线性代数发展简史

合集下载

线性代数

线性代数

线性代数一、线性代数的形成和发展历史在代数学发展的第二个时期,即在19世纪时,线性代数就获得了光辉的成就。

线性代数内容广泛,而行列式、矩阵、线性方程组等只是线性代数的初等部分,线性代数还有更深入的内容,如线性空间、欧式空间、酉空间、线性变换和线性函数、 -矩阵、矩阵的特征值等等以及与其相关联的一系列理论。

有材料说,在代数学的所有分支中,线性代数的这些理论按其应用的重要性和广泛性来说,是第一位的,很难指出数学、理论力学、理论物理等学科中有不用到线性代数的结果和方法的。

例如,线性代数对于泛函分析的发展就有着决定性的影响。

下面着重对线性代数的初等部分的形成和发展简述如下:1.行列式最早引入行列式概念的,是十七世纪的日本的数学奠基人关孝和。

他1383年著《解优题之法》一书,对行列式及其展已经有了清楚的叙述。

但是在公元一世纪(东汉初年)。

中国古算术《九章算术》中已有用矩阵(当时称为“方程”)的初等变换来解线性方程组的内容了。

关孝和的思想的产生,大概多受惠于中国而非西方的影响。

1693年,莱不尼兹用指标数的子统集合表示含两个未知量和三个线性方程组所组成的系统,他从三个方程的系数中消去两个未知量,得到一个行列式,就是现在所称的方程组的法式。

用行列式去解含二、三、四个未知量的方程组,可能在1729年由马克劳林所首创,且于1748年发表在他的遗作《代数绝著》中,其法则基本就是现在所使用的法则。

瑞士数学家克莱姆(Cramer)于1750年把马克劳林的法则发表在他的《线性代数分析导言》中,这就是现在所谓的克莱姆法则。

1772年,范德蒙(Vander monde)把行列式脱离开线性方程组作为一个独立的理论研究。

给出行列式的定义与确立符号的法则,被认为是行列式理论的奠基人。

1812年,柯西(Cauchy)首先采取“行列式”(Determinant)这一名称。

他还于1815年把行列式的元素记为a ij,带双重足码。

他的著作给出行列式第一个系统的也几乎是近代的处理,其中一个主要结果之一是行列式的乘法规则。

线性代数的历史里程碑

线性代数的历史里程碑

线性代数的历史里程碑线性代数是数学的一个重要分支,它研究了线性方程组、向量空间和线性映射等基本概念,具有广泛的应用。

本文将重点回顾线性代数的历史里程碑,介绍了几个具有重大意义的事件和突破。

1. 古希腊时期:线性方程组的发展古希腊数学家克拉美(Cramer)在18世纪提出了Cramer's Rule,他通过研究线性方程组的解,发现了一种可以推导出方程组解的方法。

