机械工程英语翻译-汉语翻译
机械工程英语第二版(叶邦彦陈统坚著)机械工程出版社课文翻译

Unit 1 材料的种类(1)材料的分类方法很多。
科学家常用的典型的方法是根据它们的状态分类:固体,液态或气态。
材料也分为有机(可再生)和无机材料(不可再生)。
(2)工业上,材料划分为工程材料或非工程材料。
工程材料用于制造和加工成零件的材料。
非工程材料是化学药品,燃料,润滑剂和其它用于制造又不用来加工成零件的材料。
(3)工程材料可进一步细分为:金属,陶瓷,复合材料,聚合材料,等。
Metals and Metal Alloys 金属和金属合金金属和金属合(4)金属有好的导电好导热性,很多金属有高的强度,高硬度和高的延展性。
象铁,钴,镍这些金属有磁性。
在非常低的温度下,一些金属和金属互化物变成超导体。
(5)合金和纯金属有什么区别?纯金属在元素周期表的特殊区域。
例如用于制造电线的铜和做锅和饮料罐的铝。
合金含有两种以上的金属元素。
改变金属元素的比例可以改变合金的性质。
例如,合金金属的不锈钢,是由铁,镍,和铬组成。
而黄金珠宝含有金镍合金。
(6)为什么要使用金属和合金?很多金属和合金有很高密度并用在要求质量与体积比高的的场合。
一些金属合金,象铝基合金,密度低,用在航空领域可以节省燃料。
很多合金有断裂韧度,可以承受冲击,且耐用。
金属有哪些重要属性?(7)【密度】质量除以体积叫做密度。
很多金属有相对高的密度,特别的,象聚合体。
高密度的材料常是原子量很大,象金或铅。
然而一些金属,像铝或镁密度低,就常常用在要求有金属特性而又要求低质量的场合。
(8)【断裂韧性】断裂韧度用来描述金属抗断裂的能力,特别的,当有裂纹时。
金属通常都有无关紧要的刻痕和凹坑,且有耐冲击性。
足球队员关注这一点当他确信面罩不会被击碎的时候。
(9)【塑形变形】塑性变形表述的是材料在断裂之前弯曲变形的能力。
作为工程师,我们通常设计材料使得能够在正常情况下不变形。
你不会想要一阵强烈的西风就把你的车刮得往东倾斜。
然而,有时,我们可以利用塑性变形。
汽车的承受极限就是在彻底破坏之前靠塑形变形来吸收能量。
机械工程英语第二版叶邦彦_汉语翻译(机械工业出版社)--全本书翻译

•Types of Materials 材料的类型Materials may be grouped in several ways. Scientists often classify materials by their state: solid, liquid, or gas. They also separate them into organic (once living) and inorganic (never living) materials.材料可以按多种方法分类。
科学家常根据状态将材料分为:固体、液体或气体。
他们也把材料分为有机材料(曾经有生命的)和无机材料(从未有生命的)。
For industrial purposes, materials are divided into engineering materials or nonengineering materials. Engineering materials are those used in manufacture and become parts of products.就工业效用而言,材料被分为工程材料和非工程材料。
那些用于加工制造并成为产品组成部分的就是工程材料。
Nonengineering materials are the chemicals, fuels, lubricants, and other materials used in the manufacturing process, which do not become part of the product.非工程材料则是化学品、燃料、润滑剂以及其它用于加工制造过程但不成为产品组成部分的材料。
Engineering materials may be further subdivided into: ①Metal ②Ceramics ③Composite ④Polymers, etc.工程材料还能进一步细分为:①金属材料②陶瓷材料③复合材料④聚合材料,等等。
机械工程英语第二版全本书中英对照翻译

•Types of Materials材料的类型Materials may be grouped in several ways. Scientists often classify materials by their state: solid, liquid, or gas. They also separate them into organic (once living) and inorganic (never living) materials.材料可以按多种方法分类。
科学家常根据状态将材料分为:固体、液体或气体。
他们也把材料分为有机材料(曾经有生命的)和无机材料(从未有生命的)。
For industrial purposes, materials are divided into engineering materials or nonengineering materials. Engineering materials are those used in manufacture and become parts of products.就工业效用而言,材料被分为工程材料和非工程材料。
那些用于加工制造并成为产品组成部分的就是工程材料。
Nonengineering materials are the chemicals, fuels, lubricants, and other materials used in the manufacturing process, which do not become part of the product.非工程材料则是化学品、燃料、润滑剂以及其它用于加工制造过程但不成为产品组成部分的材料。
Engineering materials may be further subdivided into: ①Metal ②Ceramics ③Composite ④Polymers, etc.工程材料还能进一步细分为:①金属材料②陶瓷材料③复合材料④聚合材料,等等。
(完整版)机械工程专业英语单词

Lesson 1 Basic Concepts in Mechanics机械学的基本概念mechanics n.力学modify v.修改,调解,变更manageable a.可控制【管理】的incline v.(使)倾斜ramp n.斜板,斜坡【道】slope v.(使)倾斜friction n.摩擦roll v.滚动multiplier n.放大器,乘法器broom n.扫帚convert v.转变【化】handle n.手柄【把】sweep v.扫荡【描】,掠过efficiency n.效率gauge vt.测【计】量,校验bearing n.轴承ideal mechanical advantage 理想的机械效益neglect vt.忽略Lesson 2 Basic Assumption in Plasticity Theory 塑性理论的基本假设assumption n.假定plasticity n.塑性investigate v.调查,研究deformation n.变形metal forming process 金属成型工艺【过程】strain (rate) n.应变【速率】strength n.强度stress n.应力yield stress 屈服应力flow stress 流动应力tensile stress 拉【伸】应力compressive stress 压【缩】应力shear stress 剪【切】应力geometry n.几何形状elastic a.弹性的springback n.回弹bending n.弯曲,折弯precision forming 精密成型tolerance n.公差continuum n.连续(体)metallurgical a.冶金(学)的grain n.晶粒dislocation n.位错(uni-,tri-,multi-)axial a.(单,三,多)轴(向)的anisotropy n.各向异性cylindrical a.圆柱体的cross-section n.横截面platen n.(工作)台板,模板coincide with 一致,相符validity n.正确有效,合法with ease 轻(而)易(举)的,很容易的Lesson 3 Optimization for Finite Element Applications有限元优化的应用optimization n.优化,优选(法)finite element 有限元iterative a.反复的,迭代的alternative n.a.交替(的),可供选择的manual a.手动的,人工的trial-and-error 试凑法bias vt,n.(使)偏向【重、差】a desktop platform (计算机)桌面平台constrain(t) v,n.强制,约束response n.反【响】应,灵敏度parameter n.参数parametric a.参数的preprocess vt.预(先)加工,预处理mesh n,v.网格,啮合capability n.能力,性能,容量loop n.环,回路,循环pose v.提出model n.模型,样品displacement n.位移,排量,替换buckling n.弯【翘】曲,挠度factor n.因素gradient n.坡【梯】度,斜率flur n.【电,磁,热,光】通量,流量multidisciplinary a.多学科的deflection n.偏移【转,离】,挠曲Lesson 4 Metals 金属toughness n.韧性corrosion n.腐蚀dump v.倾倒,堆放recyle v.