式逻辑,并且把它作为证明的工具.所有这些成就把数学向前推进了一大步.上述两个阶段称为古典时期.这一时期的数学发展,在希腊化阶段上开花结果,取得了极其辉煌的成就,产生了三个名垂青史的大数学家欧几里得、阿基米德(Archimeds,公元前287—前212)和阿波罗尼(Apollonius,约公元前262—前190).欧几里得的《几何原本》第一次把几何学建立为演绎体系,从而成为数学史乃至思想史上一部划时代的著作.阿基米德善于将抽象的数学理论和具体的工程技术结合起来.他根据力学原理去探求几何图形的面积和体积,第一个播下了积分学的种子.阿波罗尼综合前人的成果,写出了有创见的《圆锥曲线》一书,它成为后来所有研究这一问题的基础和出发点.这三大数学家的丰功伟绩,把希腊数学推向光辉的顶点.随着罗马成为地中海一带的统治者,希腊数学也就转入到罗马阶段.在这个阶段也出现了许多有成就的数学家,其中特别值得一提的是托勒密(C·Ptolemy,公元90-168)结合天文学对三角学的研究、尼可马修斯(Nichomachus,公元100年左右)的《算术入门》和丢番图(Diophantus,约246-330)的《算术》.后两本著作把数学研究从形转向数,在希腊数学中独树一帜.尤其是《算术》一书,它对后来数学发展的影响,仅次于《几何原本》.总之,这一时代的特点是:数学已经开始发展成为一门独立科学,建立了真正意义上的数学理论;数学的两个分支——算术和几何,已经作为演绎系统建立起来;数学发生了非常明显的变化,即从经验形态上升为理论形态.特别要指出的是,关于数学研究的对象,当时已经比较明确地提了出来.古希腊数学家亚里斯多德在《形而上学》第十三篇第三章中说,数学的东西(例如点、线)是感性事物的抽象.他的这个思想直到现在仍然值得我们赞赏,因为它明确地、清楚地揭示出数学研究的特点,这就是把物体、现象、生活的一个方面抽象化.2.初等数学的交流和发展时代.从公元六世纪到十七世纪初,是初等数学在各个地区之间交流,并且取得了重大进展的时期.在亚洲地区,有中国数学、印度数学和日本数学.我国在数学上取得的成就将在后面专门叙述.印度数学的特点是受婆罗门教的影响很大,此外,它还受到中国、希腊和近东数学的影响,特别是中国的影响.印度数学的成就主要在算术和代数方面,最为人称道的是位值制记数法,现行的“阿拉伯数码”源于印度.七世纪以后,建立了以巴格达为中心的阿拉伯数学.它主要受希腊数学和印度数学的影响.这一时期产生了阿尔·花拉子模(AL-Khowarizmi,780—850)等一大批数学家,为世界数学宝库增添了光彩.代数是阿拉伯数学中最先进的部分,“代数”这个名词出自花拉子模的著作,它的研究对象被规定为方程论;几何从属于代数,不重视证明;三角学是他们的最大贡献,他们引入正切、余切、正割、余割等三角函数,制作精密的三角函数表,发现平面三角与球面三角若干重要的公式,使三角学脱离天文学独立出来.中世纪欧洲的数学家们基本上是引进,学习中国、印度、希腊和阿拉伯的数学,其中著名的数学家有意大利的斐波那契(L·Fibonacci,约1170-1250)、法国的奥雷斯姆(N·Oresme,约1323—1382)等.到了十五、十六世纪,意大利的数学家帕西奥里(L·Pacioli,1445—1509)、塔塔利亚(N·Tartaglia,1500—1557)等人在代数方程论方面作了一系列突破性的工作,并使用了虚数,欧洲人终于取得了超过前人的成就.法国的韦达(F·Vieta,1540—1603)改进了符号,使代数学大为改观.苏格兰的纳皮尔(J.Napi-er,1550—1617)发明了对数,使计算方法向前推进了一大步.这个时期的特点是初等数学的主体部分(算术、代数与几何)已全部形成,并且发展成熟了.例如在算术方面,除了继承原有的计算技术之外,还发明了对数,代数也有很大的发展,韦达建立了符号代数.在三角学方面,雷琼蒙塔努斯(J·Regiomontanus,1436—1476)著了《三角全书》,其中包括平面三角和球面三角.在几何方面,透视法满足了绘画的需要,投影法满足了绘制地图的需要,等等.3.中国在这一时期对数学的贡献.我们伟大的祖国是世界上公认的四大文明古国之一,有悠久的历史和灿烂的文化.上下五千年的中国文化丰富多采、为世界文明作出了不朽的贡献.中国数学的发展和成就,在世界数学史上占有非常重要的地位.在世界数学的宝库里,中国古代数学是影响深远、风格独特的体系.在初等数学时期,我国在数学领域取得了许多伟大成就,出现了许多闻名世界的数学家,如刘徽(公元三世纪)、祖冲之(429—500)、王孝通(公元六世纪—七世纪)、李冶(1192—1279)、秦九韶(1202-1261)、朱世杰(十三、四世纪)等人.出现了许多专门的数学著作,特别是《九章算术》的完成,标志着我国的初等数学已形成了体系.这部书不但在中国数学史上而且在世界数学史上都占有重要的地位,一直受到中外数学史家的重视.我国传统数学在线性方程组、同余式理论、有理数开方、开立方、高次方程数值解法、高阶等差级数以及圆周率计算等方面,都长期居世界领先地位.例如,1802年,一个意大利科学协会为了改进高次方程的解法,曾颁发一枚金质奖章,这枚奖章为意大利数学家鲁菲尼(P·Ruffini,1765-1822)所获得,1819年英国数学家霍纳(G·Horner,1786—1837)完全独立地发展了一个相同的方法.不过他们谁也不知道,早在十三世纪,秦九韶就已经发展了古代解数值高次方程的方法,他的方法与1819年霍纳重新发现的方法实质上是相同的.我国十一世纪杰出的数学家贾宪是最早得出关于二项式展开式的系数规律的(贾宪三角形),在欧洲称之为“巴斯卡”(B·Pascal,1623—1662)三角形,而巴斯卡是在十七世纪才得出这一结果的.由刘徽在公元三世纪根据《九章算术》推导的羡除公式,欧洲人却误认为是勒让德(A·M·Legendre,1752—1833)首创的.祖冲之把圆周率π计算到范围为 3.1415926<π<3.1415927,以及密率,保持世界记录千年以上。