这一重要的发现为线性方程组的求解提供了理论基础,并为线性代数的发展奠定了坚实的基础。

2. 17世纪:高斯消元法的提出高斯是线性代数史上的一个重要人物,他在17世纪提出了高斯消元法。

通过对线性方程组进行行变换,高斯消元法能够将方程组化为简化的行阶梯形式,从而更容易求解。

高斯消元法的出现使得线性方程组的解法更加简单和直观,极大地推动了线性代数的发展。

3. 19世纪:向量空间的提出向量空间是线性代数中一个重要的概念,它由德国数学家Grassmann在19世纪首次提出。

Grassmann通过对向量的研究,发现了一种新的数学结构,将多维空间中的向量和运算规则进行了抽象和概括。

向量空间的出现使得线性代数的研究更加具有一般性和抽象性,为后来的理论建立提供了坚实的基础。

4. 20世纪:矩阵理论的兴起20世纪是线性代数发展的关键时期,矩阵理论作为线性代数的一个重要分支逐渐兴起。

矩阵是线性代数中的一种特殊形式,通过研究矩阵的性质和运算规则,人们可以更加方便地应用线性代数的方法解决实际问题。

矩阵理论的兴起为线性代数的应用提供了强大的工具和方法,极大地拓展了线性代数的领域。

5. 当代:高维线性代数的研究随着科技的发展和实际问题的复杂性增加,线性代数的研究也不断深入。

人们开始关注高维线性代数,并研究了在高维空间中线性方程组、向量空间和线性映射等的性质和应用。

高维线性代数的研究推动了数学理论的发展,同时也为计算机图形学、数据分析和人工智能等领域提供了重要的数学基础。

线性代数发展史

线性代数发展史

线性代数发展史一行列式行列式的出现已有300余年,1683年日本数学家关孝和在<解伏题之法)中首先引人此概念。

1693年,莱布尼兹(G.W.工ezbniz)著作中亦有行列式叙述,世人们仍认为此概念在西方源于数学家柯西(A.L CaMchy)1750年,克莱姆(G cramer)出版的(线性代数分析导言>一书中已给出行列式的今日形式。

1841年,雅谷比(c.G JaMM在(论行列式形成与性质)一书中对行列式及其性质、计算作了较系统的阐述此后.范德蒙(A.T vandeMondl)、裴蜀(E.Be肋Mt)、拉普拉斯(P.s M de I品PLace)等人在行列式研究中也作了许多工作,但行列式在当今线性代数中似已被淡化,原因是:首先它的大多数功能已被矩阵运算取代,而矩阵(代数)理论与计算已相当成熟;再者是电子计算机的出现与飞速发展,已省去人们许多机械而繁琐的计算.然而行列式也有其自身的魅力:技巧性强、形式漂亮,因而它在历年考研中不断出现.行列式的主要应用是:求矩阵(或向量组)的秩;解线性方程组;求矩阵特征多项式等行列式与矩阵有着密不可分的连带关系,尽管它们本质上不是一回事(短阵是数表,而行列式是数).二矩阵代数矩阵一词系1850年英国数学家薛尔维斯特(J—J sylves贮r)首先倡用,它原指组成行列式的数字阵列。

矩阵的性质研究是在行列式理论研究中逐渐发展的.凯莱(A cayley)于1858年定义了矩阵的某些运算,发表<矩阵论研究报告>,因而他成了矩阵论的创始人。

德国数学家弗罗伯尼(F.G.Fmbenius)于1879年引进矩阵秩的概念,且做了较丰富的工作(发表在(克雷尔杂志>上)尔后矩阵作为一种独立的数学分支迅速发展起来.20世纪40年代,为响应电子计算机出现而诞生厂短阵数值分析,1947年冯·纽曼(Ven Neumann)等人提出分析误差的条件数,1948年图灵(A.Turing)给出厂矩阵的Lu分解,矩阵的另一种分解QR分解的实际应用在上世纪50年代末得以实现.这一切使矩阵计算得以迅猛发展。

数学史话线性代数发展史简介

数学史话线性代数发展史简介

数学史话线性代数发展史简介数学史话—线性代数发展史简介一门科学的历史是那门科学中最宝贵的一部分,因为科学只能给我们知识,而历史却能给我们智慧。

傅鹰数学的历史是重要的,它是文明史的有价值的组成部分,人类的进步和科学思想是一致的。

F. Cajori从事数学研究,发现新的定理和技巧是一回事;而以一种能使其他人也能掌握的方式来阐述这些定理和技巧则又是一回事。

学习那些伟大的数学家们的思想,使今天的学生能够看到某些论题在过去是怎样被处理的。

V. Z.卡兹数学不仅是一种方法、一门艺术或一种语言,数学更主要的是一门有着丰富内容的知识体系,其内容对自然科学家、社会科学家、哲学家、逻辑学家和艺术家十分有用,同时是影响政治家和神学家的学说。

M(Kline一、了解数学史的重要意义数学是人类文明的一个重要组成部分,是一项非常重要的人类活动。

与其他文化一样,数学科学是几千年来人类智慧的结晶。

在学习数学时,我们基本是通过学习教材来认识这门学科的。

教材是将历史上的数学材料按照一定的逻辑结构和学习要求加以重组、取舍编撰而成,因此,数学教材往往舍去了许多数学概念和方法形成的实际背景、演化历程以及导致其演化的各种因素。