反复【循环】利用copper n.铜aluminum n.铝bronze n.青铜(器)alloy n.合金wear v.磨损metallic a.(含)金属(制)的specification n.操作规程,技术要求,说明书extract vt.提炼,萃取iron n.铁carbon n.碳ferrous a.(含)铁的ferrous metals 黑色金属lead n.铅zinc n.锌tin n.锡ore n.矿(石)mineral n,a.矿物(的)impurity n.杂质,不纯Lesson 5 Metallic and Nonmetallic Materials金属和非金属材料magnesium n.镁nickel n.镍brass n.黄铜luster n.光泽ductility n.延展性,可锻性it is likely that 很可能it is certain to (inf.)必然,一定density n.密度be distinguished from 与…区分coefficient n.系数in connection with 关于,与…相关【结合】category n.种类hardness n.硬度elasticity n.弹性beam n.横梁,一束(光)penetration n.贯穿,渗透abrasion n.磨损【耗】roll n,v.轧辊,滚,轧mill n.轧钢机,铣床spring n.弹簧permanent a.永久的rupture n.破【开】裂stamp n.冲压hammer n.(锻)锤Lesson 6 Plastics and Other Materials塑料和其他材料inorganic acid 无机酸sulphuric acid 硫酸hydrochloric acid 盐酸solvent n.溶剂carbon tetrachloride 四氯化碳rigid a,n.坚硬的,刚性(的),刚度mould(mold) n.模子,塑模,铸模decoration n.装饰fabricate vt.制造【备】,生产injection molding 注射模塑(法)blow molding 吹塑(法)compression molding 压塑(法),模压(法)extrusion n.挤压vacuum forming 真空模塑(法)powder metallurgy 粉末冶金constituent n,a.组成【的,部分】,组元simultaneously adv.同时subsequently adv.随后coherent a.互相凝聚的,协调一致的fusion n.熔化,熔接crystalline n,a.结晶【的】,晶体【的】restriction n.限制【定】,节流blend n,v.混合【物】,融合press n,v.压力机,压制homogeneous a.均匀的sinter n,vt.烧结【物】Lesson 7 Die Life and Die Failure模具的寿命和失效die n.模具,锻【冲】模,凹模die life 模具寿命die failure 模具损坏deterioration n.变坏,退化,损耗surface finish 表面光洁度breakdown n.破坏,击穿lubrication n.润滑cracking n.裂纹breakage n.断裂mode n.方式,状态,模式thermal fatigue 热疲劳layer n.层abrasive n,a.(研)磨料(的),磨损(的)impression n.模膛,型腔(槽)heat checking 热裂纹,龟裂steep n,a.陡(坡)的,急剧的reversal n.颠倒,相反overload n,v.(使)过【超】载initiation n.开【初】始,发【产】生discrete a.不连续的,单个的variable n.变量cavity n.模膛,型槽stock n.坯料,原材料impact n,v.冲击,碰撞Lesson 8 Cold Working and Hot Working 冷加工和热加工cold[hot] working 冷热加工forging n.锻造,锻件classification n.分类recrystallization n.再结晶take place 发生strain [deformation] hardening 应变【变形】硬化be referred to as 叫做,称为,被认为是warm working 温加工,温锻ultimate a,n.最终的,首要的,极限stress relieving 消除应力处理austenitic a.奥氏体的stainless steel 不锈钢annealing n.退火grain size 晶粒度solid solution 固溶体refinement n.精炼【制】,细化hazard n.危险,未知数,意外事件inherent a.固有的,先天的,本质的sensitive a.灵敏的,敏感的abnormal a.非正常的critical strain 临界应变Lesson 9 Casting 铸造casting n.铸造【件】die-casting n.模铸【件】foundry n.铸造【车间】pour v.浇注suitability n.适应性pig iron 生铁cupola n.冲天炉,化铁炉erosion n.腐蚀,(侵、烧)蚀ladle n.铁水包graphite n.石墨solidify v.(使)凝固disjoin v.拆散,分开ingot n.(钢)锭destructive a.破坏(性)的,有害的retard vt,n.(使)延缓,推迟solvent n,a.溶剂(的)copper-base alloy 铜基合金Lesson 10 Metal Forming Processes in Manufacturing 制造中的金属成形工艺machine-building 机械制造plastic working 塑性加工billet n 坯料,锻坯blank n.坯料,(冲压)板坯configuration n.外形,配置,排布stroke n.行程,冲程amortize v.阻尼,缓冲,分期偿还reliability n. 可靠性,安全性drawing n.(锻坯)拔长,【线,管材】拉拔deep drawing 深冲(压)brake forming 【压】折弯(机)成型stretch forming 张拉成型military n,a.军队【事,人】(的)consumer goods 消费品integrity n.完整性,完全(善)jet engine 喷气发动机turbine n.涡【汽】轮(机),透平(机)regarding 考虑到,关于Lesson 11 Forging锻造armor n.铠甲immortalize vt.(使)不朽(灭)blacksmith n.锻工mechanical press 机械压力机hydranlic press 液压机anvil n.(锤)砧,砧座craftsman n.技工handling n.处理,装卸,搬运flexibility n.柔(韧)性,灵活性drawn out 拔长upset n.镦粗,顶锻closed impression die 闭式模锻rapid-impact blow 快速冲击,猛打vertical a.立式的ram n.锤头,滑块,活动横梁block n.(模)块draft n.模锻斜度symmetrical a.轴对称的sizing n.整形,校正,定径drop forging 落锻,锤模锻impression die forging 模锻final forging 终锻overheat n.过热furnace n.【熔,高】炉pyrometer n.高温计Lesson 12 Benefits and Principles of Forging锻造的优点和工作原理metalworking n.金属压力加工knead v.揉搓【制】refine v.精炼【制】,细化porosity n.多孔性,疏松orient v.(使)定【取】向flow line 流线stress field 应力场manual skill 手工技巧at one’s command 自由使用,支配soundness n.致密性,坚固性,无缺陷attainable a.可达【得】到的open die forging 自由锻gross n.总共,重大confine vt. 限制,约束convert v.转变【换】,更换broken up 破【断】裂,分散microshrinkage n.显微缩孔elimination n.消除,淘汰align v.调整,对中,校直Lesson 13 Welding焊接weld(ing) v,n.焊接,熔焊pressurewelding 压力焊spotwelding 点焊buttwelding 对头(缝)焊fusionwelding 熔焊,熔接fiux-shielded arc welding 熔剂保护电弧焊diversity n.不同多样性fasten(ing) v,n.连接(件),紧固(件)shielding n.遮护,屏蔽solder(ing) v,n.软钎焊,(低温)焊料bismuth n.铋cadmium n.镉rivet n,v.铆钉,铆接braze n,vt.硬钎焊,铜焊oxidation n.氧化flux n.焊接,助溶剂squeeze v.挤压oxy-acetylene n,a.氧(乙)炔(的)torch n.焊炬electrode n.电(焊)极,焊条filler n.填充(剂)overlap v.搭接,重叠strike v.攻【打】击,放电Lesson 14 Heat Treatment热处理heat treatment 热处理microstructure n.显微组织low-carbon steel 低碳钢prescribe v.规定,指示microscopic a.显微的,微观的spheroidizing n.