功率控制
功率控制

功率控制培训讲义一、背景控制无线路径上的发射功率的目的是在不需要最大发射功率,就能达到较好的传输质量的情况下,降低发射功率。
这样做,既能保持传输质量高于给定门限,又能降低移动台和基站的平均广播功率,减少对其它通信的干扰。
功率控制分为上行功率控制和下行功率控制,上下行控制独立进行。
上行功率控制移动台(MS),下行功率控制基站(BTS)。
同一方向的连续两次控制之间的时间间隔由O&M设定。
功率控制包括移动台和基站的功率控制。
移动台功率控制的目的是调整MS的输出功率,使BTS获得稳定接收信号强度,以限制同信道用户的干扰,减少BTS多路耦合器的饱和度,降低移动台功耗;基站功率控制目的是调整BTS输出功率,使MS获得稳定接收信号强度,以限制同信道干扰,降低基站功耗。
基站动态功率控制目的是调整BTS输出功率,使MS获得稳定接收信号强度,以限制同信道干扰,降低基站功耗。
基站动态功率控制仅使用稳态功率控制算法。
实现功率控制有两种算法——0508功率控制算法和华为动态功率控制算法(简称0508算法和动态功控算法)。
二、功率控制过程1.移动台功率控制移动台功率控制分为两个调整阶段——Stationary稳态调整和Initial初始调整。
稳态调整是功率控制算法执行的常规方式,初始调整使用于呼叫接续最开始的时刻。
当一个接续发生,MS以所在小区的名义功率输出,(名义功率即在收到功率调整命令之前,MS发射功率为所在小区BCCH信道上广播的系统消息中MS 最大发射功率MS_TXPWR_MAX_CCH。
而如果MS不支持这一功率级别,则采用与之最接近的可支持的功率级别,如在建立指示消息中上报的MS类标Classmark所支持的最大输出功率级别)。
但因为BTS可同时支持多个呼叫,必须在一个新的接续中尽快降低接收信号强度,否则该BTS支持的别的呼叫的质量会由于BTS 多路耦合器饱和而恶化,并且另外小区的呼叫质量也会由于强干扰而受到影响。
通信系统中的功率控制与动态功率分配

通信系统中的功率控制与动态功率分配在通信系统中,功率控制和动态功率分配是两个关键的技术方向。
它们对于保证通信质量、提高系统效率和延长终端设备续航能力具有重要作用。
本文将以通信系统中的功率控制和动态功率分配为主题,探讨其原理、应用场景和发展趋势。
一、功率控制的原理与应用功率控制是指在通信系统中通过调节发射功率来控制信号的强度,从而达到最佳的通信质量和系统性能。
功率控制技术通常分为静态功率控制和动态功率控制两种。
静态功率控制是指在通信系统建立连接时,根据不同的信道条件和传输要求,预先设定合适的发射功率,以确保信号的传输质量。
这种控制方式一般适用于固定信道条件的通信场景,如无线局域网、蜂窝网络等。
动态功率控制是指在通信系统建立连接后,根据实时的信道状态和用户需求,动态地调整发射功率。
这种控制方式可以根据信道环境的变化,自适应地调整发射功率,从而提高系统的容量和覆盖范围。
动态功率控制广泛应用于移动通信系统,如GSM、CDMA等。
二、动态功率分配的原理与应用动态功率分配是指将通信系统中的总功率按照不同用户或信道的需求进行分配,以最大限度地提高系统的效率和资源利用率。
动态功率分配技术通常分为分集功率分配和非分集功率分配两种。
分集功率分配是指将系统的总功率按照信道质量的不同,分配给不同的用户或信道。
在通信链路质量较差的用户或信道上分配较高的功率,以保证其通信质量;而在质量较好的用户或信道上分配较低的功率,以提高系统的资源利用率。
分集功率分配适用于多用户多信道的通信系统,如多天线系统、多用户MIMO系统等。
非分集功率分配是指将系统的总功率均匀地分配给所有的用户或信道。
这种分配方式在没有明显的信道质量差异或用户需求差异时,可以保证公平性,并提高系统的整体吞吐量。
