直接功率控制的系统仿真
一种基于Matlab的无刷直流电机控制系统建模仿真方法

一种基于Matlab的无刷直流电机控制系统建模仿真方法一、本文概述无刷直流电机(Brushless DC Motor, BLDC)以其高效率、低噪音、长寿命等优点,在航空航天、电动汽车、家用电器等领域得到广泛应用。
为了对无刷直流电机控制系统进行性能分析和优化,需要建立精确的数学模型并进行仿真研究。
Matlab作为一种强大的数学计算和仿真软件,为无刷直流电机控制系统的建模仿真提供了有力支持。
二、无刷直流电机控制系统原理1、无刷直流电机基本结构和工作原理无刷直流电机(Brushless Direct Current Motor,简称BLDCM)是一种基于电子换向技术的直流电机,其特点在于去除了传统直流电机中的机械换向器和电刷,从而提高了电机的运行效率和可靠性。
无刷直流电机主要由电机本体、电子换向器和功率驱动器三部分组成。
电机本体通常采用三相星形或三角形接法,其定子上分布有多个电磁铁(也称为线圈),而转子上则安装有永磁体。
当电机通电时,定子上的电磁铁会产生磁场,与转子上的永磁体产生相互作用力,从而驱动转子旋转。
电子换向器是无刷直流电机的核心部分,通常由霍尔传感器和控制器组成。
霍尔传感器安装在电机本体的定子附近,用于检测转子位置,并将位置信息传递给控制器。
控制器则根据霍尔传感器提供的位置信息,控制功率驱动器对定子上的电磁铁进行通电,从而实现电机的电子换向。
功率驱动器负责将控制器的控制信号转换为实际的电流,驱动定子上的电磁铁工作。
功率驱动器通常采用三相全桥驱动电路,具有输出电流大、驱动能力强等特点。
无刷直流电机的工作原理可以简单概括为:控制器根据霍尔传感器检测到的转子位置信息,控制功率驱动器对定子上的电磁铁进行通电,产生磁场并驱动转子旋转;随着转子的旋转,霍尔传感器不断检测新的转子位置信息,控制器根据这些信息实时调整电磁铁的通电状态,从而保持电机的连续稳定运行。
由于无刷直流电机采用电子换向技术,避免了传统直流电机中机械换向器和电刷的磨损和故障,因此具有更高的运行效率和更长的使用寿命。
三相电压型PWM整流器直接功率控制方法综述

三相电压型PWM整流器直接功率控制方法综述/tech/intro.aspx?id=565点击数:260刘永奎,伍文俊(西安理工大学自动化学院电气工程系,陕西西安710048)摘要首先介绍了三相电压型PWM整流器的拓扑结构,在此基础上,对当前应用于PWM 整流器的直接功率控制策略进行了对比分析,介绍了其实现机理和优缺点,最后,对直接功率控制在三相电压型PWM整流器中的控制技术进行了展望。
关键字 PWM整流器;直接功率控制;综述Summary about Direct Power Control Scheme of Three-Phase Voltage Source PWM RectifiersLIU Yongkui,WU Wenjun(Xi'an University of Technology,Xi'an Shannxi 710048 China)Abstract The topological structure of three-phase PWM rectifiers is introduced. On this basis, several DPC methods of three-phase voltage source PWM rectifiers were introduced and compared. At last, the pros原per of the control scheme development trends in three-phase