球化(处理)normalizing n.正火,(正)常化annealing n.退火hardening n.淬火tempering n.回火soaking(=holding) n.均热,保温retarding media 延缓介质prolonged a.长时间的,持续很久的critical temperature 临界温度globular a.球形(状)的carbide n.碳化物,硬质合金quenching n.淬火,骤冷removal n.除去,放出Lesson 15 Introduction to Mechanism机构介绍mechanism n.机械,机构,机构学kinematic a.=kinematical 运动的,运动学的kinematic chain 运动链link n.构件,杆件. v.连接【结】definite a.确定的constrained a.约束的,限定的unconstrained a.无约束的linkage n.连杆(组,机构)joint n.结【接】台,铰链. a.连接的,联合的pin n.销【钉】,铰销revolution v.旋转,转动. n.回转体prismatic a.棱柱(形)的nonlinear a.非线性的four-bar linkage 四杆机构kinematic chain 运动链prime mover 原动者【机】,驱动件coupler n.连接件,连杆pivot n.枢(轴),轴销,回转副,旋转中心configuration n.外形,构造,结构inversion n.转换,更换slider-crank mechanism 曲柄滑块机构multiloop n.多环链,a.多回路的sketch n.草【简,示意】图,v.画草图,草拟skeleton diagram 草图,示意图,简图envision v.想象binary a.二【双,复】的,二元的ternary a.三元的ternary links 三杆组quaternary a.四元的quaternary links 四杆组cam 凸轮cam follower n.凸轮从动件gear n.齿轮sprocket n.链轮belt n.【皮,布,钢】带pulley n.带轮spherical a.球的,球面的helical a.螺旋的three-dimensional 三维的,空间的intuitively adv.直觉【观】地synthesis n.合成(法),综合kinematician n.运动学研究者(家)innate a.先天的,固有的Lesson 16 Movement Analysis 运动分析criterion(pl.criteria) n.(判断)标准,判据,准则branch n,v.分(部,支)transmission angle 传动角rock n.摆动,v.摇动oscillate v.摆动,摇动parallelogram n.平行四边形antiparallelogram n.反平行四边形frame n.机架,构架impart v.给予,分给to impart M to N 把M给Ntorque n.力矩,扭矩dynamic a.=dynamical 动力的,动力学的inertia n.惯性(物),惯量static a.=statical 静力【学】的,静的index n.指数,指标friction n.摩擦thumb n.拇指,v.用拇指翻rule of thumb 根据经验和实际所得的做法matrix n.矩阵determinant n.行列式derivative n.导数derivative of M with respect to N M对于N的导数movability n.可动性,易动性parameter n.参数discount v.打折扣,忽视absolute a.绝对的graphical a.图形的,图解的polygon n.多边形theorem n.定理stress n.应力bearing n.轴承centripetal a.向心的Lesson 17 Kinematic Synthesis运动的综合packaging machinery 包装机械lubrication n.润滑specification n.技术要求actuation n.驱动jerk n.震动,冲击axis n.(pl.axes)轴【线,心】,中心线contour n.外形,轮廓线eccentricity n.偏心【度,率】gear ration 齿轮【速,齿数】比topologically adv.拓扑学地customary a.通常的,习惯的correlate v.使相关,使发生关系analog n.=analogue 类似(物),模拟linear analog 线性模拟second acceleration 二阶加速度higher acceleration 高阶加速度paraphrase v.释义,意译describe v.叙述,描述,作…运动category n.种类,类别deliberation n.慎重考虑province n.省,领域preconceive v.预想,事先想好analog computer 模拟计算机trace v.追踪,描画timing n.定时,计时,配时pitch v.投掷trajectory n.轨迹embed v.嵌入,夹在层间orientation n.(定)方位,(取)方向scoop n.勺子,铲斗,v.挖,掘,铲Lesson 18 Cams and Gears凸轮和齿轮cam n.凸轮gear n.齿轮curve n.曲线a.弯曲的groove n.槽,沟mate v.配合,啮合cylindrical a.圆柱的two-dimensional or planer 两维的或平面的three-dimensional or spatial 三维的或空间的normal n.法线a.垂直的complement n,a.余角,余的collinear a.共线的lateral a.横向的,侧向的stem n.杆guide n.导向件【器,装置】,导槽(座)intermittent a.间断的,不连续的dwell n,v.停止,小停顿inertial a.惯性的,惯量的engage v.啮合rack n.齿条noncircular a.非圆的conjugate a.共轭的,n.共轭值(线)cycloidal a.摆线的involved a.渐开线的,n.渐开线tolerance n.间隙,公差spur gear 直齿圆柱轮radial a.径向的,沿半径的offset n,vt.偏移,偏心a.偏心的disk cam 盘形凸轮tangent n.切线a.相切的,切线的concentric a.同圆(的),同心(的)camshaft n.凸轮轴pitch curve 节线herringbone a.人字形的intersect v.横穿,相交parallel helical gear斜齿轮,平行轴螺旋齿轮crossed helical gear 交错轴螺旋齿轮face gear 端面齿轮spiral bevel gear 螺旋齿圆锥齿轮worm n.蜗杆skew bevel 斜齿圆锥齿轮hypoid gear 准双曲面(直角交错轴双曲面)齿轮addendum (pl.addenda) n.齿顶,齿顶高project v.伸出,突出clearance n.间隙dedendum (pl. dedenda)n.齿根,齿根高tooth space 齿间距backlash n.间隙,齿隙Lesson 19 Screws, fasteners and joints螺纹件、紧固件和联接件screw n.螺钉,螺丝,v.旋紧,攻丝fastener n.紧固件joint n.连【联】接,接合bolt n.螺栓nut n.螺母cap screw 有头螺钉setscrew n.定位【固定,调整】螺钉rivet n.铆钉,v.用铆钉铆接key n.键weld n,v.焊接,熔焊braze n,v.钎焊,铜焊clip n.夹子,v.夹住,夹紧synonymous a.同意义的monotonous a.单调的taint n.污点,污染v.弄脏tough a.坚韧的ductile a.可延伸的,有延展性的,韧性的tighten v.上紧,拉紧twist v.扭转jumbo n.大型喷气式客机titanium n.钛close-tolerance 高精密度的tooling n.工具,刀具v.用刀具(切削)加工proliferate v.增殖,增殖assembly n.安装,装配,组件tap n.丝锥,v.攻螺丝stud n.双头螺栓resemble v.类似,像thread n.螺纹(线),v.车螺纹drill n,v.钻孔hexagon head 六角头fillister n.凹槽flat head 平头hexagon socket head 六角沉头disassemble v.拆开tensile a.拉【张】力的,受拉的shear n.剪切【力】v.剪切【断】harden v.使硬【化】washer n.垫圈preload n.预载荷fatigue n.疲劳micrometer n.千分尺,千分表elongation n.拉【伸】长modulus n.(pl.moduli)模数,模量wrench n.扳手dial n.刻度盘fractional a.分数的,小数的Lesson 21 Helical, Worm and Bevel Gears 斜齿轮、蜗杆蜗轮和锥齿轮helical gear 斜齿轮worm n.蜗杆,螺杆bevel gear 圆锥齿轮helix n,a.(pl. helices 或helixes)螺旋线,螺旋线的right hand 右手,右旋的helicoid n.a.螺旋【面,体】,螺旋(状,纹)的wrap v.缠绕unwind v.解开,展开generate v.产生,展成(加工)engagement n.啮合,接触diagonal n,a.对角线(的)objectionable a.该反对的,不能采用的spiral n,a. 