非分集功率分配适用于无线局域网、蜂窝网络等场景。
三、功率控制与动态功率分配的发展趋势随着通信技术的不断发展,功率控制和动态功率分配将在以下几个方面取得进一步的发展。
功率控制的名词解释

功率控制的名词解释功率控制是指通过采取一系列措施,有效地调节、控制或管理系统中的功率输出,以实现功率的合理分配和优化利用。
在现代科技发展中,功率控制在各个领域都扮演着重要的角色。
它在电力系统、通信网络、工业自动化等众多领域中发挥着至关重要的作用。
一、功率控制的意义功率控制的意义在于保证系统的稳定运行,最大限度地提高系统的效率和可靠性。
通过控制功率的输出,可以避免过载和能量浪费,提高能源利用率,降低成本。
此外,功率控制还能避免电路短路和故障引起的意外情况发生,保护设备和人员的安全。
因此,功率控制对于维护系统的正常运行、提高经济效益和保障人身安全都有着重要作用。
二、功率控制的方法功率控制的方法多种多样,根据不同的系统和需求可采用不同的控制策略。
1. 负载控制负载控制是一种常见的功率控制方法,通过调整负载的电流来达到控制功率的目的。
例如,在电力系统中,通过调节负荷电流来控制发电机的输出功率。
在家用电器中,通过调节电器的工作状态,如电热水器的温度和电冰箱的制冷程度,来实现功率控制。
2. 频率控制频率控制是指通过调整频率来控制功率输出。
以电信系统为例,调整射频信号的频率可以改变信号的带宽和传输能力,从而实现功率控制。
频率控制还常用于调整电力系统中的交流频率,以实现电网的稳定和调度。
3. 电压控制电压控制是一种常用的功率控制手段,通过调节电路的电压来控制功率的输出。
例如,在电力系统中,通过调节输电线路的电压,可以实现对整个系统的功率控制。
在高频通信中,通过调节信号源的电压,可以实现射频功率的控制。
4. 算法控制算法控制是使用各种控制算法来调节和控制系统的功率输出。
例如,在无线通信中,通过自适应功率控制算法来调整发射功率,以实现网络质量的最优化。
在电力系统中,采用智能电网的控制策略来优化供电功率的分配,以确保系统的可靠性和稳定性。
三、功率控制的应用领域功率控制广泛应用于各个领域,如电力系统、通信网络、工业自动化等。
通信系统的功率控制与功率分配算法

通信系统的功率控制与功率分配算法概述通信系统中的功率控制与功率分配算法是一项关键技术,其目的是在保证可靠通信的前提下最大化信号传输效率和系统容量。
本文将介绍通信系统的功率控制原理,以及常用的功率分配算法。
一、功率控制原理功率控制是通过调整发射功率或接收灵敏度等参数,来实现在尽量减少干扰和损耗的情况下达到最佳传输质量和系统容量的技术。
功率控制原理的核心是根据通信环境的特点,动态地调整信号的传输功率。
1.1 自适应功率控制自适应功率控制算法是根据信道的质量和通信负载来动态地调整功率水平。
通过测量接收信号的质量指标,如信噪比、误码率等,系统可以自动调整发射功率以保证信号质量。
自适应功率控制算法能够提高系统的通信质量和容量,同时减少功耗。
1.2 分布式功率控制分布式功率控制是一种多用户共存的情况下实现功率控制的技术。
在分布式功率控制中,每个用户根据自身信道状态和系统负载状况来调整自己的传输功率。
通过协同调整,系统可以减小用户间的互相干扰,提高整体的通信质量和容量。
二、功率分配算法功率分配算法是在多天线系统中根据相关约束条件,将总功率按照一定规则分配给不同的天线。
合理的功率分配可以最大化系统的信号传输效率,并提高整体性能。
2.1 最大比例传输功率分配最大比例传输功率分配算法是一种常用的功率分配策略,其目标是使得接收信号的信噪比最大化。
在最大比例传输功率分配算法中,发射天线的功率分配与信道损耗成正比,相对较好地平衡了不同发射天线之间的传输效率。