由于数学发展的实际情况与教材的编写体系有着许多不同,所以,对数学教材的学习,往往难以了解数学的全貌和数学思想产生的过程。

正因为如此,许多人往往把数学当成了枯燥的符号、无源的死水,学了很多却理解得很少。

数学和任何一门科学一样,有着自身发展的丰富历史,是积累性的科学。

数学的发展历史展示了人类追求理想和美好生活的力量,历史上数学家的成果、业绩和品德无不闪耀着人类思想的光辉,照亮着人类社会发展和进步的历程。

通过了解一些数学史,可以使我们了解数学科学发生、发展的规律,通过追溯数学概念、思想和方法的演变和发展过程,探究数学科学发展的规律和文化内涵,帮助我们认识数学科学与人类社会发展的互动关系以及数学概念和方法的重要意义。

二、代数学的历史发展情况数学发展到今天,已经成为科学世界中拥有一百多个主要分支学科的庞大的“共和国”。

线性代数发展简史

线性代数发展简史

线性代数发展史 由于研究关联着多个因素的量所引起的问题,则需要考察多元函数。

如果所研究的关联性是线性的,那么称这个问题为线性问题。

历史上线性代数的第一个问题是关于解线性方程组的问题,而线性方程组理论的发展又促成了作为工具的矩阵论和行列式理论的创立与发展,这些内容已成为我们线性代数教材的主要部分。

最初的线性方程组问题大都是来源于生活实践,正是实际问题刺激了线性代数这一学科的诞生与发展。

另外,近现代数学分析与几何学等数学分支的要求也促使了线性代数的进一步发展。

行列式 行列式出现于线性方程组的求解,它最早是一种速记的表达式,现在已经是数学中一种非常有用的工具。

行列式是由莱布尼茨和日本数学家关孝和发明的。

1693 年4 月,莱布尼茨在写给洛比达的一封信中使用并给出了行列式,并给出方程组的系数行列式为零的条件。

同时代的日本数学家关孝和在其著作《解伏题元法》中也提出了行列式的概念与算法。

1750 年,瑞士数学家克莱姆 (G.Cramer,1704-1752) 在其著作《线性代数分析导引》中,对行列式的定义和展开法则给出了比较完整、明确的阐述,并给出了现在我们所称的解线性方程组的克莱姆法则。

稍后,数学家贝祖(E.Bezout,1730-1783) 将确定行列式每一项符号的方法进行了系统化,利用系数行列式概念指出了如何判断一个齐次线性方程组有非零解。

总之,在很长一段时间内,行列式只是作为解线性方程组的一种工具使用,并没有人意识到它可以独立于线性方程组之外,单独形成一门理论加以研究。

在行列式的发展史上,第一个对行列式理论做出连贯的逻辑的阐述,即把行列式理论与线性方程组求解相分离的人,是法国数学家范德蒙(A-T.Vandermonde,1735-1796) 。