螺旋线(的),卷线(的)spiral gear 螺旋齿轮mesh n.啮合worm gear 蜗轮pinion n.小齿轮pitch cylinder 节圆柱concave a.中凹的curvature a.曲率screw-like 像螺丝(杆)的thread n.线状物,螺纹线envelop v.包围,封闭enclose v.包围lead angle 导角cast v.铸造mill v.铣削outboard a,ad.外侧的,向外pronounced a.明确的,显著的stress n.应力tapered a.锥形的positively ad.确定地,强制(传动)地Pitch-line velocity 节线速度automobile differential 汽车差速器gearing n.齿轮传动(装置)offset n.偏置,横距hypoid a.准双曲面的hyperboloid n.双曲面,双曲面体Lesson 22 Shafts, Clutches and Brakes轴、离合器和制动器shaft n.轴clutch n.离合器brake n.制动器pulley n.(皮,胶)带轮flywheel n.飞轮sprocket n.链轮,星轮bending moment 弯曲力矩torsional a.扭转的static a.静(力,态)的axle n.心轴,轮轴spindle n.心轴,主轴deflection n.偏移,弯曲fillet n.圆角,倒角peening n.喷射(加工硬化法)shot peening 喷丸硬化stiff a.刚性的inertia n.惯性,惯量slippage n.滑动actuation n.驱动,开动coefficient n.系数statics n.静力学rim n.边缘,轮缘shoe n.闸瓦,制动片【块】band n.带,条cone n.圆锥miscellaneous a.(混)合的,杂项的assume v.假设,承担statical a.=static,静态的equilibrium n.平衡reaction n.反应,反力overload-release clutch 超载释放(保护)离合器magnetic fluid clutch 磁液离合器shift v.变换,(使)移动lever n.杆,(手)柄jaw n.颚板,夹爪ratchet n.棘轮circumferentiallyad v.周围地,圆周地mate v.配合,啮合,联接synchronous a.同步的linear drive 线性驱动装置clicking n.‘卡塔’声freewheel v.空转coupling n.联轴器sleeve n.套筒flat n.平面(部分)a.平的periphery n.圆周,周边wedge n.楔(形物)v.楔入pawl n.棘爪powder n.粉末mixture n.混合物electromagnetic a.电磁的coil n.线圈excitation n.刺激,激励shearing a.剪切的lockup n.锁住Lesson 41 Definition of Robotics and the Robot Systemmanipulator n.操作器,控制器,机械手peripheral a.周围的,外围的idiot n.白痴integrate v.使成为一体,使结合起来hard automation 刚性自动化a host of 许多Lesson 42 Basics of Computers(I)execute v.执行binary a.二进制的read only memory (ROM) 只读存储器random access memory (RAM)读写存储器,随机存储器erasable a.可擦去的volatile a.可丢失的Lesson 43 Basics of Computers(二)harsh a.恶劣的robust a.稳定的configuration n.结构,组态Morse Code 莫尔斯电码suffice v.足够interference n.干扰fluctuation n.脉动,波动expendable a.可消耗的intermediate a.中间的adaptor n.转换器transformer n.变压器rectifier n.整流器capacitor n.电容器Zener diode 齐纳(稳压)二极管buffer n.缓冲寄存器come across 碰到Baud rate 波特率Lesson 44 Programmable Controllersalbeit conj.虽然light-emitting diodes 发光二极管relay ladder logic 继电器梯形逻辑图archaically a.古体的,旧式的retention n.保留,保持versed a.熟练的,精通的fluidics n.射流sheer a.完全的,绝对的profligate a.浪费的proprietary a.专利的,专有的boolean expression 布尔表达式Lesson 45 CAD/CAMComputed-aided design(CAD) n.计算机辅助设计Computed-aided manufacturing(CAM) n.计算机辅助制造automatic factory n.自动化工厂drafting n.制图Computer-aided engineering n.计算机辅助工程management information systems n.管理信息系统graphics terminal n.图像终端a shared data base n.公用数据库three-dimensional a.三维的keyboard n.键盘lightpen=light pen n.光笔magnify v.放大flip v,n.翻转copy v.拷贝a mirror image 镜像symmetrical a.对称的artwork n.印刷线路原图Geometric modeling n.几何模型制造kinematics n.运动学Lesson 48 Flexible Manufacturing Systemsfexible manufacturing systems(FMS)柔性制造系统flexible manufacturing celles(FMC) 柔性制造单元automated guided vehicles 自动搬运小车conveyor n.传送装置pallet loading and unloading carts 上下料小车part program 零件程序data base 数据库data processing networks 数据处理网络inspection program 检测程序robot program 自动机程序real-time control data 实时控制数据the Control hierarchy 控制层次real-time fault recovery 实时故障恢复unmanned operation 无人化操作chip removel 排屑module n.模块,组件intelligent node智能节点。
机械专业英语短文带翻译

机械工程师的关键责任之一是设计与分析机械系统。这涉及使用计算机辅助设计(CAD)软件创建系统的详细三维模型,并在不同条件下模拟其性能。通过分析作用于系统组件的力、应力和振动,机械工程师可以优化设计,确保安全、可靠和高效。
Case Study: Designing an Automotive Suspension System
案例研究:汽车悬挂系统设计
例如,让我们考虑一下汽车悬挂系统的设计。悬挂系统负责在保持车辆稳定控制的同时提供平稳的行驶。机械工程师使用CAD软件设计悬挂系统的各个组件,例如弹簧、减振器和控制臂。
在完成初始设计后,工程师将使用有限元分析(FEA)软件对系统进行分析。这样可以模拟系统在不同的道路条件下(如坑洼或减速带)的行为。通过分析组件中的应力和位移,工程师可以确定潜在的设计问题,并进行必要的修改,以改善悬挂系统的性能和安全性。
For example, let's consider the design of an automotive suspension system. A suspension system is responsible for providing a smooth ride while maintaining the stability and control of the vehicle. A mechanical engineer would use CAD software to design the various components of the suspension system, such as the springs, dampers, and control arms.
After the initial design is complete, the engineer would then analyze the system using finite element analysis (FEA) software. This allows them to simulate the behavior of the system under different road conditions, such as potholes or speed bumps. By analyzing the stresses and displacements in the components, the engineer can identify potential design issues and make necessary modifications to improve the performance and safety of the suspension system.