2.2 水平功率分配水平功率分配算法是一种根据信道状态和用户需求,动态地分配功率的方法。
在水平功率分配算法中,系统根据每个用户的信道质量来决定功率的分配比例。
较好的信道将获得更多的功率资源,从而提高信号质量。
2.3 最小功率分配最小功率分配算法是一种旨在减小系统功耗的策略。
在最小功率分配算法中,系统根据用户之间的干扰情况和信道状态来合理分配功率,以获得最低的总传输功率。
功率控制器原理

功率控制器原理功率控制器是一种用于控制电力系统中功率流动的设备,它可以根据系统负载的需求来调节电源输出,从而实现对电力系统的有效控制。
在电力系统中,功率控制器扮演着至关重要的角色,它能够提高系统的稳定性和效率,同时也能够保护系统免受过载和短路等问题的影响。
本文将介绍功率控制器的原理及其在电力系统中的应用。
功率控制器的原理是基于电力电子器件的控制原理,通过改变电源输出的电压、电流或频率来实现对系统功率的调节。
其中,最常见的功率控制器包括可控硅、晶闸管、场效应管等电力电子器件,它们能够根据控制信号来调节电源输出,实现对系统功率的精确控制。
通过合理的控制算法,功率控制器可以实现对电力系统的动态调节,使系统能够适应不同负载条件下的工作需求。
在电力系统中,功率控制器通常被用于调节交流电源的输出,以满足不同负载条件下的功率需求。
通过控制电压、电流或频率,功率控制器可以实现对系统负载的动态调节,从而提高系统的稳定性和效率。
此外,功率控制器还可以通过限制电流或电压的幅值来保护系统免受过载和短路等问题的影响,确保系统能够稳定可靠地运行。
除了在传统的电力系统中应用外,功率控制器在新能源领域也有着重要的应用。
例如,在太阳能发电系统中,功率控制器可以根据光照条件和负载需求来调节太阳能电池板的输出功率,使其能够最大限度地利用太阳能资源。
在风力发电系统中,功率控制器可以根据风速和负载需求来调节风力发电机的输出功率,实现对风力发电系统的有效控制。
总之,功率控制器作为电力系统中的重要设备,具有着广泛的应用前景。
它能够通过精确的功率调节,提高系统的稳定性和效率,同时也能够保护系统免受各种问题的影响。
随着新能源技术的不断发展,功率控制器将在未来的电力系统中发挥更加重要的作用,为电力系统的安全稳定运行提供强大的支持。
电力系统功率控制

电力系统功率控制近年来,电力需求快速增长,电力系统的稳定性和可靠性成为了重要的问题。
为了满足日益增长的电力需求,电力系统功率控制技术应运而生。
本文将介绍电力系统功率控制的基本原理和常见的控制方法。
一、电力系统功率控制的基本原理电力系统的功率控制是指在保证电力系统运行稳定的前提下,对发电机出力、负荷控制、输电线路等进行调整,以实现电力系统的安全、高效运行。
电力系统功率控制主要包括功率平衡控制、输电线路的功率流控制和调频控制等。
1. 功率平衡控制电力系统的功率平衡控制是指在电力系统中,发电机的出力必须与负荷需求相匹配,以维持频率稳定。
通过调整发电机的出力和负荷的调整,实现功率的平衡控制。
当电力系统的负荷增加时,需要增加发电机出力,以保持功率平衡;当负荷减少时,需要降低发电机出力。
2. 输电线路的功率流控制输电线路功率流控制是指调整输电线路的功率传输,以保证电力系统的安全运行。
在电力系统中,输电线路的负载会随着负荷需求的变化而变化,因此需要根据负荷需求实时调整输电线路的功率传输。
当负荷需求较大时,需要增大输电线路的功率传输能力,防止线路过载;而当负荷需求降低时,需要降低输电线路的功率传输。
3. 调频控制电力系统的调频控制是指调整发电机的频率,以保证电力系统运行的稳定性。
在电力系统中,发电机的频率受到负荷需求的影响,当负荷需求增加时,发电机的频率会下降;反之,当负荷需求下降时,发电机的频率会升高。