PWM rectifiers is presented.Keywords three-phase PWM rectifiers;direct power control;summary1 概述三相电压型PWM整流器具有能量双向流动、网侧电流正弦化、低谐波输入电流、恒定直流电压控制、较小容量滤波器及高功率因数(近似为单位功率因数)等特征,有效地消除了传统整流器输入电流谐波含量大、功率因数低等问题,被广泛应用于四象限交流传动、有源电力滤波、超导储能、新能源发电等工业领域。
核反应堆功率控制系统设计与仿真

先进 的控制 系统和 策略也都 应用 到核技 术领域来 , 应 反
堆 控制 系 统也 不断 的被 数 字化 。本 文将 介 绍一 种基 于
TMS 2 L 2 2 改进 P D算法的反应堆功率控 制系 3 0 F 8 和 l I
统, 在借 鉴成 熟核反 应堆设 计方 案基 础上 , 通过相 应 的
反应堆 , 大多数还采用模 拟技术来实现其功率 控制I , 1 少 ]
硬 件 设 计 和 软 件 编程 实 现 全 部 功 率 控 制 系 统 。 经过
MAT AB S MUL NK仿真 , L /I I 完全能满足反应堆安全运
行 的要 求 。
2 系统概 述
核 反 应堆 是 使 原子 核 裂变 的 链 式反 应 能够 有控 制
核 反 应堆 功 率控 制 系 统 主要 用 来实 现 反 应堆 启 动 停堆 、稳定运 行 、功率调 节和事 故情 况下 的安全处 理 , 对保证 核反应 堆安全 和稳 定运行 起着及 其重要 的作 用 , 因此他 是 反应 堆最 重 要 的控 制系 统 。 由于 核反 应 堆 自 身特点和严 格 的安 全要 求 , 使核反 应堆功 率控 制技术远 远落 后于 现 代控 制技 术 。我 国 目前 正在 运 行 的核 电站
摘 要: 目前国内核反 堆控制技术存在数字化和智能化程度不高的问题 , 为提高其安全与操作性 能, 设计 了一种新型数字式反应堆
功率控制系统。系统 采用 T 3 0 F 8 2 MS 2 L 2 l 阵列作为控制器 , 应用改进 P D算法实现三 闭环功率调节 , I 提高了功率控制系统 的 动态特性。给出了该方案系统框图 、硬件框图, 此设 计具有结构紧凑、性 能可靠 、抗干扰性强等优点 。并通过数学建模 , 构造 出系统控制模型 , 再应用 MATL AB仿真。仿真结果表 明系统动态特性 得到改善 , 完全能够满足反应堆安全运行需要。 关键词 : 反应堆 ; 功率控 制系统 ; 数字化 ; 算法 中图分类号 : L 6 . T 323 文献标识码 : 文章编号 :0 3 2 12 0 )0 0 5 0 A 10 7 4 (0 81 0 1- 4
三相电压型PWM整流器的仿真讲解

摘要为了解决电压型PWM整流器直接功率控制系统主电路参数设计问题,根据整流器在dq 两相同步旋转坐标系中的数学模型建立了其功率控制数学模型.基于功率控制数学模型,结合整流器直接功率控制系统的特点,推得交流侧电感是由功率、功率滞环比较器环宽及开关平均频率决定的;直流侧直流电压是由交流电压、电感及负载决定的;突加负载时直流侧电容是由直流电压波动、功率、电感及负载决定的.根据上述影响主电路参数的诸多因素,提出交流侧电感、直流侧电压及直流侧电容的设计方法.计算机仿真和实验证明了本文提出的设计方法是可行的.