线性代数发展史
行列式发展历史

行列式发展历史行列式是线性代数中的重要概念,它在数学和工程领域中有着广泛的应用。
本文将介绍行列式的发展历史,从最早的发现开始,逐步展示了行列式的演变和应用。
1. 古希腊时期在古希腊时期,数学家们开始研究线性方程组的解法。
然而,由于缺乏有效的符号表示方法,他们无法解决复杂的方程组。
这导致了对行列式概念的出现。
古希腊数学家们发现了一种称为“三角形数”或“三角形阵”的特殊矩阵,这种矩阵具有一些特殊的性质,后来被称为行列式。
2. 欧洲中世纪在欧洲中世纪,数学的发展相对较慢。
然而,一些数学家开始研究行列式的性质,并在代数方程的解法中应用行列式。
这些数学家中最著名的是法国数学家拉普拉斯,他在18世纪末提出了行列式的定义和性质,并将其应用于线性方程组的解法。
3. 行列式的性质和应用行列式的性质在19世纪得到了更深入的研究和发展。
数学家们发现了行列式的一些重要性质,例如行列式的行列互换、行列式的线性性质等。
这些性质使得行列式成为解决线性方程组、计算矩阵的逆和求解特征值等问题的有力工具。
4. 行列式的计算方法随着数学的发展,人们提出了多种行列式的计算方法。
最常用的方法是展开定理,它允许我们将一个n阶行列式展开为n个n-1阶行列式的和。
此外,还有利用矩阵的性质进行计算的方法,例如高斯消元法和克拉默法则等。
5. 行列式的应用领域行列式在数学和工程领域中有着广泛的应用。
在数学领域,行列式被用于解决线性方程组、计算矩阵的逆和求解特征值等问题。
在工程领域,行列式被用于计算刚体的转动惯量、求解电路方程和图像处理等。
6. 行列式的发展趋势随着计算机技术的进步,行列式的计算变得更加高效和精确。
现代数学家们正在研究更复杂的行列式结构和更高阶的行列式计算方法。
行列式的发展趋势将继续向着更广泛的领域拓展,为数学和工程领域的发展做出更大的贡献。
总结:行列式作为线性代数中的重要概念,经历了漫长的发展历程。
从古希腊时期的发现到现代的应用,行列式在数学和工程领域中发挥着重要作用。
线性代数发展史

线性代数发展史由于研究关联着多个因素的量所引起的问题,则需要考察多元函数。
如果所研究的关联性是线性的,那么称这个问题为线性问题。
历史上线性代数的第一个问题是关于解线性方程组的问题,而线性方程组理论的发展又促成了作为工具的矩阵论和行列式理论的创立与发展,这些内容已成为我们线性代数教材的主要部分。
最初的线性方程组问题大都是来源于生活实践,正是实际问题刺激了线性代数这一学科的诞生与发展。
另外,近现代数学分析与几何学等数学分支的要求也促使了线性代数的进一步发展。
行列式行列式出现于线性方程组的求解,它最早是一种速记的表达式,现在已经是数学中一种非常有用的工具。
行列式是由莱布尼茨和日本数学家关孝和发明的。
1693 年4 月,莱布尼茨在写给洛比达的一封信中使用并给出了行列式,并给出方程组的系数行列式为零的条件。
同时代的日本数学家关孝和在其著作《解伏题元法》中也提出了行列式的概念与算法。
1750 年,瑞士数学家克莱姆(G.Cramer,1704-1752) 在其著作《线性代数分析导引》中,对行列式的定义和展开法则给出了比较完整、明确的阐述,并给出了现在我们所称的解线性方程组的克莱姆法则。
稍后,数学家贝祖(E.Bezout,1730-1783) 将确定行列式每一项符号的方法进行了系统化,利用系数行列式概念指出了如何判断一个齐次线性方程组有非零解。
总之,在很长一段时间内,行列式只是作为解线性方程组的一种工具使用,并没有人意识到它可以独立于线性方程组之外,单独形成一门理论加以研究。
在行列式的发展史上,第一个对行列式理论做出连贯的逻辑的阐述,即把行列式理论与线性方程组求解相分离的人,是法国数学家范德蒙(A-T.Vandermonde,1735-1796) 。
范德蒙自幼在父亲的知道下学习音乐,但对数学有浓厚的兴趣,后来终于成为法兰西科学院院士。
特别地,他给出了用二阶子式和它们的余子式来展开行列式的法则。