通过调整发电机的频率,以实现电力系统的频率稳定。
二、电力系统功率控制的常见方法电力系统功率控制主要有直接控制和间接控制两种方法。
1. 直接控制直接控制是指直接调整发电机输出功率和负荷的方式。
常见的直接控制方法包括调整机组出力、调整负荷开关状态和发电机组合作运行等。
这些控制方法可以通过实时监测电力系统的负荷需求和发电机运行状态,进行及时调整。
2. 间接控制间接控制是指通过调整输电线路的功率传输或者改变输电线路的接线方式,间接影响发电机输出功率和负荷的方式。
功率控制器原理

功率控制器原理
功率控制器是一种用于控制电路中功率输出的设备,它可以根据需要调整电路的电压、电流或频率,从而实现对电路中功率的精确控制。
在现代电子设备中,功率控制器被广泛应用于各种领域,如工业生产、家用电器、通信设备等。
本文将介绍功率控制器的原理及其在电路中的应用。
首先,功率控制器的原理是基于电路中的功率平衡原理。
在一个电路中,功率的输入等于输出,即P=VI,其中P表示功率,V表示电压,I表示电流。
通过调节电路中的电压和电流,就可以实现对功率的控制。
功率控制器通常采用调节器、变压器、晶闸管等元件来实现对电路中功率的调节。
其次,功率控制器的工作原理是通过改变电路中的电压和电流来实现对功率的调节。
在直流电路中,可以通过调节电压来控制功率输出;在交流电路中,可以通过调节电压、电流的相位角来实现功率的控制。
此外,功率控制器还可以通过PWM(脉冲宽度调制)技术来实现对功率的精确调节,通过改变脉冲信号的占空比来控制输出功率。
在电路中,功率控制器通常被应用于各种场合。
例如,在工业生产中,功率控制器可以用于控制电机的转速和负载,从而实现对生产过程的精确控制;在家用电器中,功率控制器可以用于调节灯光的亮度、风扇的转速等,提高能源利用效率;在通信设备中,功率控制器可以用于调节发射功率,提高通信质量。
总之,功率控制器作为一种重要的电路控制设备,在现代电子设备中发挥着重要作用。
通过对电路中电压、电流的精确控制,功率控制器可以实现对功率的精确调节,从而满足不同场合对功率输出的需求。
希望本文对功率控制器的原理及应用有所帮助,谢谢阅读!。
功率控制的调节过程

一、功率控制的调节过程当信号强度滤波器被计满时调节将会启动。
额外的功率控制限制在三种不同的业务情况中,功率控制值总是由功率限制PMARG参数来增加:1、在一条TCH的分配上:由新的信道可能是有一个较高的干扰电平,所以BTS在这条业务信道上的开始发射功率值将用最后的发射功率值加上PMARG参数的定义值。
2、在分配或切换失败时:在正常小区中的一条旧信道重新被激活时,动态功率控制将会重新启动,在这段失败时间内旧信道的无线环境可能已经变化,所以下一个功率调节值要加上PMARG参数的定义值。
3、在小区内切换和 subcell 小区的改变上:当一个正常的小区内切换时动态功率控制是不会重新启动的,在新信道上首次的功率调节值将比旧信道的值加上参数PMARG定义的值。
二、小区设置的相关参数SSDESDL:在调节时间隙的不同部分中定义期望信号强度的目标值。
在没有质量补偿的情况中,SSDESDL是在在调节区域外边上的信号强度期望值。
这个参数在每个小区中都要设置。
取正值,但计算中取其负值。
在基站密集的地区,可以设置为85-90,在基站稀疏的地方,可以设置为95-100。
如果SSLENDL比较大(=10),这个值要相对减少2左右。
QDESDL:定义由MS中接收机测量到的期望质量电平值。
它在rxqual单元中被测量,在应用于运算前被转化为dB单位。
这个参数每个小区都要设置。
可以设置为30,因为这个参数要除以25后才对计算结果有影响,所以它的设置并不重要。