机械工程专业英语_原文翻译

5.1 IntroductionConventional machining is the group of machining operations that use single- or multi-point tools to remove material in the form of chips. Metal cutting involves removing metal through machining operations. Machining traditionally takes place on lathes, drill presses, and milling machines with the use of various cutting tools. Most machining has very low set-up cost compared with forming, molding, and casting processes. However, machining is much more expensive for high volumes. Machining is necessary where tight tolerances on dimensions and finishes are required.5.1 译文传统机械加工是一组利用单刃或者多刃刀具以切屑形式去除材料的加工方式。
金属切削意味着通过机械加工去除金属。
传统的机械加工都是利用不同的刀具在车床、钻床和铣床上进行的。
与成型加工、锻压和铸造工艺相比,大多数机械加工的生产准备成本都较低,然而如果是大批量生产,其成本要高得多。
当对零件的尺寸公差和光洁度要求较高时,机械加工是很有必要的。
5.2 Turning and LatheTurning is one of the most common of metal cutting operations. In turning, a workpiece is rotated about its axis as single-point cutting tools are fed into it, shearing away excess material and creating the desired cylindrical surface. Turning can occur on both external and internal surfaces to produce an axially-symmetrical contoured part. Parts ranging from pocket watch components to large diameter marine propeller shafts can be turned on a lathe.Apart from turning, several other operations can also be performed on lathe.axially ['æksiəli] adv.轴向地symmetrical [si'metrikəl] a. 对称的cylindrical [si'lindrikl] a.圆柱形的contoured ['kɔntuəd] a.显示轮廓的,与某种形体轮廓相吻合的译文:在金属切削加工操作中,车削是最常见的一种。
机械工程外文翻译

外文资料原文及译文学院:机电工程学院专业:机械设计制造及其自动化班级:学号:姓名:Mechanical engineering1.The porfile of mechanical engineeringEngingeering is a branch of mechanical engineerig,itstudies mechanical and power generation especially power and movement.2.The history of mechanical engineering18th century later periods,the steam engine invention hasprovided a main power fountainhead for the industrialrevolution,enormously impelled each kind of mechznicalbiting.Thus,an important branch of a new Engineering –separated from the civil engineering tools and machines on thebranch-developed together with Birmingham and the establishment of the Associantion of Mechanical Engineers in1847 had been officially recognized.The mechanicalengineering already mainly used in by trial and error methodmechanic application technological development intoprofessional engineer the scientific method of which in theresearch,the design and the realm of production used .From themost broad perspective,the demend continuously to enhance theefficiencey of mechanical engineers improve the quality of work,and asked him to accept the history of the high degreeof education and training.Machine operation to stress not onlyeconomic but also infrastructure costs to an absolute minimun.3.The field of mechanical engineeringThe commodity machinery development in the develop country,in the high level material life very great degree is decided each kind of which can realize in the mechanical engineering.Mechanical engineers unceasingly will invent the machine next life to produce the commodity,unceasingly will develop the accuracy and the complexity more and more high machine tools produces the machine.The main clues of the mechanical development is:In order to enhance the excellent in quality and reasonable in price produce to increase the precision as well as to reduce the production cost.This three requirements promoted the complex control system development.The most successful machine manufacture is its machine and the control system close fusion,whether such control system is essentially mechanical or electronic.The modernized car engin production transmission line(conveyer belt)is a series of complex productions craft mechanization very good example.The people are in the process of development in order to enable further automation of the production machinery ,the use of a computer to store and handle large volumes of data,the data is a multifunctional machine toolsnecessary for the production of spare parts.One of the objectives is to fully automated production workshop,three rotation,but only one officer per day to operate.The development of production for mechanical machinery must have adequate power supply.Steam engine first provided the heat to generate power using practical methods in the old human,wind and hydropower,an increase of engin .New mechanical engineering industry is one of the challenges faced by the initial increase thermal effciency and power,which is as big steam turbine and the development of joint steam boilers basically achieved.20th century,turbine generators to provide impetus has been sustained and rapid growth,while thermal efficiency is steady growth,and large power plants per kW capital consumption is also declining.Finally,mechanical engineers have nuclear energy.This requires the application of nuclear energy particularly high reliability and security, which requires solving many new rge power plants and the nuclear power plant control systems have become highly complex electroonics,fluid,electricity,water and mechanical parts networks All in all areas related to the mechanical engineers.Small internal combustion engine,both to the type (petrol and diesel machines)or rotary-type(gas turbines andMong Kerr machine),as well as their broad application in the field of transport should also due to mechanical enginerrs.Throughout the transport,both in the air and space,or in the terrestrial and marine,mechanial engineers created a variety of equipment and power devices to their increasing cooperation with electrical engineers,especially in the development of appropration control systems.Mechanical engineers in the development of military weapons technology and civil war ,needs a similar,though its purpose is to enhance rather than destroy their productivity.However.War needs a lot of resources to make the area of techonlogy,many have a far-reaching development in peacetime efficiency.Jet aircraft and nuclear reactors are well known examples.The Biological engineering,mechanical engineering biotechnology is a relatively new and