关键词PWM整流器; 直接功率控制; 直流电压; 交流侧电感; 直流电容目录1 电压型PWM整流器 (2)1.1电压型PWM整流器拓扑结构及数学模型 (3)1.2 电压型PWM整流器DPC系统结构及原理 (3)2 电压型PWM整流器DPC系统主电路参数设计 (5)2.1 交流侧电感的选择 (5)2.2 直流侧直流电压的选择 (6)2.3 直流侧电容的选择 (7)3 电压型PWM整流器DPC系统仿真与实验 (9)3.1 系统主电路参数设计 (9)3.2 系统仿真 (9)3.3 系统实验 (10)4 总结与体会 (12)参考文献 (13)1电压型PWM 整流器1.1电压型PWM 整流器拓扑结构及数学模型电压型PWM 整流器主电路拓扑结构如图1所示.图中a U ,b U ,c U 为三相对称电源相电压,,a b c i i i 为三相线电流;,,a b c S S S 为驱动整流器开关管(绝缘栅双极型晶体管IGBT)开关函数;jS 定义为单极性二值逻辑开关函数,jS =1(j=a,b,c)则上桥臂开关导通,下桥臂开关关断,jS =0下桥臂开关导通,上桥臂开关关断;dc U 为直流电压;R,L 为滤波电抗器的电阻和电感;C 为直流侧电容;RL 为负载;,ra rb rc U U U 为整流器的输入相电压;L i 为负载电流。
基于交流电动机动态模型的直接转矩控制系统的仿真与设计

运动控制课程设计班级:电气三班学号:姓名:基于交流电动机动态模型的直接转矩控制系统的仿真与设计设计目的应用所学的交、直流调速系统的基本知识与工程设计方法,结合生产实际,确定系统的性能指标与实现方案,进行运动控制系统的初步设计。
应用计算机仿真技术,通过在MATLAB软件上建立运动控制系统的数学模型,对控制系统进行性能仿真研究,掌握系统参数对系统性能的影响。
在原理设计与仿真研究的基础上,应用PROTEL进行控制系统的印制板的设计,为毕业设计的综合运用奠定坚实的基础。
1直接转矩控制的基本原理及规律直接转矩控制系统简称DTC(Direct Torque Control)系统,是继矢量控制系统之后发展起来的另外一种高动态性能的交流电动机变压变频调速系统。
在它的转速环里面利用转矩反馈直接控制电机的电磁转矩,因此而得名为直接转矩控制。
1.1直接转矩控制系统原理与特点如图1-1为直接转矩控制的原理框图,和VC系统一样,它也是分别控制异步电动机的转速和磁链,转速调节器ASR的输出作为电磁转矩的给定信号*T,T后面设置转矩控制内环,它可以抑制磁链变化对于转矩的影响,从而使得在*转速和磁链系统实现解耦。
因此,从整体控制结构上来看,直接转矩控制(DTC)系统和矢量控制系统(VC)系统是一致的都获得了较高质量的动态性能以及静态性能。
图1-1直接转矩控制系统图的幅值从图中中可以看出,直接转矩控制系统,就是通过使定转子磁链s保持恒定,然后选择合理的零矢量的作用次序和作用时宽,以调节定子磁链矢量的运动速度,从而改变磁通角的大小,以实现对电机转矩的控制。
在直接转矩控制技术中,其基本控制方法就是通过电压空间矢量来控制定子磁链的旋转速度,控制定子磁链走走停停,以改变定子磁链的平均旋转速度的大小,从而改变磁通角的大小,以达到控制电动机转矩的目的。
从以上介绍我们可以了解到DTC系统在具体控制方法上的一些特点:⑴转矩和磁链的控制采用双位式控制器,并在PWM的逆变器中直接用这两个控制信号产生电压的SVPWM波形,从而避开了将定子电流分解成转矩和磁链分量,省去了旋转变换和电流控制,简化了控制器的姐结构。
基于交流电动机动态模型的直接矢量控制系统的仿真与设计

基于交流电动机动态模型的直接矢量控制系统的仿真与设计姓名:班级:电气三班学号:专业:电气工程及其自动化1.引言异步电机的动态数学模型是一个高阶、非线性、强耦合的多变量系统,通过坐标变换,可以使之降阶并化简,但并没有改变其非线性、多变量的本质。
需要高动态性能的异步电机调速系统必须在其动态模型的基础上进行分析和设计,但要完成这一任务并非易事。