就对行列式本身这一点来说,他是这门理论的奠基人。
线性代数的历史

线性代数的历史译自Israel Kleiner《A History of Abstract Algebra》线性代数是一个非常有用的学科,它的基本概念产生并被应用在数学和它的应用的各个不同领域,因此这门学科植根于诸如数论(初等数论和代数数论)、几何学、抽象代数(群,环,域和伽罗瓦(Galois)理论)、分析学(微分方程,积分方程和泛函分析)和物理学这些如此丰富多彩的领域就毫不奇怪了。
线性代数的基本概念是线性方程组、矩阵、行列式、线性变换、线性无关、维数、双线性型、二次型和向量空间。
由于这些概念之间是密切关联的,所以有些概念通常会出现在同一段内容中(例如线性方程组和矩阵),从而使得我们往往不能将它们分离开来。
到1880年为止,已经得到许多线性代数的基本结果,但它们还不属于某个一般性的理论。
特别要指出的是,那时还尚未提出向量空间这个构建这种理论的基本观念。
这个观念仅在1888年由皮亚诺(Peano)提出过。
即使如此,它那时也被大大地忽视了(如同格拉斯曼(Grassmann)更早前的开创性工作),直到20世纪早期作为一个完整理论的基本要素这个观念才再次起飞。
因此线性代数这个学科的历史发展顺序与它的逻辑顺序正好相反。
我们将按照下面的顺序来描述线性代数的基本演变史:线性方程组;行列式;矩阵和线性变换;线性无关,基和维数;向量空间。
在这个过程中,我们将评述上面提到的某些其他概念。
5.1线性方程组大约4000年前,巴比伦人就知道如何解两个二元一次线性方程组成的线性方程组(2*2的线性方程组)。
在著名的《九章算术》(大约公元前200年,Nine Chapters of the Mathematical Art)中,中国人解出了3*3的线性方程组,解法中只使用了线性方程组的(数值)系数。
这些做法是矩阵方法的原型,但和高斯(Gauss)以及其他人2000年后提出的“消元法”并不相同。
见[20]。
对线性方程组的现代研究可以说肇始自莱布尼兹(Leibniz),为了研究线性方程组他于1693年提出了行列式的观念。
线性代数的历史里程碑

线性代数的历史里程碑线性代数是数学的一个重要分支,它研究了线性方程组、向量空间和线性映射等基本概念,具有广泛的应用。
本文将重点回顾线性代数的历史里程碑,介绍了几个具有重大意义的事件和突破。
1. 古希腊时期:线性方程组的发展古希腊数学家克拉美(Cramer)在18世纪提出了Cramer's Rule,他通过研究线性方程组的解,发现了一种可以推导出方程组解的方法。
这一重要的发现为线性方程组的求解提供了理论基础,并为线性代数的发展奠定了坚实的基础。
2. 17世纪:高斯消元法的提出高斯是线性代数史上的一个重要人物,他在17世纪提出了高斯消元法。
通过对线性方程组进行行变换,高斯消元法能够将方程组化为简化的行阶梯形式,从而更容易求解。
高斯消元法的出现使得线性方程组的解法更加简单和直观,极大地推动了线性代数的发展。
3. 19世纪:向量空间的提出向量空间是线性代数中一个重要的概念,它由德国数学家Grassmann在19世纪首次提出。
Grassmann通过对向量的研究,发现了一种新的数学结构,将多维空间中的向量和运算规则进行了抽象和概括。
向量空间的出现使得线性代数的研究更加具有一般性和抽象性,为后来的理论建立提供了坚实的基础。
4. 20世纪:矩阵理论的兴起20世纪是线性代数发展的关键时期,矩阵理论作为线性代数的一个重要分支逐渐兴起。
矩阵是线性代数中的一种特殊形式,通过研究矩阵的性质和运算规则,人们可以更加方便地应用线性代数的方法解决实际问题。
矩阵理论的兴起为线性代数的应用提供了强大的工具和方法,极大地拓展了线性代数的领域。
5. 当代:高维线性代数的研究随着科技的发展和实际问题的复杂性增加,线性代数的研究也不断深入。
人们开始关注高维线性代数,并研究了在高维空间中线性方程组、向量空间和线性映射等的性质和应用。