REGINTDL:是调节的时间间隙。
这个参数每个小区都要设置。
SDCCHREG:是SDCCH信道上调节的开关控制参数,每个subcell小区都要设置。
SSLENDL:是固定的信号强度滤波器的长度,每个subcell小区都要设置。
通常=3,如果希望计算得更加准确,可以加大这个参数的取值,例如=7。
LCOMPDL:这个参数决定将要补偿的路径损耗是多少。
这个参数的设置原理与SSDESDL一样,可以设置为5。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
功率控制功率控制前向快速功率控制 -速率可达到800b/sCDMA2000 1x系统反向内环功率控制速率为(800 )CDMA2000 1x系统反向外环功率控制速率为(50 )DO反向功率控制信道数据速率为600bps对于外环功率控制主要检验各项业务得到需要的服务质量(如PER),对于内环功率控制主要检验其按照外环指定的Eb/N0目标值调整AT发射功率的能力。
CDMA EV-DO 系统只有反向链路采用功率控制机制,反向功率控制的目标是与反向速率控制配合实现反向吞吐量与反向业务容量的均衡,保证反向链路PER 的稳定。
反向功率控制与1X 系统类似,包括:开环功率控制(Open Loop Power Control)、闭环功率控制(Close LoopPower Control)及外环功率控制(Outer Loop Power Control)[attach]221757[/attach]开环功率控制如图2 所示,AT 通过Rx power estimation 模块测量前向链路的接收功率来确定Pilot Channel Gain,其他信道根据Pilot Chnanel Gain 来调整发射功率;Pilot Channel Gain 的计算公式如下:X0 = –Mean Received Power (dBm) + OpenLoopAdjust + ProbeInitialAdjustOpenLoopAdjust + ProbeInitialAdjust 的可调整范围从-81 dB到-66dB,与1X系统中的Offset power有所不同。
不同厂家的OpenLoopAdjust默认值有所不同。
其他反向信道的发射功率均参照Pilot Channel Gain来确定Cdma功率控制技术-FREECdma功率控制技术2.1 前向功率控制基站通过移动台对前向误帧率的报告来调整对每个移动台的发射功率,决定增加发射功率还是减少发射功率。
移动台的报告分为定期报告和门限报告。
其目的是对路径衰落小的移动台分派较小的前向链路功率,而对那些远离基站的和误码率高的移动台分派较大的前向链路功率。
2.2 反向开环功率控制反向开环功率控制只是移动台对发送电平的粗略估计,移动台通过测量接收功率来调节移动台发射功率以达到所有移动台发出的信号在到达基站时都有相同的功率。
它主要是为了补偿阴影、拐弯等效应,所以它有一个很大的动态范围,根据IS—95 标准,它至少应该达到±32dB 的动态范围。
2.3 反向闭环和外环功率控制在对反向业务信道进行闭环功率控制时,移动台将根据在前向业务信道上收到的有效功率控制比特(PCB)来调整其平均输出功率。
闭环功率控制的设计目标是使基站对移动台的开环功率估计迅速做出纠正,以使移动台保持最理想的发射功率。
在开环估计的基础上,根据IS—95 标准,反向闭环功率控制使移动台将提供±24dB 的闭环调整范围。
为了补偿具有相同FER标准的不同速率用户对Eb/No的要求,采用反向外环功率来动态调整反向闭环功率控制中的信噪比门限Eb/No,使该门限值与系统要求的服务质量相一致。