范德蒙自幼在父亲的知道下学习音乐,但对数学有浓厚的兴趣,后来终于成为法兰西科学院院士。

特别地,他给出了用二阶子式和它们的余子式来展开行列式的法则。

就对行列式本身这一点来说,他是这门理论的奠基人。

代数学发展简史及线性代数简史

代数学发展简史及线性代数简史

代数学发展简史及线性代数简史代数学的发展简史:代数学作为一门数学学科,起源非常古老。

早在公元前3000年,古巴比伦人就开始使用代数方法解决一些实际问题,比如计算土地面积与粮食数量。

然而,真正意义上的代数学发展始于古希腊时期。

在公元前5世纪,古希腊数学家毕达哥拉斯提出了“万物皆数字”的概念,并建立了一套基本的代数规则。

他的学生柏拉图以及柏拉图的学生亚里士多德进一步发展了这些理论。

随着时代的推移,代数学逐渐与几何学分离,成为一个独立的学科。

在16世纪,意大利数学家费拉里奥首次使用代数符号来表示未知量。

17世纪,法国数学家笛卡尔在其著作《几何学》中,将代数与几何紧密结合,发展了解析几何。

在18世纪和19世纪,代数学得到了飞速发展,出现了复数、矩阵论、高斯消元法等重要概念和方法。

20世纪是代数学的黄金时期。

在这个时期,代数学被赋予了更深层次的意义。

20世纪初,德国数学家希尔伯特提出了20个关于数学基础的未解问题,其中许多涉及代数学领域。

这些问题推动了代数学的发展,并促使人们对数学基础的研究。

现代代数学已经成为数学中的一门重要分支,涉及众多领域,如数论、代数几何、群论、环论等。

代数学的发展不仅深化了人们对数学本质的认识,也为其他学科的发展提供了强有力的数学工具。

线性代数的发展简史:线性代数作为代数学中的一个重要分支,起源于17世纪。

早在17世纪,数学家哈密尔顿开始研究线性代数的基本概念。

然而,线性代数的理论基础最早是由19世纪英国数学家卡尔·弗里德里希·高斯奠定的。

高斯在矩阵理论和线性方程组的解法上做出了重要贡献,他发展了行列式的概念,并提出了高斯消元法。

19世纪末和20世纪初,线性代数得到了飞速发展。

德国数学家大卫·希尔伯特和俄罗斯数学家安德烈·马尔科夫开创了线性算子理论的研究。

他们引入了现代线性空间的概念,并发展了线性变换、特征值、特征向量等重要概念。

此外,瑞士数学家埃尔米特和德国数学家约尔当也对线性代数做出了重要贡献,他们提出了埃尔米特矩阵和约旦标准型等概念。

线性代数发展简史

线性代数发展简史

华北水利水电学院线性代数发展简史课程名称:线性代数专业班级:2012084成员组成:201208420联系方式:************2013年11月6日摘要:线性代数是高等代数的一大分支。

我们知道一次方程叫做线性方程,讨论线性方程及线性运算的代数就叫做线性代数。

在线性代数中最重要的内容就是行列式和矩阵。

关键词:行列式,矩阵,,,,正文:线性代数的发展简史引言代数学可以笼统地解释为关于字母运算的学科。

在中学所学的初等代数中,字母仅用来表示数。

初等代数从最简单的一元一次方程开始,一方面进而讨论二元及三元的一次方程组,另一方面研究二次以上及可以转化为二次的方程组。

沿着这两个方向继续发展,代数学在讨论任意多个未知数的一次方程组,也叫线性方程组的同时,还研究次数更高的一元方程及多元方程组。

发展到这个阶段,就叫做高等代数。

线性代数是高等代数的一大分支,是研究如何求解线性方程组而发展起来的。

线性代数的主要内容有行列式、矩阵、向量、线性方程组、线性空间、线性变换、欧氏空间和二次型等。

在线性代数中,字母的含义也推广了,不仅用来表示数,也可以表示行列式、矩阵、向量等代数量。

笼统地说,线性代数是研究具有线性关系的代数量的一门学科。

线性代数不仅在内容上,更重要的是在观点和方法上比初等代数有很大提高。

在线性代数中最重要的内容就是行列式和矩阵。

虽然表面上看,行列式和矩阵不过是一种语言或速记,但从数学史上来看,优良的数学符号和生动的概念是数学思想产生的动力和钥匙。

行列式出现于线性方程组的求解。

行列式的概念最早是由十七世纪日本数学家关孝和提出来的,他在1683 年写了一部叫做《解伏题之法》的著作,标题的意思是“解行列式问题的方法”,书里对行列式的概念和它的展开已经有了清楚的叙述。