高维线性代数的研究推动了数学理论的发展,同时也为计算机图形学、数据分析和人工智能等领域提供了重要的数学基础。
从线性代数发展史上的数学家得到的启示

从线性代数发展史上的数学家得到的启示线性代数是代数学的一个分支,“代数”这一个词在我国出现较晚,在清代时才传入中国,当时被人们译成“阿尔热巴拉”,直到1859年,清代著名的数学家、翻译家李善兰才将它翻译成为“代数学”,一直沿用至今。
线性代数主要处理的是线性关系的问题,通过线性代数的学习,能使学生获得应用科学中常用的矩阵、线性方程组等理论及其有关基本知识,并具有较熟练的矩阵运算能力和用矩阵方法解决一些实际问题的能力。
线代课本的前言上就说:“在现代社会,除了算术以外,线性代数是应用最广泛的数学学科了。
”我们的线代教学的一个很大的问题就是对线性代数的应用涉及太少,课本上涉及最多的只能算解线性方程组了,但这只是线性代数很初级的应用。
我自己对线性代数的应用了解的也不多。
但是,线性代数在计算机数据结构、算法、密码学、对策论等等中都有着相当大的作用。
没有应用到的内容很容易忘,我现在高数还基本记得。
因为高数在很多课程中都有广泛的应用,比如在国贸专业中的会计课中。
线性代数被不少同学称为“天书”,足见这门课给同学们造成的困难。
线代是一门比较费脑子的课,如果你觉得上课跟不上老师的思路那么请预习。
预习时要“把更多的麻烦留给自己”,即遇到公式、定理、结论马上把证明部分盖住,自己试着证一下,可以不用写详细的过程,想一下思路即可;还要多猜猜预习的部分会有什么公式、定理、结论;还要想一想预习的内容能应用到什么领域。
当然,这对一些同学有困难,可以根据个人的实际情况适当调整,但要尽量多地自己思考。
一定要重视上课听讲,不能使线代的学习退化为自学。
上课时一定要“虚心”,即使老师讲的某个题自己会做也要听一下老师的思路。
上完课后不少同学喜欢把上课的内容看一遍再做作业。
实际上应该先试着做题,不会时看书后或做完后看书。
这样,作业可以帮你回忆老师讲的内容,重要的是这些内容是自己回忆起来的,这样能记得更牢,而且可以通过作业发现自己哪些部分还没掌握好。
线性代数发展史

线性代数发展史一行列式行列式的出现已有300余年,1683年日本数学家关孝和在<解伏题之法)中首先引人此概念。
1693年,莱布尼兹(G.W.工ezbniz)著作中亦有行列式叙述,世人们仍认为此概念在西方源于数学家柯西(A.L CaMchy)1750年,克莱姆(G cramer)出版的(线性代数分析导言>一书中已给出行列式的今日形式。
1841年,雅谷比(c.G JaMM在(论行列式形成与性质)一书中对行列式及其性质、计算作了较系统的阐述此后.范德蒙(A.T vandeMondl)、裴蜀(E.Be肋Mt)、拉普拉斯(P.s M de I品PLace)等人在行列式研究中也作了许多工作,但行列式在当今线性代数中似已被淡化,原因是:首先它的大多数功能已被矩阵运算取代,而矩阵(代数)理论与计算已相当成熟;再者是电子计算机的出现与飞速发展,已省去人们许多机械而繁琐的计算.然而行列式也有其自身的魅力:技巧性强、形式漂亮,因而它在历年考研中不断出现.行列式的主要应用是:求矩阵(或向量组)的秩;解线性方程组;求矩阵特征多项式等行列式与矩阵有着密不可分的连带关系,尽管它们本质上不是一回事(短阵是数表,而行列式是数).二矩阵代数矩阵一词系1850年英国数学家薛尔维斯特(J—J sylves贮r)首先倡用,它原指组成行列式的数字阵列。
矩阵的性质研究是在行列式理论研究中逐渐发展的.凯莱(A cayley)于1858年定义了矩阵的某些运算,发表<矩阵论研究报告>,因而他成了矩阵论的创始人。
德国数学家弗罗伯尼(F.G.Fmbenius)于1879年引进矩阵秩的概念,且做了较丰富的工作(发表在(克雷尔杂志>上)尔后矩阵作为一种独立的数学分支迅速发展起来.20世纪40年代,为响应电子计算机出现而诞生厂短阵数值分析,1947年冯·纽曼(Ven Neumann)等人提出分析误差的条件数,1948年图灵(A.Turing)给出厂矩阵的Lu分解,矩阵的另一种分解QR分解的实际应用在上世纪50年代末得以实现.这一切使矩阵计算得以迅猛发展。