高等代数的发展史

高等代数的发展史

高等代数的发展史1. “哎呀,你们知道吗,高等代数的发展那可真是充满了神奇呀!”就好像我们每天都在成长一样,高等代数也在不断变化呢!比如妈妈每天给我准备不同的早餐,就像高等代数里不断出现的新理论新方法。

2. “嘿,想想看,高等代数的发展史就像一部超级刺激的冒险故事!”就如同我们玩游戏不断闯关一样,高等代数也是一步步向前发展的呀!比如我们在游戏里努力升级,不就和高等代数不断突破一样嘛。

3. “哇塞,高等代数的发展历程好精彩呀!”这多像我们在学校里的各种经历呀,有挑战也有收获!比如我们努力解出一道难题,就如同高等代数攻克一个难关。

4. “你们看,高等代数的发展史不就是智慧的积累过程嘛!”就像我们一点点积累知识一样呢!比如我每天背几个单词,时间长了就会很多了,高等代数也是这样积累起来的呀。

5. “哎呀呀,高等代数的发展可是凝聚了好多人的心血呀!”就好像我们一起完成一个大项目,需要大家齐心协力。

比如我们小组合作做手工,每个人都出一份力。

6. “嘿,高等代数的发展史真的好有趣呀!”这和我们的生活一样充满了趣味呀!比如我发现了一个新的好玩的地方,就如同高等代数中发现了新的理论。

7. “哇哦,高等代数的发展可真是了不起呀!”就像我们努力取得好成绩时的那种了不起呀!比如我考了第一名,那感觉多棒,高等代数的发展也是这么棒呢。

8. “你们知道吗,高等代数的发展史简直太神奇啦!”就像我们看到了魔术表演一样神奇呢!比如魔术师变出神奇的魔术,高等代数也有着让人惊叹的发展。

9. “哎呀,高等代数的发展真让人惊叹呀!”这就好像我们惊叹大自然的奇妙一样!比如看到美丽的彩虹,我们会惊叹,高等代数的发展也让我们惊叹。

10. “哇,高等代数的发展史是多么辉煌呀!”就如同我们获得了很大的荣誉一样辉煌呢!比如我们在比赛中获奖了,那是多么值得骄傲,高等代数的发展也是如此辉煌。

我的观点结论:高等代数的发展史真的是充满了魅力和神奇,值得我们好好去了解和探索呀!。

近世代数基础课件

近世代数基础课件
1 环的定义 2 环的举例
3 环的初步性质
25
第2讲 特殊元素及性质
1 特殊元素之一—零元、负 元及单位元、逆元、零因子 2 零因子的性质 3 求环中的特殊元素——举例
26
第3讲 环的分类及特殊环的性质
1 特殊环的定义 2 除环的性质 3 有限环的几个相关结论 4 域中元素的计算方法
5 循环环的性质
第7讲 循环群
第8讲 变换群 第9讲 特殊子群