different areas,it provides for the replacement of the machine or increase the body functions as well as for medical equipment.Artficial limbs have been developed and have such a strong movement and touch response function of the human body.In the development of artificial organ transplant is rapid,complex cardiac machines and similar equipment to enable increasingly complex surgery,and injuries and ill patients life functions can besustained.Some enviromental control mechanical engineers through the initial efforts to drainage or irrigation pumping to the land and to mine and ventilation to control the human environment.Modern refrigeration and air-conditioning plant commonaly used reverse heat engine,where the heat from the engine from cold places to more external heat.Many mechanical engineering products,as well as other leading technology development city have side effects on the environment,producing noise,water and air pollution caused,destroyed land and landscape.Improve productivity and diver too fast in the commodity,that the renewable natural forces keep pace.For mechanical engineers and others,environmental control is rapidly developing area,which includes a possible development and production of small quantities of pollutants machine sequnce,and the development of new equipment and teachnology has been to reduce and eliminate pollution.4.The role of mechanical engineeringThere are four generic mechanical engineers in common to the above all domains function.The 1st function is the understanding and the research mechanical science foundation.It includes the power and movement of therelationship dynamics For example,in the vibration and movement of the relationship;Automatic control;Study of the various forms of heart,energy,power relations between the thermodynamic;Fluidflows; Heat transfer; Lubricant;And material properties.The 2nd function will be conducts the research,the desing and the development,this function in turn attempts to carry on the essential change to satisfy current and the future needs.This not only calls for a clear understanding of mechanical science,and have to break down into basic elements of a complex system capacity.But also the need for synthetic and innovative inventions.The 3rd function is produces the product and the power,include plan,operation and maintenance.Its goal lies in the maintenance either enhances the enterprise or the organization longer-tern and survivabilaty prestige at the same time,produces the greatest value by the least investments and the consumption.The 4th function is mechanical engineer’s coordinated function,including the management,the consultation,as well as carries on the market marking in certain situation.In all these function,one kind unceasingly to use the science for a long time the method,but is not traditional orthe intuition method tendency,this is a mechanical engineering skill aspect which unceasingly grows.These new rationalization means typical names include:The operations research,the engineering economics,the logical law problem analysis(is called PABLA) However,creativity is not rationalization.As in other areas,in mechanical engineering, to take unexpected and important way to bring about a new capacity,still has a personal,marked characteristice.5.The design of mechanical engineeringThe design of mechanical is the design has the mechanical property the thing or the system,such as:the instrument and the measuring appliance in very many situations,the machine design must use the knowledge of discipline the and so on mathematics,materials science and mechanics.Mechanical engineering desgin includeing all mechanical desgin,but it was a study,because it also includes all the branches of mechsnical engineering,such as thermodynamics all hydrodynamics in the basic disciplines needed,in the mechanical engineering design of the initial stude or mechanical design.Design stages.The entire desgin process from start to finish,in the process,a demand that is designed for it and decided to do the start.After a lot of repetition,thefinal meet this demand by the end of the design procees and the plan.Design considerations.Sometimes in a system is to decide which parts needs intensity parts of geometric shapes and size an important factor in this context that we must consider that the intensity is an important factor in the design.When we use expression design considerations,we design parts that may affect the entire system design features.In the circumstances specified in the design,usually for a series of such functions must be taken into account.Howeever,to correct purposes,we should recognize that,in many cases the design of important design considerations are not calculated or test can determine the components or systems.Especially students,wheen in need to make important decisions in the design and conduct of any operation that can not be the case,they are often confused.These are not special,they occur every day,imagine,for example,a medical laboratory in the mechanical design,from marketing perspective,people have high expectations from the strength and relevance of impression.Thick,and heavy parts installed together:to produce a solid impression machines.And sometimes machinery and spare parts from the design style is the point and not the other point of view.Our purpose is to make those you do notbe misled to believe that every design decision will need reasonable mathematical methods.Manufacturing refers to the raw meterials into finished products in the enterprise.Create three distinct phases.They are:input,processing exprot.The first phase includes the production of all products in line with market needs essential.First there must be the demand for the product,the necessary materials,while also needs such as energy,time,human knowledge and technology resourcess . Finall,the need for funds to obtain all the other resources. Lose one stage after the second phase of the resources of the processes to be distributed.Processing of raw materials into finished products of these