数学史话线性代数发展史简介

数学史话线性代数发展史简介数学史话—线性代数发展史简介一门科学的历史是那门科学中最宝贵的一部分,因为科学只能给我们知识,而历史却能给我们智慧。
傅鹰数学的历史是重要的,它是文明史的有价值的组成部分,人类的进步和科学思想是一致的。
F. Cajori从事数学研究,发现新的定理和技巧是一回事;而以一种能使其他人也能掌握的方式来阐述这些定理和技巧则又是一回事。
学习那些伟大的数学家们的思想,使今天的学生能够看到某些论题在过去是怎样被处理的。
V. Z.卡兹数学不仅是一种方法、一门艺术或一种语言,数学更主要的是一门有着丰富内容的知识体系,其内容对自然科学家、社会科学家、哲学家、逻辑学家和艺术家十分有用,同时是影响政治家和神学家的学说。
M(Kline一、了解数学史的重要意义数学是人类文明的一个重要组成部分,是一项非常重要的人类活动。
与其他文化一样,数学科学是几千年来人类智慧的结晶。
在学习数学时,我们基本是通过学习教材来认识这门学科的。
教材是将历史上的数学材料按照一定的逻辑结构和学习要求加以重组、取舍编撰而成,因此,数学教材往往舍去了许多数学概念和方法形成的实际背景、演化历程以及导致其演化的各种因素。
由于数学发展的实际情况与教材的编写体系有着许多不同,所以,对数学教材的学习,往往难以了解数学的全貌和数学思想产生的过程。
正因为如此,许多人往往把数学当成了枯燥的符号、无源的死水,学了很多却理解得很少。
数学和任何一门科学一样,有着自身发展的丰富历史,是积累性的科学。
数学的发展历史展示了人类追求理想和美好生活的力量,历史上数学家的成果、业绩和品德无不闪耀着人类思想的光辉,照亮着人类社会发展和进步的历程。
通过了解一些数学史,可以使我们了解数学科学发生、发展的规律,通过追溯数学概念、思想和方法的演变和发展过程,探究数学科学发展的规律和文化内涵,帮助我们认识数学科学与人类社会发展的互动关系以及数学概念和方法的重要意义。
二、代数学的历史发展情况数学发展到今天,已经成为科学世界中拥有一百多个主要分支学科的庞大的“共和国”。
行列式发展历史

行列式发展历史行列式是线性代数中的一个重要概念,它在数学和科学领域中有着广泛的应用。
本文将详细介绍行列式的发展历史,从最早的发现到现代应用。
1. 古希腊时期行列式的起源可以追溯到古希腊时期。
古希腊数学家欧几里得在其著作《几何原本》中首次提到了类似于行列式的概念。
他研究了二阶和三阶行列式,并给出了一些性质和计算方法。
2. 17世纪17世纪,数学家克莱姆(Cramer)在其著作《行列式论》中系统地研究了行列式的性质和计算方法。
他提出了克莱姆法则,用于解线性方程组,这是行列式在代数方程中的首次应用。
3. 18世纪18世纪,欧拉(Euler)对行列式进行了深入研究,并提出了行列式的定义和性质。
他发现了行列式的行列互换性质和行列式的乘法规则,为行列式的理论奠定了基础。
4. 19世纪19世纪,高斯(Gauss)对行列式的理论进行了进一步的发展。
他提出了行列式的消元法和行列式的性质,为行列式的计算提供了更加简便的方法。
高斯还将行列式的概念应用于线性代数和矩阵理论中,为后续的研究提供了重要的基础。
5. 20世纪20世纪,行列式在数学和科学领域中得到了广泛的应用。
行列式的概念被应用于线性方程组的求解、矩阵的特征值和特征向量的计算、线性变换的研究等方面。
行列式的理论也得到了进一步的发展和完善。
6. 现代应用行列式在现代科学和工程领域中有着广泛的应用。
在物理学中,行列式被用于描述量子力学中的波函数和态矢量。
在计算机图形学中,行列式被用于计算几何变换和图像处理。
在经济学和金融学中,行列式被用于分析市场和预测趋势。
