七年级数学三角形的认识复习PPT优秀课件

合集下载

七年级数学下7.4.1认识三角形课件(24张PPT)

七年级数学下7.4.1认识三角形课件(24张PPT)
A
B
C
A
记作:△ABC
b
三 角 形 的 九 C 元 素
c
B
a

c
三个顶点: A、B、C
三个内角:∠A 、 ∠B 、 ∠C 三条边:AB、AC、BC
趁热打铁:
d b
内角: ∠B
c
记作: △BCD
b
∠C
a
顶点: 点B,点C,点D
∠D 边:BC, CD, DB 或 d, c, b
练习
• 1. 聪明的你能写出图中所有的三角形吗?
A
a
b
B
c
C
第三边大于两边之差,小于 两边之和。
结论:
若三角形的两边为a、b,则第三边c的范围 是a-b<c<a+b。(a>b)
例题1、长度分别为3cm、11cm和 5cm的三条线段能组成三角形吗?
解:3+11>5,11+5>3,但3+5<11 所以长度分别为3cm、11cm和5cm的三条线段不能组 成三角形
(1)3、8、10 (3)5、5、11 (2)5、2、7 (4)13、12、20 )组。
能组成三角形的有( B
A 、 1 B、 2 C 、 3 D 、 4 技巧: 比较较小的两边之和与最长边的大 小即可
例1. 在下面一组图形中: (1)每个图中分别有几个三角形? 说出这些三角形; (2)说出各个图形中以B为顶点的角所对的边
1、四根小木棒的长度分别为3cm、5cm、 7cm、10cm,任取3根可以搭出( B )个三角 形。 A 、 1 B、 2 C 、 3 D 、 4
2、若等腰△ABC的两边长为4和7, 则它的周长为:( 15或18 ) 3、若等腰△ABC周长为26,AB=6 , 求它的腰长.

北师大版数学七年级下册第四章:1、认识三角形 课件(共65张PPT)

北师大版数学七年级下册第四章:1、认识三角形 课件(共65张PPT)

1.三角形内角和定理:三角形三个内角的和等于180°.
2.三角形内角和定理的应用:①在三角形中,已知任意两个内角的度数可以 求出第三个内角的度数;②已知三角形三个内角的关系,可以求出各个内角 的度数;③求一个三角形中各角之间的关系.
3.三角形按角分类:
直角三角形:有一个角是直角的三角形 锐角三角形:三个角都是锐角的三角形 钝角三角形:有一个角是钝角的三角形
∠A、∠C的公共边是
.
,∠A的对边是
栏目索引
,
图4-1-3 答案 ∠B;BC;AC 解析 △ABC中,AB与BC的夹角是∠B,∠A的对边是BC,∠A、∠C的公共 边是AC.
1 认识三角形
知识点二 三角形三个内角之间的关系
栏目索引
4.(2017广西南宁中考)如图4-1-4,△ABC中,∠A=60°,∠B=40°,则∠C等于
其所在直 直角三角形
线)的交
点位置 钝角三角形
交点在三角形内 交点在直角顶点处 交点在三角形外
三条中线交于三 角形内一点(这一 点称为三角形的 重心)
交点在三角形内
共同点
每个三角形都有三条高、三条中线、三条角平分线,它们(或它们所在的直线) 都分别交于一个点,它们都是线段
1 认识三角形
栏目索引
知识拓展
(1)得到线段垂直;(2)得到角相等 (1)得到线段相等; (2)得到面积相等
得到角相等
1 认识三角形
栏目索引
线段 的位置
锐角三角形 直角三角形
钝角三角形
三条高全在三角形内
三条中线全在三
角形内 一条高在三角形内,另外两条
与两直角边重合
三条角平分线全 在三角形内
三角形内一条,三角形外两条