processes.To complete the design,based on the design,and then develop plans.Plan implemented through various production processes.Management of resources and processes to ensure efficiency and productivity.For example,we must carefully manage resources to ensure proper use of funds.Finally,people are talking about the product market was cast.Stage is the final stage of exporting finished or stage.Once finished just purchased,it must be delivered to the users.According to product performance,installation and may have to conduct furtherdebugging in addition,some products,especially those very complex products User training is necessary.6.The processes of materials and maunfacturingHere said engineering materials into two main categories:metals and non-ferrous,high-performance alloys and power metals.Non-metallic futher divided into plastice,synthetic rubber,composite materials and ceramics.It said the production proccess is divided into several major process,includingshape,forging,casting/ founding,heat treatment,fixed/connections ,measurement/ quality control and materal cutting.These processes can be further divide into each other’s craft.Various stages of the development of the manufacturing industry Over the years,the manufacturing process has four distinct stages of development, despite the overlap.These stages are:The first phase is artisanal,the second Phase is mechanization.The third phase is automation the forth Phase is integrated.When mankind initial processing of raw materials into finished products will be,they use manual processes.Each with their hands and what are the tools manuslly produced.This is totally integrated production take shape.A person needs indentification,collection materials,the design of a productto meet that demand,the production of such products and use it.From beginning to end,everything is focused on doing the work of the human ter in the industrial revolution introduced mechanized production process,people began to use machines to complete the work accomplished previously manual. This led to the specialization.Specialization in turn reduce the manufacture of integrated factors.In this stage of development,manufacturing workers can see their production as a whole represent a specific piece of the part of the production process.One can not say that their work is how to cope with the entire production process,or how they were loaded onto a production of parts finished.Development of manufacting processes is the next phase of the selection process automation.This is a computer-controlled machinery and processes.At this stage,automation island began to emerge in the workshop lane.Each island represents a clear production process or a group of processes.Although these automated isolated island within the island did raise the productivity of indivdual processes,but the overall productivity are often not change.This is because the island is not caught in other automated production process middle,but not synchronous with them .The ultimate result is the efficient working fast parkedthrough automated processes,but is part of the stagnation in wages down,causing bottlenecks.To better understand this problem,you can imagine the traffic in the peak driving a red light from the red Service Department to the next scene. Occasionally you will find a lot less cars,more than being slow-moving vehicles,but the results can be found by the next red light Brance.In short you real effect was to accelerate the speed of a red Department obstruction offset.If you and other drivers can change your speed and red light simultaneously.Will advance faster.Then,all cars will be consistent,sommth operation,the final everyone forward faster.In the workshop where the demand for stable synchronization of streamlined production,and promoted integration of manufacturing development.This is a still evolving technology.Fully integrated in the circumstances,is a computer-controllrd machinery and processing.integrated is completed through computer.For example in the preceding paragraph simulation problems,the computer will allow all road vehicles compatible with the change in red.So that everyone can steady traffic.Scientific analysis of movement,timing and mechanics of the disciplines is that it is composed of two pater:staticsand dynamics.Statics analyzed static system that is in the system,the time is not taken into account,research and analysis over time and dynamics of the system change.Dynameics from the two componets.Euler in 1775 will be the first time two different branches: Rigid body movement studies can conveniently divided into two parts:geometric and mechanics.The first part is without taking into account the reasons for the downward movement study rigid body from a designated location to another point of the movement,and must use the formula to reflect the actual,the formula would determine the rigid body every point position. Therefore,this study only on the geometry and,more specifically,on the entities from excision.Obviously,the first part of the school and was part of a mechanical separation from the principles of dynamics to study movement,which is more than the two parts together into a lot easier.Dynamics of the two parts are subsequently divided into two separate disciplines,kinematic and dynamics,a study of movement and the movement strength.Therefore,the primary issue is the design of mechanical systems understand its kinematic.Kinematic studies movement,rather than a study of its impact.In a more precise kinematic studies position,displacement,rotation,speed,velocity and acceleration of disciplines,for esample,or planets orbiting research campaing is a paradigm.In the above quotation content should be pay attention that the content of the Euler dynamics into kinematic and rigid body dynamics is based on the assumption that they are based on research.In this very important basis to allow for the treatment of two separate disciplines.For soft body,soft body shape and even their own soft objects in the campaign depends on the role of power in their possession.In such cases,should also study the power and movement,and therefore to a large extent the analysis of the increased complexity.Fortunately, despite the real machine parts may be involved are more or less the design of machines,usually with heavy material designed to bend down to the lowest parts.Therefore,when the kinematic analysis of the performance of machines,it is often assumed that bend is negligible,spare parts are hard,but when the load is known,in the end analysis engine,re-engineering parts to confirm this assnmption.机械工程1.机械工程简介机械工程是工程学的一个分支,它研究机械和动力的产,尤其是力和动力。