行列式的应用还涉及到统计学、生物学、电子工程等领域。
总结:行列式的发展历史可以追溯到古希腊时期,经过欧几里得、克莱姆、欧拉、高斯等数学家的研究和发展,行列式的理论得到了完善和应用。
行列式在数学和科学领域中有着广泛的应用,包括线性方程组的求解、矩阵的特征值和特征向量的计算、量子力学中的波函数描述、计算机图形学中的几何变换等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性代数发展史
由于研究关联着多个因素的量所引起的问题,则需要考察多元函数。
如果所研究的关联性是线性的,那么称这个问题为线性问题。
历史上线性代数的第一个问题是关于解线性方程组的问题,而线性方程组理论的发展又促成了作为工具的矩阵论和行列式理论的创立与发展,这些内容已成为我们线性代数教材的主要部分。
最初的线性方程组问题大都是来源于生活实践,正是实际问题刺激了线性代数这一学科的诞生与发展。
另外,近现代数学分析与几何学等数学分支的要求也促使了线性代数的进一步发展。
行列式
行列式出现于线性方程组的求解,它最早是一种速记的表达式,现在已经是数学中一种非常有用的工具。
行列式是由莱布尼茨和日本数学家关孝和发明的。
1693 年4 月,莱布尼茨在写给洛比达的一封信中使用并给出了行列式,并给出方程组的系数行列式为零的条件。
同时代的日本数学家关孝和在其着作《解伏题元法》中也提出了行列式的概念与算法。
1750 年,瑞士数学家克莱姆 ,1704-1752) 在其着作《线性代数分析导引》中,对行列式的定义和展开法则给出了比较完整、明确的阐述,并给出了现在我们所称的解线性方程组的克莱姆法则。
稍后,数学家贝
祖 ,1730-1783) 将确定行列式每一项符号的方法进行了系统化,利用系数行列式概念指出了如何判断一个齐次线性方程组有非零解。
总之,在很长一段时间内,行列式只是作为解线性方程组的一种工具使用,并没有人意识到它可以独立于线性方程组之外,单独形成一门理论加以研究。
在行列式的发展史上,第一个对行列式理论做出连贯的逻辑的阐述,即把行列式理论与线性方程组求解相分离的人,是法国数学家范德
蒙 ,1735-1796) 。
范德蒙自幼在父亲的知道下学习音乐,但对数学有浓厚的兴趣,后来终于成为法兰西科学院院士。
特别地,他给出了用二阶子式和它们的余子式来展开行列式的法则。
就对行列式本身这一点来说,他是这门理论的奠基人。
1772 年,拉普拉斯在一篇论文中证明了范德蒙提出的一些规则,推广了他的展开行列式的方法。
继范德蒙之后,在行列式的理论方面,又一位做出突出贡献的就是另一位法国大数学家柯西。
1815 年,柯西在一篇论文中给出了行列式的第一个系统的、几乎是近代的处理。
其中主要结果之一是行列式的乘法定理。
另外,他第一个把行列式的元素排成方阵,采用双足标记法;引进了行列式特征方程的术语;给出了相似行列式概念;改进了拉普拉斯的行列式展开定理并给出了一个证明等。
19 世纪的半个多世纪中,对行列式理论研究始终不渝的作者之一是詹姆士·西尔维斯特 ,1814-1894) 。
他是一个活泼、敏感、兴奋、热情,甚至容易激动的人,然而由于是犹太人的缘故,他受到剑桥大学的不平等对待。
西尔维斯特用火一般的热情介绍他的学术思想,他的重要成就之一是改进了从一个次和一个次的多项式中消去 x 的方法,他称之为配析法,并给出形成的行列式为零时这两个多项式方程有公共根充分必要条件这一结果,但没有给出证明。
继柯西之后,在行列式理论方面最多产的人就是德国数学家雅可
比 ,1804-1851) ,他引进了函数行列式,即“雅可比行列式”,指出函数行列式在多重积分的变量替换中的作用,给出了函数行列式的导数公式。
雅可比的着名论文《论行列式的形成和性质》标志着行列式系统理论的建成。
由于行列式在数学分析、几何学、线性方程组理论、二次型理论等多方面的应用,促使行列式理论自身在19世纪也得到了很大发展。
整个19 世纪都有行列式的新结果。