欧洲第一个提出行列式概念的是德国的数学家、微积分学奠基人之一莱布尼兹(Leibnitz)。

1750 年克莱姆(Cramer)在他的《线性代数分析导言》中发表了求解线性方程组的重要基本公式(即人们熟悉的Cramer 克莱姆法则)。

线性代数发展及应用

线性代数发展及应用

线性代数发展及应用线性代数是数学的一个分支,研究向量空间及其上的线性变换。

它的发展可以追溯到18世纪,当时欧拉和拉格朗日等数学家开始研究线性方程组的解法。

随着时间的推移,线性代数逐渐发展成为一门独立的学科,并在各个领域中得到广泛应用。

线性代数的发展可以分为几个重要阶段。

首先是线性方程组的研究,这是线性代数的基础。

欧拉和拉格朗日等数学家研究了线性方程组的解法,提出了高斯消元法等方法。

这些方法为后来的线性代数理论奠定了基础。

接着是向量空间的研究。

19世纪末,赫尔维茨提出了向量空间的概念,并研究了向量空间的性质和结构。

他的工作为线性代数的发展奠定了基础,并成为后来的线性代数理论的重要组成部分。

20世纪初,线性代数的发展进入了一个新的阶段。

矩阵论的出现使得线性代数的研究更加系统和完整。

矩阵论研究了矩阵的性质和运算规律,为线性代数提供了更加严密的数学基础。

同时,线性代数的应用也得到了广泛发展,如在物理学、工程学、计算机科学等领域中得到了广泛应用。

线性代数的应用非常广泛。

首先,在物理学中,线性代数被广泛应用于描述物理系统的运动和变化。

例如,量子力学中的波函数可以用向量表示,线性代数的方法可以用来求解波函数的演化和测量结果的概率。

其次,在工程学中,线性代数被广泛应用于信号处理、控制系统和电路设计等领域。

例如,在信号处理中,线性代数的方法可以用来分析和处理信号,如滤波、降噪等。

在控制系统中,线性代数的方法可以用来建立系统的数学模型,并设计控制器来实现系统的稳定性和性能要求。

此外,在计算机科学中,线性代数被广泛应用于图形学、机器学习和数据分析等领域。

例如,在图形学中,线性代数的方法可以用来描述和变换三维空间中的图形对象,如旋转、缩放和投影等。

在机器学习中,线性代数的方法可以用来建立和求解线性回归、主成分分析等模型,从而实现数据的分类和预测。

总之,线性代数的发展和应用在数学和各个领域中都起到了重要的作用。

它不仅为数学理论提供了丰富的内容,还为物理学、工程学和计算机科学等领域的问题提供了解决方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

华北水利水电学院线性代数发展简史课程名称:线性代数专业班级:2012084成员组成:201208420联系方式:************2013年11月6日摘要:线性代数是高等代数的一大分支。

我们知道一次方程叫做线性方程,讨论线性方程及线性运算的代数就叫做线性代数。

在线性代数中最重要的内容就是行列式和矩阵。

关键词:行列式,矩阵,,,,正文:线性代数的发展简史引言代数学可以笼统地解释为关于字母运算的学科。

在中学所学的初等代数中,字母仅用来表示数。

初等代数从最简单的一元一次方程开始,一方面进而讨论二元及三元的一次方程组,另一方面研究二次以上及可以转化为二次的方程组。

沿着这两个方向继续发展,代数学在讨论任意多个未知数的一次方程组,也叫线性方程组的同时,还研究次数更高的一元方程及多元方程组。

发展到这个阶段,就叫做高等代数。

线性代数是高等代数的一大分支,是研究如何求解线性方程组而发展起来的。

线性代数的主要内容有行列式、矩阵、向量、线性方程组、线性空间、线性变换、欧氏空间和二次型等。

在线性代数中,字母的含义也推广了,不仅用来表示数,也可以表示行列式、矩阵、向量等代数量。

笼统地说,线性代数是研究具有线性关系的代数量的一门学科。

线性代数不仅在内容上,更重要的是在观点和方法上比初等代数有很大提高。

在线性代数中最重要的内容就是行列式和矩阵。

虽然表面上看,行列式和矩阵不过是一种语言或速记,但从数学史上来看,优良的数学符号和生动的概念是数学思想产生的动力和钥匙。

行列式出现于线性方程组的求解。

行列式的概念最早是由十七世纪日本数学家关孝和提出来的,他在1683 年写了一部叫做《解伏题之法》的著作,标题的意思是“解行列式问题的方法”,书里对行列式的概念和它的展开已经有了清楚的叙述。

欧洲第一个提出行列式概念的是德国的数学家、微积分学奠基人之一莱布尼兹(Leibnitz)。

1750 年克莱姆(Cramer)在他的《线性代数分析导言》中发表了求解线性方程组的重要基本公式(即人们熟悉的Cramer 克莱姆法则)。

矩阵代数的丰富发展,人们需要有合适的符号和合适的矩阵乘法定义。

二者要在大约同一时间和同一地点相遇。

1848 年英格兰的J.J. Sylvester 首先提出了矩阵这个词,它来源于拉丁语,代表一排数。

1855 年矩阵代数得到了Arthur Cayley 的工作培育。

Cayley 研究了线性变换的组成并提出了矩阵乘法的定义,使得复合变换ST 的系数矩阵变为矩阵S 和矩阵T 的乘积。

他还进一步研究了那些包括矩阵逆在内的代数问题。

著名的Cayley- Hamilton 理论即断言一个矩阵的平方就是它的特征多项式的根,就是由Cayley 在1858 年在他的矩阵理论文集中提出的。

利用单一的字母A 来表示矩阵是对矩阵代数发展至关重要的。

在发展的早期公式det( AB ) = det( A )det( B ) 为矩阵代数和行列式间提供了一种联系。

数学家Cauchy 首先给出了特征方程的术语,并证明了阶数超过3 的矩阵有特征值及任意阶实对称行列式都有实特征值;给出了相似矩阵的概念,并证明了相似矩阵有相同的特征值;研究了代换理论,数学家试图研究向量代数,但在任意维数中并没有两个向量乘积的自然定义。