特殊群
第10讲 群的同态与同构 第11讲 群与对称的关系
11
第1讲 代数系统 1 代数系统及子代数系统的定义 2 代数系统的举例
12
第2讲 半群
1 半群、子半群、交换半群的定 义及判定定理 2 半群的举例 3 半群中幂的定义及性质
13
第3讲 群的定义及性质
第11讲 群与对称的关系
1 序言 2 几何对称
3 代数对称
22
第四章
环论
23
第1讲 环的定义及基本性质
第2讲 特殊元素及性质
第3讲 环的分类及特殊环的性质
第4讲 环的特征
第5讲 子环、理想(主理想)及素理想和极大理想
第6讲 环的同态与同构
第7讲 特殊环
第8讲 商域
第9讲 有限域
24
第1讲 环的定义及基本性质
第5讲 等价关系与分类
4
第1讲 基本概念之集合及其之间的关系 —集合
1 集合与集合元素的定义 2 集合与集合元素的表示符号 3 集合与集合元素之间的关系—— 属于关系 4 集合的分类标准及分类 5 集合的表示方法 6 集合之间的内在关系——包含关 系 7 集合运算 8 运算律 9 特殊集合的表示符号 10 集合的补充说明 11 包含与排斥原理
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

代数发展史一门科学的历史是那门科学中最宝贵的一部分,因为科学只能给我们知识,而历史却能给我们智慧。

数学的历史是重要的,它是文明史的有价值的组成部分,人类的进步和科学思想是一致的。

数学发展到现在,已经成为科学世界中拥有100多个主要分支学科的庞大的‚共和国‛。

大体说来,数学中研究数的部分属于代数学的范畴;研究形的部分,属于几何学的范筹;沟通形与数且涉及极限运算的部分,属于分析学的范围。

这三大类数学构成了整个数学的本体与核心。

在这一核心的周围,由于数学通过数与形这两个概念,与其它科学互相渗透,而出现了许多边缘学科和交叉学科。

在此简要介绍代数学的有关历史发展情况。

‚代数‛(algebra)一词最初来源于公元9世纪阿拉伯数学家、天文学家阿尔·花拉子米(al-Khowārizmī,约780-850)一本著作的名称,书名的阿拉伯文是‘ilm al-jabr wa’l muqabalah,直译应为《还原与对消的科学》.al-jabr 意为‚还原‛,这里指把负项移到方程另一端‚还原‛为正项;muqabalah 意即‚对消‛或‚化简‛,指方程两端可以消去相同的项或合并同类项.在翻译中把‚a l-jabr‛译为拉丁文‚aljebra‛,拉丁文‚aljebra‛一词后来被许多国家采用,英文译作‚algebra‛。

阿布·贾法尔·穆罕默德·伊本·穆萨·阿尔—花拉子米的传记材料,很少流传下来.一般认为他生于花拉子模[Khwarizm,位于阿姆河下游,今乌兹别克境内的希瓦城(Хива)附近],故以花拉子米为姓.另一说他生于巴格达附近的库特鲁伯利(Qut-rubbullī).祖先是花拉子模人.花拉子米是拜火教徒的后裔,早年在家乡接受初等教育,后到中亚细亚古城默夫(Мерв)继续深造,并到过阿富汗、印度等地游学,不久成为远近闻名的科学家.东部地区的总督马蒙(al-Ma’mūn,公元786—833年)曾在默夫召见过花拉子米.公元813年,马蒙成为阿拔斯王朝的哈利发后,聘请花拉子米到首都巴格达工作.公元830年,马蒙在巴格达创办了著名的‚智慧馆‛(Bayt al-Hikmah,是自公元前3世纪亚历山大博物馆之后最重要的学术机关),花拉子米是智慧馆学术工作的主要领导人之一.马蒙去世后,花拉子米在后继的哈利发统治下仍留在巴格达工作,直至去世.花拉子米生活和工作的时期,是阿拉伯帝国的政治局势日渐安定、经济发展、文化生活繁荣昌盛的时期.花拉子米科学研究的范围十分广泛,包括数学、天文学、历史学和地理学等领域.他撰写了许多重要的科学著作.在数学方面,花拉子米编著了两部传世之作:《代数学》和《印度的计算术》. 1859年,我国数学家李善兰首次把‚algebra‛译成‚代数‛。