除了一般行列式的大量定理之外,还有许多有关特殊行列式的其他定理都相继得到。
矩阵
矩阵是数学中的一个重要的基本概念,是代数学的一个主要研究对象,也是数学研究和应用的一个重要工具。
“矩阵”这个词是由西尔维斯特首先使用的,他是为了将数字的矩形阵列区别于行列式而发明了这个述语。
而实际上,矩阵这个课题在诞生之前就已经发展的很好了。
从行列式的大量工作中明显的表现出来,为了很多目的,不管行列式的值是否与问题有关,方阵本身都可以研究和使用,矩阵的许多基本性质也是在行列式的发展中建立起来的。
在逻辑上,矩阵的概念应先于行列式的概念,然而在历史上次序正好相反。
英国数学家凯莱 ,1821-1895) 一般被公认为是矩阵论的创立者,因为他首先把矩阵作为一个独立的数学概念提出来,并首先发表了关于这个题目的一系列文章。
凯莱同研究线性变换下的不变量相结合,首先引进矩阵以简化记号。
1858 年,他发表了关于这一课题的第一篇论文《矩阵论的研究报告》,系统地阐述了关于矩阵的理论。
文中他定义了矩阵的相等、矩阵的运算法则、矩阵的转置以及矩阵的逆等一系列基本概念,指出了矩阵
加法的可交换性与可结合性。
另外,凯莱还给出了方阵的特征方程和特征根(特征值)以及有关矩阵的一些基本结果。
凯莱出生于一个古老而有才能的英国家庭,剑桥大学三一学院大学毕业后留校讲授数学,三年后他转从律师职业,工作卓有成效,并利用业余时间研究数学,发表了大量的数学论文。
1855 年,埃米特 ,1822-1901) 证明了别的数学家发现的一些矩阵类的特征根的特殊性质,如现在称为埃米特矩阵的特征根性质等。
后来,克莱伯施 ,1831-1872) 、布克海姆等证明了对称矩阵的特征根性质。
泰伯引入矩阵的迹的概念并给出了一些有关的结论。
在矩阵论的发展史上,弗罗伯纽斯 ,1849-1917) 的贡献是不可磨灭的。
他讨论了最小多项式问题,引进了矩阵的秩、不变因子和初等因子、正交矩阵、矩阵的相似变换、合同矩阵等概念,以合乎逻辑的形式整理了不变因子和初等因子的理论,并讨论了正交矩阵与合同矩阵的一些重要性质。
1854 年,约当研究了矩阵化为标准型的问题。
1892 年,梅茨勒引进了矩阵的超越函数概念并将其写成矩阵的幂级数的形式。
傅立叶、西尔和庞加莱的着作中还讨论了无限阶矩阵问题,这主要是适用方程发展的需要而开始的。
矩阵本身所具有的性质依赖于元素的性质,矩阵由最初作为一种工具经过两个多世纪的发展,现在已成为独立的一门数学分支——矩阵论。
而矩阵论又可分为矩阵方程论、矩阵分解论和广义逆矩阵论等矩阵的现代理论。
矩阵及其理论现已广泛地应用于现代科技的各个领域。
线性方程组
线性方程组的解法,早在中国古代的数学着作《九章算术方程》章中已作了比较完整的论述。
其中所述方法实质上相当于现代的对方程组的增广矩阵施行初等行变换从而消去未知量的方法,即高斯消元法。
在西方,线性方程组的研究是在 17 世纪后期由莱布尼茨开创的。
他曾研究含两个未知量的三个线性方程组组成的方程组。
麦克劳林在 18 世纪上半叶研究了具有二、三、四个未知量的线性方程组,得到了现在称为克莱姆法则的结果。
克莱姆不久也发表了这个法则。
18世纪下半叶,法国数学家贝祖对线性方程组理论进行了一系列研究,证明了元齐次线性方程组有非零解的条件是系数行列式等于零。
19 世纪,英国数学家史密斯和道奇森继续研究线性方程组理论,前者引进了方程组的增广矩阵和非增广矩阵的概念,后者证明了个未知数
个方程的方程组相容的充要条件是系数矩阵和增广矩阵的秩相同。
这正是现代方程组理论中的重要结果之一。
大量的科学技术问题,最终往往归结为解线性方程组。
因此在线性方程组的数值解法得到发展的同时,线性方程组解的结构等理论性工作也取得了令人满意的进展。
现在,线性方程组的数值解法在计算数学中占有重要地位。
二次型
二次型蒙日和泊松
从解方程到群论
置换群的概念和结论是最终产生抽象群的第一个主要来源。
抽象群产生的第二个主要来源则是戴德金,1831-1916) 和克罗内克。