第一个涉及一个不可交换向量积(既v x w 不等于w x v )的向量代数是由Hermann Grassmann 在他的《线性扩张论》(Die lineale Ausdehnungslehre )一书中提出的。

(1844) 。

他的观点还被引入一个列矩阵和一个行矩阵的乘积中,结果就是现在称之为秩数为1 的矩阵,或简单矩阵。

在19 世纪末美国数学物理学家Willard Gibbs 发表了关于《向量分析基础》( Elements of Vector Analysis ) 的著名论述。

其后物理学家P. A. M. Dirac 提出了行向量和列向量的乘积为标量。

我们习惯的列矩阵和向量都是在20 世纪由物理学家给出的。

矩阵的发展是与线性变换密切相连的。

到19 世纪它还仅占线性变换理论形成中有限的空间。

现代向量空间的定义是由Peano 于1888 年提出的。

二次世界大战后随着现代数字计算机的发展,矩阵又有了新的含义,特别是在矩阵的数值分析等方面。

由于计算机的飞速发展和广泛应用,许多实际问题可以通过离散化的数值计算得到定量的解决。

于是作为处理离散问题的线性代数,成为从事科学研究和工程设计的科技人员必备的数学基础。

1764 年,法国数学家贝佐特(Bezout)把确定行列式每一项的符号的手续系统化了。

对给定了含n 个未知量的n 个齐次线性方程,Bezout 证明了系数行列式等于零是该方程组有非零解的条件。

法国数学家范德蒙(Vandermonde)是第一个对行列式理论进行系统的阐述(即把行列式理论与线性方程组求解相分离)的人,并且给出了一条法则,用二阶子式和它们的余子式来展开行列式。

就对行列式本身进行研究这一点而言,他是这门理论的奠基人。

法国数学家拉普拉斯(Laplace)在1772 年的论文《对积分和世界体系的探讨》中,证明了Vandermonde 的一些规则,并推广了他的展开行列式的方法,r 行中所含的子式和它们的余子式的集合来展用开行列式,这个方法现在仍然以他的名字命名。

德国数学家雅可比(Jacobi)也于1841 年总结并提出了行列式的系统理论。

另一个研究行列式的是法国数学家柯西(Cauchy),他大大发展了行列式的理论,在行列式的记号中他把元素排成方阵并首次采用了双重足标的新记法,与此同时发现两行列式相乘的公式及改进并证明了Laplace 的展开定理。

行列式现在的两条竖线记法是英国数学家凯莱(Cayley)最先给出的。

相对而言,最早利用矩阵概念的是拉格朗日(Lagrange)在1700 年后的双线性型工作中体现的。

拉格朗日期望了解多元函数的最大、最小值问题,其方法就是人们知道的拉格朗日乘数法。

为了判定多元函数的最大、最小值,他首先需要一阶偏导数为0,另外还要有二阶偏导数矩阵的条件。

这个条件就是今天所谓的正、负定二次型及正、负定矩阵的定义。

尽管拉格朗日没有明确地提出利用矩阵。

1848 年英格兰数学家西尔维斯特(Sylvester)首先提出了矩阵这个词,它来源于拉丁语,代表一排数。

1855 年英国数学家凯莱(Cayley)建立了矩阵运算的规则。

Cayley 研究了线性变换的组成并提出了矩阵乘法的定义,使得复合变换ST 的系数矩阵变为矩阵S 和矩阵T 的乘积。

他还进一步研究了那些包括矩阵逆在内的代数问题。

著名的凯莱-哈密尔顿(Cayley-Hamilton)理论即断言一个矩阵的平方就是它的特征多项式的根,就是由Cayley 在1858 年在他的矩阵理论文集中提出的。