经过人们的多年的潜心研究和实践,有几种控制方案已经获得了成功的应用,目前应用最广的就是矢量控制系统。
直接矢量控制就是一种优越的交流电机控制方式,它模拟直流电机的控制方式使得交流电机也能取得与直流电机相媲美的控制效果。
本文研究了交流电动机动态模型的直接矢量控制系统的设计方法。
并用MATLAB 最终得到出仿真结果。
2. 矢量控制系统结构异步电动机经过坐标变换可以等效成直流电动机,那么,模仿直流电动机的控制策略,得到直流电动机的控制量,再经过相应的坐标反变换,就能够控制异步电动机了。
由于进行坐标变换的是电流(代表磁动势)的空间矢量,所以这样通过坐标变换实现的控制系统就称为矢量控制系统(VectorControlSystem),简称VC 系统。
VC 系统的原理结构如图1所示。
图中的给定和反馈信号经过类似于直流调速系统所用的控制器,产生励磁电流的给定信号*m i 和电枢电流的给定信号*t i ,经过反旋转变换1-VR 一得到*αi 和*βi ,再经过2/3变换得到*A i 、*B i 和*C i 。
把这三个电流控制信号和由控制器得到的频率信号1ω加到电流控制的变频器上,所输出的是异步电动机调速所需的三相变频电流。
图1 矢量控制系统原理结构图在设计VC 系统时,如果忽略变频器可能产生的滞后,并认为在控制器后面的反旋转变换器1-VR 与电机内部的旋转变换环节VR 相抵消,2/3变换器与电机内部的3/2变换环节相抵消,则图1中虚线框内的部分可以删去,剩下的就是直流调速系统了。
可以想象,这样的矢量控制交流变压变频调速系统在静、动态性能上完全能够与直流调速系统相媲美。
基于PSCAD的微电网控制系统建模与仿真

基于PSCAD的微电网控制系统建模与仿真PSCAD软件是电力系统仿真软件中的一种,它可以用于设计、分析和优化电力系统的控制系统。
微电网是一种能够让多种不同的能源设备和负载集成在一起的电力系统,其控制和管理对于实现微电网功率均衡和优化非常关键。
因此,本文将介绍如何使用PSCAD软件来建模和仿真微电网控制系统。
第一步,建立微电网模型。
在PSCAD中创建新项目后,选择微电网模型的拓扑结构,包括各种能源源(太阳能光伏发电、风能发电等)和负载(家庭、工厂等)。
将拓扑结构中所有的能量汇(如充电电池、ESSE等)布置在一个区域内,充当能量存储和管理的中心。
在模型设置中,设置各种能源源的容量、负载需求、电池充放电等参数。
第二步,建立微电网控制系统。
将微网设计中的器件或系统连接起来,实现对微电网的控制和管理。
利用PSCAD提供的控制器和信号处理器建立微网的分级控制系统。
根据需要,加入分布式控制算法、能量管理算法和负载控制算法等实现微电网的自动管理。
第三步,仿真并测试微电网控制系统。
使用PSCAD中的仿真功能验证微电网控制系统的功能和性能。
为了优化微电网,可以通过调整控制系统参数来达到更好的功率均衡和能量管理效果。
通过对微电网的仿真,可以对微电网的性能进行全面的评估。
例如,可以确定微电网的电池容量是否足够、是否可以满足负载要求等。
在模拟期间,可以观察模型中多个部件之间的交互,并使用数字仪表板和时间响应曲线记录电力系统中的电量和电压。
在仿真结束后,还可以使用PSCAD生成仿真报告,分析系统的性能指标并评估系统的性能。
总之,PSCAD可以用于微电网控制系统的建模、仿真和优化,可以帮助使用者快速、高效地评估微电网性能和控制系统的优化。
据此,未来微电网的发展将会有更加广阔的前景。
数据分析是现代社会中必不可少的方法之一,可以通过数据分析的结果在各种领域中做出更好的决策。
下面我们将列举一些相关数据进行分析。
首先,我们来看全球各大洲的能源消耗情况。
单闭环P和PI的PWM-M系统控制仿真

