柔性直流输电:风电并网新技术
电网关键技术 柔性直流输电:更大更高更强

我国在柔性直流输电技术方面已经进入快速应用阶段。
柔性直流输电技术在解决大区域电网与周边弱电网互联、可再生能源并网等问题方面有着特殊的优势,必将在智能电网建设进程中发挥重要作用。
福建厦门柔性直流输电工程全景。
资料图柔性直流输电技术应用领域。
资料图新一代:实现灵活控制柔性直流输电是采用电压源换流技术的直流输电技术,也叫电压源型直流输电。
在现有电网中使用柔性直流输电系统,相当于在电网中接入了一个阀门和电源,它不仅可以有效控制通过的电能,隔离电网故障的扩散,而且还能根据电网需求,快速、灵活地发出或吸收一部分能量。
这对增强电网稳定性,提升电网的智能化和可控性,具有重要作用。
20世纪70年代以来,基于晶闸管换流阀的直流输电技术得到了广泛应用,但是,晶闸管换流阀只能控制阀的开通,不能控制阀的关断,因此,直流输电技术的应用受到限制。
进入90年代以后,随着可关断开关器件的发展,特别是绝缘栅双极型晶体管IGBT的广泛应用,采用可关断器件的电压源换流器性能得到了改善,后来被引入到直流输电领域。
对于采用电压源换流技术的直流输电技术,国际权威电力学术组织将其定义为基于电压源型换流器的高压直流输电技术。
1997年,第一个柔性直流输电工程投入工业试验运行。
柔性直流输电技术相比其他输电技术,具有电流自关断能力,可以独立控制有功功率和无功功率,不存在交流输电固有的频率稳定问题和传统直流输电的换相失败问题。
系统主要设备包括电压源换流器、连接变压器、桥臂电抗器、开关设备、直流电容、直流开关设备、测量系统、控制与保护装置等。
柔性直流输电技术在大规模清洁能源并网、海岛供电、交流电网同步/异步互联、构建直流电网等方面具有广阔的应用前景。
第一条:获得多项成果2006年5月,国家电网公司确定了《柔性直流输电系统关键技术研究框架》,由此启动了我国在柔性直流输电关键技术领域的全面研究。
上海南汇风电场柔性直流输电示范工程,是我国首条柔性直流输电工程,也是亚洲首条柔性直流输电示范工程。
柔性直流输电技术的应用探究

柔性直流输电技术的应用探究柔性直流输电技术(Flexible DC Transmission, FDCT)是一种新型的输电技术,它采用直流电压进行能量传输,可以有效地解决传统交流输电技术的诸多问题,具有输电损耗小、占地面积小、环境污染小等优点。
随着科技的不断进步,柔性直流输电技术已经开始在实际工程中得到广泛应用。
本文将就柔性直流输电技术的应用进行探究,分析其在电力系统中的优势和发展前景。
一、柔性直流输电技术的原理与特点1. 原理柔性直流输电技术是一种通过控制直流电压和电流来实现能量输送和分配的技术。
其核心是采用高性能的功率电子设备对直流电压进行控制,以实现灵活的功率调节、电压调节和频率调节。
通过控制系统可以实现功率的快速响应和精确调节,使得柔性直流输电系统能够适应复杂多变的电网工况。
2. 特点(1)输电损耗小:相比于传统的交流输电技术,柔性直流输电技术在能量传输过程中损耗更小,能够有效节约能源。
(2)占地面积小:柔性直流输电技术所需的设备相对较小,可以在有限的空间内实现高效的能量传输。
(3)环境污染小:柔性直流输电技术的设备采用先进的电力电子元件,不会产生有害的电磁辐射和废气排放,对环境友好。
二、柔性直流输电技术在电力系统中的应用1. 长距离电力输送柔性直流输电技术在长距离的电力输送中具有明显的优势。
传统的交流输电技术在长距离输电过程中会出现较大的输电损耗,而柔性直流输电技术可以通过控制系统实现功率的精确调节,大大减小了输电损耗,提高了输电效率。
2. 大容量电力输送由于柔性直流输电技术具有较高的电压和电流调节能力,能够实现大容量的电力输送。
在大规模工业园区、城市用电中心等场景下,柔性直流输电技术可以有效地满足电力需求,支持电网的高容量输电。
3. 电力系统稳定性改善柔性直流输电技术在电力系统中的应用可以提高系统的稳定性。
通过柔性直流输电技术可以实现快速的电压调节和频率调节,对电网负载波动具有较强的适应能力,有助于降低电网的故障率和提高电网的可靠性。
柔性直流输电工程技术研究、应用及发展