三角形初步认识-PPT课件

三角形初步认识-PPT课件
9
大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
10
4、如图AD=BC,要判定
△ABC≌△CDA,还需要的条件是
.
AB=CD或∠DAC=∠BCA
D C
A
B
11
四、线段中垂线与角平分线的性质 1、 线段垂直平分线的性质: 线段的垂直平分线上的点到线段两端点的距离相等。
l
C
几何表述:
AO
B
l l ∵ 是线段AB的中垂线,点C在 上
∴CA=CB
12
2、角平分线的性质:
角平分线上点到角两边距离相等.
几何表述:
C
∵点P是∠BAC的平分线上的
P
一点且PB⊥AB,PC ⊥AC,
∴PB=PC的理由.
A
B
13
5、如图,△ABC中,DE垂直平分AC,AE=3 cm, △ABC的周长是9cm,则△ABC的周长1是5cm
5、已知一个三角形的三条高的交点不在这个三角 形的内部,则这个三角形( )D A. 必定是钝角三角形 B. 必定是直角三角形 C. 必定是锐角三角形 D. 不可能是锐角三角形18来自 6、下列说法正确的是( B)
A、有一个外角是钝角的三角形必定是锐角三角形 B、三条线段a,b,c,若满足a>b>c,且a<b+c,则 这三条线段必能组成一个三角形 C、有两个角和一条边彼此相等的两个三角形全等 D、有两条边和一个角对应相等的两个三角形全等
4
二、三角形分类
三角形
锐角三角形
直角三角形
钝角三角形
三个角都是 锐角
有一个角是 直角
有一个角是 钝角
请问:一个三角形最多有几个钝角?几个直角?几个锐 角?

初中数学三角形ppt完整版

初中数学三角形ppt完整版
灵活运用。
输入 标题
易错点二
在全等三角形判定中,忽视判定条件的完整性。纠正 方法:明确全等三角形的五种判定方法,确保在解题 时满足所有必要条件。
易错点一
易错点三
三角函数计算错误或应用不当。纠正方法:熟练掌握 三角函数的定义和性质,加强计算训练,确保在解题
时正确应用三角函数。
易错点四
在相似三角形判定中,混淆判定条件。纠正方法:清 晰理解相似三角形的判定条件,注意区分不同判定方 法的应用场景。
利用相似比求面积的方法
首先确定两个相似三角形的对应边长之比,然后根据相似比求 出面积之比,最后利用已知三角形的面积求出未知三角形的面 积。
面积法在几何证明中的应用
面积法的基本思想
通过计算或比较相关图形的面积,从而证明几何命题的一种方法。
面积法在几何证明中的应用举例
例如,利用面积法证明勾股定理、证明两直线平行或垂直等。通过构造适当的图形,利用面积关系进行推 导和证明,可以使问题更加直观和易于理解。
通过两点之间线段最短的性质进行证明。
应用举例
在解决三角形边长问题时,可以直接应用三角形边长关系进 行判断或推理,如判断三条线段能否构成三角形、求三角形 周长的取值范围等。
三角形不等式定理
对于三角形的任意一边a,都有a < b + c,其中b、c为与a 相邻的两边。该定理表明三角形的任意一边都小于另外两边 之和。
在已知三角形的三边a、b、c的情况下,面积S=(1/4)√[(a+b+c)(a+b-c)(a+cb)(b+c-a)]。秦九韶公式是海伦公式的等价形式,提供了另一种计算三角形面 积的方法。
利用相似比求面积
相似三角形的性质

七年级数学认识三角形ppt课件

七年级数学认识三角形ppt课件

三角形在数学建模中的应用举例
利用三角形解决实际问题
01
如测量高度、距离等,通过构建三角形模型进行求解。
三角形在几何变换中的应用
02
通过三角形的性质研究平移、旋转、对称等几何变换。
三角形在函数图像中的应用
03
利用三角形的性质研究一次函数、二次函数等图像的性质。
提高解题能力,培养创新思维
01
掌握三角形的基本性质和定理
七年级数学认识三角形ppt课 件
目录
• 三角形基本概念与性质 • 三角形边长与角度关系 • 三角形全等与相似 • 解直角三角形及其应用 • 三角形面积计算与拓展 • 三角形综合应用与拓展延伸
01
三角形基本概念与性质
三角形的定义及分类
三角形的定义
由三条线段首尾顺次连接而成的图 形。
三角形的分类
按边可分为等边三角形、等腰三角 形和一般三角形;按角可分为锐角 三角形、直角三角形和钝角三角形。
如果三角形的三边长a,b,c满足a² + b² = c²,那么这个三角 形是直角三角形。
03
三角形全等与相似
全等三角形定义及判定方法
01
02
03
04
05
定义
SSS(三边全等) SAS(两边和夹角 ASA(两角和夹 AAS(两角和一
全等)
边全等)
边全等)
能够完全重合的两个三角形 叫做全等三角形。
三边对应相等的两个三角形 全等。
面积法在几何问题中的应用
面积法求线段长
通过构造相似三角形,利 用面积比求出线段长。
面积法证线段相等
通过证明两个三角形面积 相等,从而证明两条线段 相等。
面积法证线段平行