不论是那种功率控制,都是通过降低发射功率,减少前向或反向干扰,同时降低移动台或基站功耗,提高整个CDMA 网络的平均通话质量,增加网络有效容量,延长移动台的电池使用时间。
3 功率控制原理3.1 前向功率控制基站通过移动台对前向链路误帧率的报告和临界值比较来决定是增加发射功率还是减小发射功率。
移动台的报告分为定期报告和门限报告。
定期报告顾名思义就是隔一段时间汇报一次,门限报告就是当FER(误帧率)达到一定门限时才报告。
这个门限是由运营者根据对话音质量的不同要求设置的。
这两种报告可以同时存在,也可以只要一种,或者两种都不用,可以根据网络的具体要求来设定。
移动台通过寻呼信道传送的系统参数消息(System Parameter Message)获得功率控制参数,当(PWR-PERIOD-ENABLE=1)启动定期报告功能,移动台内设一个计数器(TOT_FRAME)作为记录收到的总帧数,每收到一帧该计数器加1,当TOT_FRAME 等于(2(PWR_REP_FRAMEs/2)×5)时,移动台将向基站发送一个功率测量报告消息(PMRM)汇报周期内误帧率统计情况。
该报告与误帧数不相关,每一个周期报告一次;当(PWR_THRESH_ENABLE=1)启动门限报告功能,移动台有一个计数器(BAD_FRAME)作为记录收到的总误帧数,当误帧率超过一个指定门限PWR_REP_THRESH 时,则移动台将向基站发送一个功率测量报告消息。
如果TOT_FRAME 等于L(2(PWR_REP_FRAMEs/2)×5),移动台将置TOT_FRAMES 和BAD_FRAMES 为零,重新启动计数周期。
移动台发送功率测量汇报消息后将设置TOT_FRAME和BAD_FRAME为零。
往基站发送PMRM以后,一定时间内(PWR-REP-DELAY*4帧)不增加计数器值。
移动台前向功率控制原理如图2所示。
基站系统的前向功率控制方法在IS—95 标准内没有具体的规定。
一般基站最初以 NOM-TX-Gain 发送,每发送一定的帧(Power Down Time)后,发送功率减少Power-Down-Delta 大小,当接收到移动台功率测量报告PMRM(PowerMeasurement Report)的通话信道误帧率状态时,基站将该误帧率与设定的门限值进行比较,如果小于门限值,基站将通话信道发射功率提高Small-Up-Delta 大小;如果大于门限值,基站将通话信道发射功率提高Big-Up-Delta 大小;系统同时定义了每业务信道的发射功率的动态范围,从而使发射机的功率决不会超过会造成极大干扰的最大值,也不会低于保证适当服务质量所需的最小值。
3.2 反向开环功率控制反向开环功率控制是指移动台通过测量从基站发来的信号功率,估计前向链路的路径损耗以作为判断反向链路损耗的依据,调整自己的反向发射功率,是单方面的调整。
主要作用于前向或反向业务信道被激活之前的接入状态。
为了防止移动台一开始发射过大的功率而增加不必要的干扰,移动台首先采用接入尝试程序。
对接入信道的开环试探(闭环校正尚未激活),移动台发射其第一个试探序列的平均输出功率电平:平均输出功率=-平均输入功率-73+NOM_PWR+INIT_PWR(所有变量单位是 dB或dBm,下同)接入试探序列的后续试探不断增加其发射功率电平(每个试探增加的步长为PWR_STEP),直到收到一个响应或序列结束。
在反向业务信道上初始发送的平均输出功率电平为:平均输出功率=-平均输入功率-73+NOM_PWR+INIT_PWR+所有接入试探校正之和如果接入成功,移动台进入反向业务状态,在初始反向业务信道发送测量消息之后并收到第一个功率控制比特时,进行闭环功率校正,这时平均输出功率为:平均输出功率=-平均输入功率-73+NOM_PWR+INIT_PWR+所有接入试探校正之和+所有闭环功率控制校正之和反向开环功率控制的主要目的是消除平均路径损耗、阴影及拐弯效应。