后来清代学者华蘅芳和英国人傅兰雅合译英国瓦里斯的《代数学》,卷首有‚代数之法,无论何数,皆可以任何记号代之‛,亦即:代数,就是运用文字符号来代替数字的一种数学方法。

古希腊数学家丢番图(Diophantus)用文字缩写来表示未知量,在公元250年前后丢番图写了一本数学巨著《算术》(Arithmetica)。

其中他引入了未知数的概念,创设了未知数的符号,并有建立方程序的思想。

故有‚代数学之父‛(Father of algebra)的称号。

代数是巴比伦人、希腊人、阿拉伯人、中国人、印度人和西欧人一棒接一棒而完成的伟大数学成就。

发展至今,它包含算术、初等代数、高等代数、数论、抽象代数五个部分。

1、算术算术给予我们一个用之不竭的、充满有趣真理的宝库----高斯(Gauss,1777-1855)数可以说成是统治整个量的世界,而算术的四则可以被认为是作为数学家的完全的装备---麦斯韦(James Clark Maxwell 1831-1879)算术有两种含义,一种是从中国传下来的,相当于一般所说的‚数学‛,如《九章算术》等。

另一种是从欧洲数学翻译过来的,源自希腊语,有‚计算技术‛之意。

现在一般所说的‚算术‛,往往指自然数的四则运算;如果是在高等数学中,则有‚数论‛的含义。

作为现代小学课程内容的算术,主要讲的是自然数、正分数以及它们的四则运算,并通过由计数和度量而引起的一些最简单的应用题加以巩固。

算术是数学中最古老的一个分支,它的一些结论是在长达数千年的时间里,缓慢而逐渐地建立起来的。

它们反映了在许多世纪中积累起来,并不断凝固在人们意识中的经验。

自然数是在对于对象的有限集合进行计算的过程中,产生的抽象概念。

日常生活中要求人们不仅要计算单个的对象,还要计算各种量,例如长度、重量和时间。

为了满足这些简单的量度需要,就要用到分数。

现代初等算术运算方法的发展,起源于印度,时间可能在10世纪或11世纪。

它后来被阿拉伯人采用,之后传到西欧。

15世纪,它被改造成现在的形式。

在印度算术的后面,明显地存在着我国古代的影响。

19世纪中叶,格拉斯曼(Grassmann)第一次成功地挑选出一个基本公理体系,来定义加法与乘法运算;而算术的其它命题,可以作为逻辑的结果,从这一体系中被推导出来。

后来,皮亚诺(Peano)进一步完善了格拉斯曼的体系。

算术的基本概念和逻辑推论法则,以人类的实践活动为基础,深刻地反映了世界的客观规律性。

尽管它是高度抽象的,但由于它概括的原始材料是如此广泛,因此我们几乎离不开它。

同时,它又构成了数学其它分支的最坚实的基础。

2、初等代数作为中学数学课程主要内容的初等代数,其中心内容是方程理论。

代数一词的拉丁文原意是‚归位‛。

代数方程理论在初等代数中是由一元一次方程向两个方面扩展的:其一是增加未知数的个数,考察由有几个未知数的若干个方程所构成的二元或三元方程组(主要是一次方程组);其二是增高未知量的次数,考察一元二次方程或准二次方程。

初等代数的主要内容在16世纪便已基本上发展完备了。

古巴比伦(公元前19世纪~前17世纪)解决了一次和二次方程问题,欧几里得的《原本》(公元前4世纪)中就有用几何形式解二次方程的方法。

我国的《九章算术》(公元1世纪)中有三次方程和一次联立方程组的解法,并运用了负数。

3世纪的丢番图用有理数求一次、二次不定方程的解。

13世纪我国出现的天元术(李冶《测圆海镜》)是有关一元高次方程的数值解法。

16世纪意大利数学家发现了三次和四次方程的解法。

代数学符号发展的历史,可分为三个阶段。

第一个阶段为三世纪之前,对问题的解不用缩写和符号,而是写成一篇论文,称为文字叙述代数。

第二个阶段为三世纪至16世纪,对某些较常出现的量和运算采用了缩写的方法,称为简化代数。

三世纪的丢番图的杰出贡献之一,就是把希腊代数学简化,开创了简化代数。

然而此后文字叙述代数,在除了印度以外的世界其它地方,还十分普通地存在了好几百年,尤其在西欧一直到15世纪。

第三个阶段为16世纪以后,对问题的解多半表现为由符号组成的数学速记,这些符号与所表现的内容没有什么明显的联系,称为符号代数。

韦达(Viète)在他的《分析方法入门》(Inartem analyticem isagoge,1591)著作中,首次系统地使用了符号表示未知量的值进行运算,提出符号运算与数的区别,规定了代数与算术的分界。