初中初一数学认识三角形PPT课件pptx

初中初一数学认识三角形PPT课件pptx

01三角形定义02三角形分类由不在同一直线上的三条线段首尾顺次连接所组成的封闭图形。

按边可分为不等边三角形、等腰三角形;按角可分为锐角三角形、直角三角形、钝角三角形。

三角形定义及分类三角形内角和定理三角形内角和定理三角形的三个内角之和等于180°。

推论直角三角形的两个锐角互余;三角形的一个外角等于和它不相邻的两个内角之和;三角形的一个外角大于任何一个和它不相邻的内角。

三角形外角性质三角形外角性质三角形的一个外角等于与它不相邻的两个内角的和;三角形的一个外角大于与它不相邻的任一内角。

应用利用外角性质求角度;利用外角性质证明两直线平行。

等腰、等边三角形特性等腰三角形特性两腰相等,两底角相等;顶角的平分线、底边上的中线、底边上的高互相重合(三线合一)。

等边三角形特性三边相等,三个内角都相等且均为60°;任意两边之和大于第三边;任意一边都大于另外两边之差。

SAS全等条件及应用举例SAS全等条件两边和它们之间的夹角对应相等的两个三角形全等。

应用举例在证明两个三角形全等时,如果已知两边及夹角相等,可以直接应用SAS条件进行证明。

03两角和它们的夹边对应相等的两个三角形全等。

ASA 全等条件两角和其中一个角的对边对应相等的两个三角形全等。

AAS 全等条件在证明两个三角形全等时,如果已知两角及夹边或两角及一边相等,可以分别应用ASA 或AAS 条件进行证明。

应用举例ASA 与AAS 全等条件SSS全等条件及证明过程SSS全等条件三边对应相等的两个三角形全等。

证明过程通过构造辅助线或利用已知条件,证明两个三角形的三边分别对应相等,从而得出两个三角形全等的结论。

HL直角三角形全等条件HL全等条件一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应相等,则这两个直角三角形全等。

应用举例在证明两个直角三角形全等时,如果已知斜边和一条直角边相等,可以直接应用HL条件进行证明。

判定方法两角对应相等,则两三角形相似。

《三角形的认识》课件

《三角形的认识》课件

建筑中的三角形应用
屋顶结构
许多建筑的屋顶采用三角形的设 计,以提供更好的承重和稳定性

钢架结构
在建筑中,钢架结构经常采用三角 形的设计,以增强结构的强度和稳 定性。
桥梁支撑
桥梁的支撑结构经常采用三角形的 设计,以分散重量并增强稳定性。
数学中的三角形应用
勾股定理
勾股定理是三角形的一个重要性 质,它描述了直角三角形三边的
《三角形的认识》 ppt课件
REPORTING
• 三角形的定义与性质 • 三角形的分类 • 三角形的面积与周长 • 三角形的应用 • 三角形的证明与定理
目录
PART 01
三角形的定义与性质
REPORTING
三角形的定义
总结词
三角形是由三条边和三个角构成 的平面图形。
详细描述
三角形是最简单的多边形之一, 由不在同一直线上的三条线段首 尾顺次连接形成的平面图形。
详细描述
三角形的边与角之间存在密切的关系,如等腰三角形的两腰相等,且对应的两个 底角也相等;直角三角形中有一个角为90度,且斜边与直角边的关系满足勾股定 理等。这些关系是三角形的重要性质,有助于解决各种几何问题。
PART 02
三角形的分类
REPORTING
按角度分类
01
02
03
锐角三角形
三个角都小于90度的三角 形。
边边边(SSS)证明方法
如果两个三角形有三条边分别相等,则这两 个三角形全等。
边角边(SAS)证明方法
如果两个三角形有两条边和夹角分别相等, 则这两个三角形全等。
角角边(AAS)证明方法
如果两个三角形有两个角和一条非夹角边分 别相等,则这两个三角形全等。