它的调整周期较长(几十毫秒),动态范围大(60~80dB)。
其功率控制是和基站的发送功率没有关系,移动台单独测定所有能收到的信号(包括多路径衰减),判断外部损失,以此为根据调节它的发送功率。
这样就忽略了前向信道和反向信道并不相关的的事实,会导致在短时间内出现较大的误差,并且由于无线信道的快衰特性,开环功控还需要更快速更准确的校准,这由闭环功控来完成.。
当前向及反向业务信道被激活之后的功率控制为:开环功率控制 + 闭环功率控制。
3.3 反向闭环功率控制由于前、反向链路载频相隔45MHz,远超过了相干带宽,因此反向链路中存在开环中没有消除的、与前向链路相独立的损耗。
为实现精确的功率控制,必须采用闭环功率控制技术在开环估计的基础上进行弥补。
移动台根据在前向业务信道上收到的功率控制指令快速(每1.25ms)校正自己的发射功率,其中的功率控制指令(升或降)是由基站根据它所接收的移动台信号的质量来决定的;基站每隔1.25ms 检测一次解调的反向业务信道信号的信噪比SNR,然后将其与一设定的门限值作比较,以产生相应的功率控制命令,插入前向业务信道发送给移动台。
功率控制比特(“0”或“1”)是连续发送的,其速率为每比特1.25ms(即800bit/s)。
“0”比特指示移动台增加平均输出功率,“1”比特指示移动台减少平均输出功率。
每个功率控制比特使移动台增加或减少功率的大小为1dB。
这一控制过程可看图3。
由于功率控制指令由基站根据反向业务信道信号质量产生,再通过前向信道发送给移动台调整反向发射功率,形成了控制环路,这种方式为闭环校正。
闭环校正又分为内环和外环两部分,内环指上面提到的基站接收移动台的信号,将其强度与一门限相比,如果高于该门限,向移动台发送“降低发射功率”的功率控制指令;否则发送“增加发射功率”的指令。
外环的作用是对内环门限进行调整,以保证在信道环境不断变化的情况下,维持通信质量不变。
这种调整是根据基站所接收到的反向业务信道的误帧率的变化来进行的。
通常系统都有一定的服务质量目标值,该目标值设置不能太低或太高,过低将使通信链路质量不能满足业务需求,过高会造成大量资源浪费,降低整体系统容量。
当实际接收的FER 高于目标值时,基站就需要提高内环门限,以增加移动台的反向发射功率;反之,当实际接收的FER 低于目标值时,基站就适当降低内环门限,以降低移动台的反向发射功率。
最后,在基站和移动台的共同作用下,使基站能够在保证一定接收质量的前提下,让移动台以尽可能低的功率发射信号,以减小对其他用户的干扰,提高容量。
4 CDMA2000功率控制技术由于CDMA 系统的自干扰受限的特点,系统发射功率和系统中总的干扰电平是影响系统性能和质量的决定因素。
cdam2000 中引入了前向快速功率控制、前向链路发射分集、反向相干解调等功率控制新技术。
其根本目标是尽可能地降低系统中的干扰电平,减小基站和移动台的发射功率,提高系统性能和容量。
4.1 前向快速功率控制技术cdam 2000 采用前向快速功率控制(FFPC)技术,方法是移动台测量收到业务信道的Eb/Nt,并与门限值比较,根据比较结果,向基站(BS)发出升高或降低发射功率的指令。
功率控制命令比特由反向功率控制子信道传送,功率控制速率可达到800b/s。
采用前向快速功率控制,可以有效的克服慢衰落的影响,降低基站发射功率和系统的总干扰电平从而降低移动台信噪比要求,最终可以增大系统容量。
根据cdam 2000 前向快速功率控制和IS-95 慢速前向功率在单径瑞利信道条件下性能仿真对比,前者性能有显著改善,特别是在移动台运动速度较低时将获得大约9dB 的增益。