利用单一的字母A 来表示矩阵是对矩阵代数发展至关重要的。

在发展的早期公式det(AB)= det(A)det(B)为矩阵代数和行列式间提供了一种联系。

数学家Cauchy 首先给出了特征方程的术语,并证明了阶数超过 3 的矩阵有特征值及任意阶实对称行列式都有实特征值;给出了相似矩阵的概念,并证明了相似矩阵有相同的特征值。

由于研究关联着多个因素的量所引起的问题,则需要考察多元函数。

如果所研究的关联性是线性的,那么称这个问题为线性问题。

历史上线性代数的第一个问题是关于解线性方程组的问题,而线性方程组理论的发展又促成了作为工具的矩阵论和行列式理论的创立与发展,这些内容已成为我们线性代数教材的主要部分。

最初的线性方程组问题大都是来源于生活实践,正是实际问题刺激了线性代数这一学科的诞生与发展。

另外,近现代数学分析与几何学等数学分支的要求也促使了线性代数的进一步发展。

行列式出现于线性方程组的求解,它最早是一种速记的表达式,现在已经是数学中一种非常有用的工具。

行列式是由莱布尼茨和日本数学家关孝和发明的。

1693 年4 月,莱布尼茨在写给洛比达的一封信中使用并给出了行列式,并给出方程组的系数行列式为零的条件。

同时代的日本数学家关孝和在其著作《解伏题元法》中也提出了行列式的概念与算法。

1750 年,瑞士数学家克莱姆(G.Cramer,1704-1752) 在其著作《线性代数分析导引》中,对行列式的定义和展开法则给出了比较完整、明确的阐述,并给出了现在我们所称的解线性方程组的克莱姆法则。

稍后,数学家贝祖(E.Bezout,1730-1783) 将确定行列式每一项符号的方法进行了系统化,利用系数行列式概念指出了如何判断一个齐次线性方程组有非零解。

总之,在很长一段时间内,行列式只是作为解线性方程组的一种工具使用,并没有人意识到它可以独立于线性方程组之外,单独形成一门理论加以研究。

在行列式的发展史上,第一个对行列式理论做出连贯的逻辑的阐述,即把行列式理论与线性方程组求解相分离的人,是法国数学家范德蒙(A-T.Vandermonde,1735-1796) 。

范德蒙自幼在父亲的知道下学习音乐,但对数学有浓厚的兴趣,后来终于成为法兰西科学院院士。

特别地,他给出了用二阶子式和它们的余子式来展开行列式的法则。

就对行列式本身这一点来说,他是这门理论的奠基人。

1772 年,拉普拉斯在一篇论文中证明了范德蒙提出的一些规则,推广了他的展开行列式的方法。

线性代数是高等代数的一大分支,是研究如何求解线性方程组而发展起来的。

线性代数的主要内容有行列式、矩阵、向量、线性方程组、线性空间、线性变换、欧氏空间和二次型等。

在线性代数中,字母的含义也推广了,它不仅用来表示数,也可以表示行列式、矩阵、向量等代数量。

笼统地说,线性代数是研究具有线性关系的代数量的一门学科。

线性代数不仅在内容上,更重要的是在观点和方法上比初等代数有很大提高。

在线性代数中最重要的内容就是行列式和矩阵。

虽然表面上看,行列式和矩阵不过是一种语言或速记,但从数学史上来看,优良的数学符号和生动的概念是数学思想产生的动力和钥匙。

行列式出现于线性方程组的求解。

行列式的概念最早是由十七世纪日本数学家关孝和提出来的,他在1683年写了一部叫做《解伏题之法》的著作,标题的意思是“解行列式问题的方法”,书里对行列式的概念和它的展开已经有了清楚的叙述。

欧洲第一个提出行列式概念的是德国的数学家、微积分学奠基人之一莱布尼兹(Leibnitz)。

1750年克莱姆(Cramer)在他的《线性代数分析导言》中发表了求解线性方程组的重要基本公式(即人们熟悉的Cramer 克莱姆法则)。

1764年,法国数学家贝佐特(Bezout)把确定行列式每一项的符号的手续系统化了。

对给定了含n个未知量的n个齐次线性方程,Bezout证明了系数行列式等于零是该方程组有非零解的条件。

相关文档
最新文档