《认识三角形》优秀课件pptx

《认识三角形》优秀课件pptx
应用:判断三条线段能否构成三角形、求三角形周长取值范围等
三角形内心、外心、重心概念
内心
三角形内切圆的圆心, 到三角形三边距离相等
外心
三角形外接圆的圆心, 到三角形三个顶点距离 相等
重心
三角形三条中线的交点 ,具有将三角形面积平 分等性质
塞瓦定理和梅内劳斯定理简介
塞瓦定理
在一个三角形中,如果有三条过顶点且与对边有交点的线, 那么这三个交点是共线的当且仅当三条线的交点与对应顶点 的连线满足一定的比例关系
适用范围
适用于所有已知三边长的三角形面 积计算。
三角形面积与边长关系
等底等高原则
若两个三角形底边相等且高相等 ,则它们的面积相等。
边长比例关系
对于相似三角形,其面积之比等 于对应边长之比的平方。
三角形不等式
任意两边之和大于第三边,任意 两边之差小于第三边,与面积大
小有一定关联。
实际应用问题举例
土地测量
《认识三角形》优秀 课件pptx
目录
• 三角形基本概念与性质 • 三角形边角关系探究 • 三角形面积计算方法 • 三角形在生活中的应用 • 三角形相关数学问题解析 • 创新思维与拓展训练
01
三角形基本概念与性质
三角形定义及分类
三角形定义
由不在同一直线上的三条线段首 尾顺次相接所组成的图形。
三角形分类
01
在三角形中,当角度发生变化时,与之对应的边长也会发生变
化。
边长变化对角度的影响
02
在三角形中,当边长发生变化时,与之对应的角度也会发生变
化。
角度与边长的相互制约关系
03
在三角形中,角度与边长之间存在着相互制约的关系,即当一
个量发生变化时,另一个量也会随之变化。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
--复习课1
1.以下各组线段,能组成三角形的是( B ) A.2cm,2cm,4cm B.3cm,6cm,8cm C.2cm,3cm,6cm D.4cm,6cm,11cm
2、在△ABC中,若∠A=54°, ∠B=36°,则△ABC是( C) A、锐角三角形 B、钝角三角形
C、直角三角形 D、等腰三角形 NhomakorabeaA E
B
D
C
2、 如图,已知△ABC中,∠B=45°, ∠C=75°,AD是BC边上的高,AE是∠BAC的 平分线,则∠DAE= 150
A
B ED C
3、如图,BE、CF是△ABC 的角平分线, ∠A=40°求∠BOC度数.
变式1
如图,BE、CF是△ABC 的外角平分线, ∠A=40°求∠BOC度数.
6、∵点P是∠BAC的平分线上的
一点且 PB⊥AB,PC ⊥AC,
C
∴PB=PC
P
A
B
角平分线上点到角两边距离相等.
7、如图在△ABC,∠C=90°,BD平分∠ABC,交AC 于D。若DC=3,则点D到AB的距离是____3_____。
E
1、如图,△ABC中,DE垂直平分AC,AE=3cm, △ABD的周长是9cm,则△ABC的周长是_1_5_c_m___.
A
B
C
O
F
E
变式2
如图,BE、CF分别是△ABC 的内角与外角 平分线,∠A=40°求∠BOC度数.
A
F
OE
B
C
D
THANKS
FOR WATCHING
演讲人: XXX
PPT文档·教学课件
3、如图,在△ABC,∠A=75°∠B=45° 则∠ACD=___1_2_0_。_
4、能把一个三角形分成面积相 等的两部分是三角形的是(A)
A、中线 B、高线 C、角平分线 D、过一边的中点且和这条边垂 直的直线
5、∵ l 是线段AB的中垂线, 点C在 l 上
∴CA=CB
l
C
AO
B
注意:
线段的垂直平分线上的点到线段两端点的距离相等。
相关文档
最新文档