机械工程专业英语原文翻译哈工版

2、应力和应变在任何工程结构中独立的部件或构件将承受来自于部件的使用状况或工作的外部环境的外力作用。
如果组件就处于平衡状态,由此而来的各种外力将会为零,但尽管如此,它们共同作用部件的载荷易于使部件变形同时在材料里面产生相应的内力。
有很多不同负载可以应用于构件的方式。
负荷根据相应时间的不同可分为:(a)静态负荷是一种在相对较短的时间内逐步达到平衡的应用载荷。
(b)持续负载是一种在很长一段时间为一个常数的载荷, 例如结构的重量。
这种类型的载荷以相同的方式作为一个静态负荷; 然而,对一些材料与温度和压力的条件下,短时间的载荷和长时间的载荷抵抗失效的能力可能是不同的。
(c)冲击载荷是一种快速载荷(一种能量载荷)。
振动通常导致一个冲击载荷, 一般平衡是不能建立的直到通过自然的阻尼力的作用使振动停止的时候。
(d)重复载荷是一种被应用和去除千万次的载荷。
(e)疲劳载荷或交变载荷是一种大小和设计随时间不断变化的载荷。
上面已经提到,作用于物体的外力与在材料里面产生的相应内力平衡。
因此,如果一个杆受到一个均匀的拉伸和压缩,也就是说, 一个力,均匀分布于一截面,那么产生的内力也均匀分布并且可以说杆是受到一个均匀的正常应力,应力被定义为应力==负载P /压力A,因此根据载荷的性质应力是可以压缩或拉伸的,并被度量为牛顿每平方米或它的倍数。
如果一个杆受到轴向载荷,即是应力,那么杆的长度会改变。
如果杆的初始长度L和改变量△L 已知,产生的应力定义如下:应力==改变长△L /初始长L因此应力是一个测量材料变形和无量纲的物理量,即它没有单位;它只是两个相同单位的物理量的比值。
一般来说,在实践中,在荷载作用下材料的延伸是非常小的, 测量的应力以*10-6的形式是方便的, 即微应变, 使用的符号也相应成为ue。
从某种意义上说,拉伸应力与应变被认为是正的。
压缩应力与应变被认为是负的。
因此负应力使长度减小。
当负载移除时,如果材料回复到初始的,无负载时的尺寸时,我们就说它是具有弹性的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机械工程英语翻译-汉语翻译————————————————————————————————作者:————————————————————————————————日期:UNIT 1材料的类型材料可以按多种方法分类。
科学家常根据状态将材料分为:固体、液体或气体。
他们也把材料分为有机材料(曾经有生命的)和无机材料(从未有生命的)。
就工业效用而言,材料被分为工程材料和非工程材料。
那些用于加工制造并成为产品组成部分的就是工程材料。
非工程材料则是化学品、燃料、润滑剂以及其它用于加工制造过程但不成为产品组成部分的材料。
工程材料还能进一步细分为:①金属材料②陶瓷材料③复合材料④聚合材料,等等。
金属和金属合金金属就是通常具有良好导电性和导热性的元素。
许多金属具有高强度、高硬度以及良好的延展性。
某些金属能被磁化,例如铁、钴和镍。
在极低的温度下,某些金属和金属化合物能转变成超导体。
合金与纯金属的区别是什么?纯金属是在元素周期表中占据特定位置的元素。
例如电线中的铜和制造烹饪箔及饮料罐的铝。
合金包含不止一种金属元素。
合金的性质能通过改变其中存在的元素而改变。
金属合金的例子有:不锈钢是一种铁、镍、铬的合金,以及金饰品通常含有金镍合金。
为什么要使用金属和合金?许多金属和合金具有高密度,因此被用在需要较高质量体积比的场合。
某些金属合金,例如铝基合金,其密度低,可用于航空航天以节约燃料。
许多合金还具有高断裂韧性,这意味着它们能经得起冲击并且是耐用的。
金属有哪些重要特性?密度定义为材料的质量与其体积之比。
大多数金属密度相对较高,尤其是和聚合物相比较而言。
高密度材料通常由较大原子序数原子构成,例如金和铅。
然而,诸如铝和镁之类的一些金属则具有低密度,并被用于既需要金属特性又要求重量轻的场合。
断裂韧性可以描述为材料防止断裂特别是出现缺陷时不断裂的能力。
金属一般能在有缺口和凹痕的情况下不显著削弱,并且能抵抗冲击。
橄榄球运动员据此相信他的面罩不会裂成碎片。
塑性变形就是在断裂前弯曲或变形的能力。
作为工程师,设计时通常要使材料在正常条件下不变形。
没有人愿意一阵强烈的西风过后自己的汽车向东倾斜。
然而,有时我们也能利用塑性变形。
汽车上压皱的区域在它们断裂前通过经历塑性变形来吸收能量。
金属的原子连结对它们的特性也有影响。
在金属内部,原子的外层阶电子由所有原子共享并能到处自由移动。
由于电子能导热和导电,所以用金属可以制造好的烹饪锅和电线。
因为这些阶电子吸收到达金属的光子,所以透过金属不可能看得见。
没有光子能通过金属。
合金是由一种以上金属组成的混合物。
加一些其它金属能影响密度、强度、断裂韧性、塑性变形、导电性以及环境侵蚀。
例如,往铝里加少量铁可使其更强。
同样,在钢里加一些铬能减缓它的生锈过程,但也将使它更脆。
陶瓷和玻璃陶瓷通常被概括地定义为无机的非金属材料。
照此定义,陶瓷材料也应包括玻璃;然而许多材料科学家添加了“陶瓷”必须同时是晶体物组成的约定。
玻璃是没有晶体状结构的无机非金属材料。
这种材料被称为非结晶质材料。
陶瓷和玻璃的特性高熔点、低密度、高强度、高刚度、高硬度、高耐磨性和抗腐蚀性是陶瓷和玻璃的一些有用特性。
许多陶瓷都是电和热的良绝缘体。
某些陶瓷还具有一些特殊性能:有些是磁性材料,有些是压电材料,还有些特殊陶瓷在极低温度下是超导体。
陶瓷和玻璃都有一个主要的缺点:它们容易破碎。
陶瓷一般不是由熔化形成的。
因为大多数陶瓷在从液态冷却时将会完全破碎(即形成粉末)。
因此,所有用于玻璃生产的简单有效的—诸如浇铸和吹制这些涉及熔化的技术都不能用于由晶体物组成的陶瓷的生产。
作为替代,一般采用“烧结”或“焙烧”工艺。
在烧结过程中,陶瓷粉末先挤压成型然后加热到略低于熔点温度。
在这样的温度下,粉末内部起反应去除孔隙并得到十分致密的物品。
光导纤维有三层:核心由高折射指数高纯光传输玻璃制成,中间层为低折射指数玻璃,是保护核心玻璃表面不被擦伤和完整性不被破坏的所谓覆层,外层是聚合物护套,用于保护光导纤维不受损。
为了使核心玻璃有比覆层大的折射指数,在其中掺入微小的、可控数量的能减缓光速而不会吸收光线的杂质或搀杂剂。
由于核心玻璃的折射指数比覆层大,只要在全内反射过程中光线照射核心/覆层分界面的角度比临界角大,在核心玻璃中传送的光线将仍保留在核心玻璃中。
全内反射现象与核心玻璃的高纯度一样,使光线几乎无强度损耗传递长距离成为可能。
复合材料由两种或更多材料构成。
例子有聚合物/陶瓷和金属/陶瓷复合材料。
之所以使用复合材料是因为其全面性能优于组成部分单独的性能。
例如:聚合物/陶瓷复合材料具有比聚合物成分更大的模量,但又不像陶瓷那样易碎。
复合材料有两种:纤维加强型复合材料和微粒加强型复合材料。
纤维加强型复合材料加强纤维可以是金属、陶瓷、玻璃或是已变成石墨的被称为碳纤维的聚合物。
纤维能加强基材的模量。
沿着纤维长度有很强结合力的共价结合在这个方向上给予复合材料很高的模量,因为要损坏或拉伸纤维就必须破坏或移除这种结合。
把纤维放入复合材料较困难,这使得制造纤维加强型复合材料相对昂贵。
纤维加强型复合材料用于某些最先进也是最昂贵的运动设备,例如计时赛竞赛用自行车骨架就是用含碳纤维的热固塑料基材制成的。
竞赛用汽车和某些机动车的车体部件是由含玻璃纤维(或玻璃丝)的热固塑料基材制成的。
纤维在沿着其轴向有很高的模量,但垂直于其轴向的模量却较低。
纤维复合材料的制造者往往旋转纤维层以防模量产生方向变化。
微粒加强型复合材料用于加强的微粒包含了陶瓷和玻璃之类的矿物微粒,铝之类的金属微粒以及包括聚合物和碳黑的非结晶质微粒。
微粒用于增加基材的模量、减少基材的渗透性和延展性。
微粒加强型复合材料的一个例子是机动车胎,它就是在聚异丁烯人造橡胶聚合物基材中加入了碳黑微粒。
聚合材料聚合物具有一般是基于碳链的重复结构。
这种重复结构产生链状大分子。
由于重量轻、耐腐蚀、容易在较低温度下加工并且通常较便宜,聚合物是很有用的。
聚合材料具有一些重要特性,包括尺寸(或分子量)、软化及熔化点、结晶度和结构。
聚合材料的机械性能一般表现为低强度和高韧性。
它们的强度通常可采用加强复合结构来改善。
聚合材料的重要特性尺寸:单个聚合物分子一般分子量为10,000到1,000,000g/mol之间,具体取决于聚合物的结构—这可以比2,000个重复单元还多。
聚合物的分子量极大地影响其机械性能,分子量越大,工程性能也越好。
热转换性:聚合物的软化点(玻璃状转化温度)和熔化点决定了它是否适合应用。
这些温度通常决定聚合物能否使用的上限。
例如,许多工业上的重要聚合物其玻璃状转化温度接近水的沸点(100℃, 212℉),它们被广泛用于室温下。
而某些特别制造的聚合物能经受住高达300℃(572℉)的温度。
结晶度:聚合物可以是晶体状的或非结晶质的,但它们通常是晶体状和非结晶质结构的结合物(半晶体)。
原子链间的相互作用:聚合物的原子链可以自由地彼此滑动(热可塑性)或通过交键互相连接(热固性或弹性)。
热可塑性材料可以重新形成和循环使用,而热固性与弹性材料则是不能再使用的。
链内结构:原子链的化学结构对性能也有很大影响。
根据各自的结构不同,聚合物可以是亲水的或憎水的(喜欢或讨厌水)、硬的或软的、晶体状的或非结晶质的、易起反应的或不易起反应的。
UNIT 2对热处理的理解包含于对冶金学较广泛的研究。
冶金学是物理学、化学和涉及金属从矿石提炼到最后产物的工程学。
热处理是将金属在固态加热和冷却以改变其物理性能的操作。
按所采用的步骤,钢可以通过硬化来抵抗切削和磨损,也可以通过软化来允许机加工。
使用合适的热处理可以去除内应力、细化晶粒、增加韧性或在柔软材料上覆盖坚硬的表面。
因为某些元素(尤其是碳)的微小百分比极大地影响物理性能,所以必须知道对钢的分析。
合金钢的性质取决于其所含有的除碳以外的一种或多种元素,如镍、铬、锰、钼、钨、硅、钒和铜。
由于合金钢改善的物理性能,它们被大量使用在许多碳钢不适用的地方。
下列讨论主要针对被称为普通碳钢的工业用钢而言。
热处理时冷却速率是控制要素,从高于临界温度快速冷却导致坚硬的组织结构,而缓慢冷却则产生相反效果。
简化铁碳状态图如果只把注意力集中于一般所说的钢上,经常要用到简化铁碳状态图。
铁碳状态图中靠近三角区和含碳量高于2%的那些部分对工程师而言不重要,因此将它们删除。
如图2.1所示的简化铁碳状态图将焦点集中在共析区,这对理解钢的性能和处理是十分有用的。
在此图中描述的关键转变是单相奥氏体(γ) 随着温度下降分解成两相铁素体加渗碳体组织结构。
控制这一由于奥氏体和铁素体的碳溶解性完全不同而产生的反应,使得通过热处理能获得很大范围的特性。
为了理解这些过程,考虑含碳量为0.77%的共析钢,沿着图2.1的x-x’线慢慢冷却。
在较高温度时,只存在奥氏体,0.77%的碳溶解在铁里形成固溶体。
当钢冷却到727℃(1341℉)时,将同时发生若干变化。
铁需要从面心立方体奥氏体结构转变为体心立方体铁素体结构,但是铁素体只能容纳固溶体状态的0.02%的碳。
被析出的碳与金属化合物Fe3C形成富碳的渗碳体。
本质上,共析体的基本反应是奥氏体0.77%的碳→铁素体0.02%的碳+渗碳体6.67%的碳。
由于这种碳成分的化学分离完全发生在固态中,产生的组织结构是一种细致的铁素体与渗碳体的机械混合物。
通过打磨并在弱硝酸酒精溶液中蚀刻制备的样本显示出由缓慢冷却形成的交互层状的薄片结构。
这种结构由两种截然不同的状态组成,但它本身具有一系列特性,且因与低倍数放大时的珠母层有类同之处而被称为珠光体。
含碳量少于共析体(低于0.77%)的钢称为亚共析钢。
现在来看这种材料沿着图2.1中y-y’ 线冷却的转变情况。
在较高温度时,这种材料全部是奥氏体,但随着冷却就进入到铁素体和奥氏体稳定状态的区域。
由截线及杠杆定律分析可知,低碳铁素体成核并长大,剩下含碳量高的奥氏体。
在727℃(1341℉)时,奥氏体为共析组成(含碳量0.77%),再冷却剩余的奥氏体就转化为珠光体。
作为结果的组织结构是初步的共析铁素体(在共析反应前的铁素体)和部分珠光体的混合物。
过共析钢是含碳量大于共析量的钢。
当这种钢冷却时,就像图2.1的z-z’线所示,除了初步的共析状态用渗碳体取代铁素体外,其余类似亚共析钢的情况。
随着富碳部分的形成,剩余奥氏体含碳量减少,在727℃(1341℉)时达到共析组织。
就像以前说的一样,当缓慢冷却到这温度时所有剩余奥氏体转化为珠光体。
应该记住由状态图描述的这种转化只适合于通过缓慢冷却的近似平衡条件。
如果缓慢加热,则以相反的方式发生这种转化。
然而,当快速冷却合金时,可能得到完全不同的结果。
因为没有足够的时间让正常的状态反应发生,在这种情况下对工程分析而言状态图不再是有用的工具。