一.PWM调速系统的优点自从全控型电力电子器件问世以后,就出现了采用脉冲宽度调制的高频开关控制方式,形成了脉宽调制变换器-直流电动机调速系统,简称直流脉宽调速系统,或直流PWM调速系统,与V-M系统相比,PWM系统在很多方面有较大的优越性。
(1)主电路线路简单,需用的功率器件少。
(2)开关频率高电流容易连续,谐波少电机损耗及发热都较小。
(3)低速性能好,稳速精度高,调速范围宽,可达1: 10000左右。
(4)与快速响应的电动机配合,则系统频带宽,动态响应快,动态抗扰能力强。
(5)功率开关器件工作在开关状态,导通损耗小,当开关频率适当时,开关损耗不大,因而装置效率较高。
(6)直流电源采用不可控整流时电网功率因数比相控整流器高。
由于有上述优点,直流脉宽调速系统的应用日益广泛,特别是在中、小容量的高动态性能系统中,已经完全取代了V-M系统。
二.单闭环调速直流调速系统的介绍单闭环调速系统的工作过程和原理:电动机在启动阶段,电动机的实际转速(电压)低于给定值,速度调节器的输入端存在一个偏差信号,经放大后输出的电压保持为限幅值,速度调节器工作在开环状态,速度调节器的输出电压作为电流给定值送入电流调节器,此时则以最大电流给定值使电流调节器输出移相信号,直流电压迅速上升,电流也随即增大直到等于最大给定值,电动机以最大电流恒流加速启动。
电动机的最大电流(堵转电流)可以通过整定速度调节器的输出限幅值来改变。
在电动机转速上升到给定转速后,速度调节器输入端的偏差信号减小到近于零,速度调节器和电流调节器退出饱和状态,闭环调节开始起作用。
三.调节器的作用在控制系统中设置调节器是为了改善系统的静、动态性能。
在采用了PI调节器以后,构成的是转速单闭环无静差调速系统。
改变比例系数和积分系数,可以得到振荡、有静差、无静差、超调大或启动快等不同的转速曲线。
如果把积分部分取消,改变比例系数,可以得到不同静差率的响应曲线直至振荡曲线;如果改变PI调节器的参数,可以得到超调量不一一样、调节时间也不一样的转速响应曲线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直接功率控制的系统仿真
直接功率控制的系统仿真
实际系统中的直接功率控制的实现与直接转矩控制相似,有功功率和无功功率分别由两个砰-砰控制器将检测值与给定值进行滞环比较,依据输出量查表,确定转子变频器的开关状态,从而实现双馈电机的直接功率控制。
图5.1是由
上述理论构造的直接功率控制的双馈发电系统仿真模块。
仿真选用的参数为:双馈电机参数Rs=0.4Ω,Rr=0.8Ω,Ls=71.31mL,Lr=71.31mL,Lm=69.31mL,仿真在双馈电机定子输入220V50Hz三相交流电压、输入机械转矩20N•m、逆变器直流输入电压330V、有功给定初值10kW,在0.7秒时突变为20kW、无
功给定初值为0VA,在0.5秒时突变为10kVA、滞环比较器容差为100的条件下进行,以验证直接功率控制的控制效果与瞬态响应能力。
仿真系统中,PQ-power模块计算出实际输出的有功与无功,与给定的有功无功指令进行比较,
其误差进入滞环比较器,滞环比较器的输出送入表格模块。
另一方面,磁链观测器计算出转子磁链在MT坐标系的位置,坐标变换模块把转子磁链转化到转子侧三相旋转坐标系中来,得到转子磁链关于转子a相轴线的夹角,扇区判断则判别转子磁链位于哪一个扇区。
以扇区编号和滞环比较器的输出作为依据查表,就可以得到应输出的电压矢量指令,这个电压指令送入电压源型逆变器,逆变器输出六个基本电压矢量中的一个,对双馈电机进行控制。
图5.1 直接功率控制的双馈发电系统仿真模型
图5.2 实际有功功率(w)波形图5.3 实际无功功率(VA)波形。