韦达是第一个试图创立一般符号代数的的数学家,他开创的符号代数,经笛卡尔(Descarte)改进后成为现代的形式。

笛卡尔用小写字母a, b, c等表示已知量,而用x, y, z代表未知量。

这种用法已经成为当今的标准用法。

‚+‛、‚-‛号第一次在数学书中出现,是1489年维德曼的著作《商业中的巧妙速算法》(Behend und hüpsch Rechnung uff allen kauffmanschafften, 1489)。

不过正式为大家所公认,作为加、减法运算的符号,那是从1514年由荷伊克开始的。

1540年,雷科德(R. Rcorde)开始使用现在使用的‚=‛。

到1591年,韦达在著作中大量使用后,才逐渐为人们所接受。

1600年哈里奥特(T. Harriot)创用大于号‚>‛和小于号‚<‛。

1631年,奥屈特给出‚×‛、‚÷‛作为乘除运算符。

1637年,笛卡尔第一次使用了根号,并引进用字母表中头前的字母表示已知数、后面的字母表示未知数的习惯做法。

至于‚≮‛、‚≯‛、‚≠‛这三个符号的出现,那是近代的事了。

数的概念的拓广,在历史上并不全是由解代数方程所引起的,但习惯上仍把它放在初等代数里,以求与这门课程的安排相一致。

公元前4世纪,古希腊人发现无理数。

公元前2世纪(西汉时期),我国开始应用负数。

1545年,意大利的卡尔达诺(N. Cardano)在《大术》中开始使用虚数。

1614年,英国的耐普尔发明对数。

17世纪末,一般的实数指数概念才逐步形成。

3、高等代数在高等代数中,一次方程组(即线性方程组)发展成为线性代数理论;而二次以上方程发展成为多项式理论。

前者是向量空间、线性变换、型论、不变量论和张量代数等内容的一门近世代数分支学科,而后者是研究只含有一个未知量的任意次方程的一门近世代数分支学科。

作为大学课程的高等代数,只研究它们的基础。

高次方程组(即非线性方程组)发展成为一门比较现代的数学理论----代数几何。

线性代数是高等代数的一大分支。

我们知道一次方程叫做线性方程,讨论线性方程及线性运算的代数就叫做线性代数。

在线性代数中最重要的内容就是行列式和矩阵。

行列式和矩阵在十九世纪受到很大的注意,而且写了成千篇关于这两个课题的文章。

向量的概念,从数学的观点来看不过是有序三元数组的一个集合,然而它以力或速度作为直接的物理意义,并且数学上用它能立刻写出物理上所说的事情。

向量用于梯度,散度,旋度就更有说服力。

同样,行列式和矩阵如导数一样(虽然在数学上不过是一个符号,表示包括的极限的长式子,但导数本身是一个强有力的概念,能使我们直接而创造性地想象物理上发生的事情)。

因此,虽然表面上看,行列式和矩阵不过是一种语言或速记,但它的大多数生动的概念能对新的思想领域提供钥匙。

然而已经证明这两个概念是数学物理上高度有用的工具。

线性代数学科和矩阵理论是伴随着线性系统方程系数研究而引入和发展的。

十七世纪日本数学家关孝和提出了行列式(determinant)的概念,他在1683年写了一部叫做《解伏题之法》的著作,意思是‚解行列式问题的方法‛,书里对行列式的概念和它的展开已经有了清楚的叙述。

而在欧洲,第一个提出行列式概念的是德国的数学家,微积分学奠基人之一莱布尼兹(Leibnitz,1693年)。

1750年克莱姆(Cramer)在他的《线性代数分析导言》(Introduction d l'analyse des lignes courbes alge'briques)中发表了求解线性系统方程的重要基本公式(既人们熟悉的Cramer克莱姆法则)。

相关文档
最新文档