柔性直流输电工程技术研究、应用及发展一、本文概述随着能源结构的优化和电网技术的发展,柔性直流输电(VSC-HVDC)技术以其独特的优势,在电力系统中的应用越来越广泛。
本文旨在全面概述柔性直流输电工程的技术研究、应用现状以及未来的发展趋势。
我们将从柔性直流输电的基本原理出发,深入探讨其关键技术和设备,包括换流器、控制系统、保护策略等。
我们还将分析柔性直流输电在新能源接入、电网互联、城市电网建设等领域的应用案例,评估其在实际运行中的性能表现。
我们将展望柔性直流输电技术的发展前景,探讨其在构建清洁、高效、智能的电力系统中发挥的重要作用。
通过本文的阐述,我们希望能够为从事柔性直流输电技术研究和应用的同行提供有益的参考和启示。
二、柔性直流输电技术原理柔性直流输电技术,又称为电压源换流器直流输电(VSC-HVDC),是近年来直流输电领域的一项重大技术革新。
与传统的基于电网换相换流器(LCC)的直流输电技术不同,柔性直流输电技术采用基于可关断器件的电压源换流器(VSC),这使得它在新能源接入、城市电网增容和孤岛供电等方面具有独特的优势。
柔性直流输电技术的核心在于电压源换流器(VSC)。
VSC采用可关断的电力电子器件(如绝缘栅双极晶体管IGBT),通过脉宽调制(PWM)技术实现对交流侧电压和电流的有效控制。
VSC既可以作为有功功率的源,也可以作为无功功率的源,因此它具有更好的控制灵活性和响应速度。
在柔性直流输电系统中,VSC通常与直流电容器和滤波器并联,以维持直流电压的稳定和滤除谐波。
VSC通过改变其输出电压的幅值和相位,可以独立地控制有功功率和无功功率的传输,从而实现对交流电网的灵活支撑。
柔性直流输电技术还采用了先进的控制系统,包括换流器控制、直流电压控制、功率控制等,以确保系统的稳定运行和电能质量。
这些控制系统可以根据系统的运行状态和实际需求,对VSC的输出进行实时调整,从而实现对交流电网的精准控制。
柔性直流输电技术以其独特的电压源换流器和先进的控制系统,实现了对交流电网的灵活支撑和精准控制。
柔性直流输电技术简述

柔性直流输电技术介绍摘要:柔性直流输电技术是一种以电压源变流器、可关断器件和脉宽调制技术为基础的新型直流输电技术。
与传统基于晶闸管的电流源型直流输电技术相比,柔性直流输电技术具有可控性高、设计施工方便环保、占地小及换流站间无需通信等优点,在可再生能源并网、分布式发电并网、孤岛供电、城市电网供电等方面具有明显的优势。
比较了几种新型的高压大容量电压源变流器的特点;分析了大规模多节点模块化多电平系统实时动态仿真技术的现状和难点;指出了柔性直流输电技术在多端直流输电领域应用的特点和难点。
介绍了欧洲、美国以及我国在柔性直流输电技术领域的应用规划。
分析表明发达国家对于柔性直流输电在可再生能源利用和智能电网发展中所起作用的极为重视,多条柔性直流输电线路在建或规划建设。
关键词:柔性直流,模块化多电平,变流器,风电场并网1 引言柔性直流输电技术(Voltage Sourced Converter, VSC)是一种以电压源变流器、可关断器件(如门极可关断晶闸管(GTO)、绝缘栅双极晶体管(IGBT))和脉宽调制(PWM)技术为基础的新型直流输电技术。
国外学术界将此项输电技术称为 VSC-HVDC,国内学术界将此项输电技术称为柔性直流输电,制造厂商 ABB 公司与西门子公司分别将该项输电技术命名为 HVDC Light 和 HVDC Plus。
与传统基于晶闸管的电流源型直流输电技术相比,柔性直流输电技术具有可控性高、设计施工方便环保、占地小及换流站间无需通信等优点,在可再生能源并网、分布式发电并网、孤岛供电、城市电网供电等方面具有明显的优势。
随着大功率全控型电力电子器件的迅速发展,柔性直流输电技术在高压直流输电领域受到越来越广泛的关注及应用。
传统的低电平 VSC 具有开关频率高、输出电压谐波大、电压等级低、需要无源滤波器等缺点,而且存在串联器件的动态均压问题;多电平变流器提供了一种新的 VSC 实现方案。
它通过电平叠加输出高电压,逼近理想正弦波,输出电压谐波含量少,无需滤波设备。
海上风电直流送出与并网技术综述

海上风电直流送出与并网技术综述一、本文概述随着全球能源结构的转型和清洁能源的大力发展,海上风电作为一种可再生能源,正日益受到世界各国的重视。
由于其具有资源丰富、清洁环保、靠近负荷中心等优点,海上风电在全球范围内得到了快速的发展。
然而,随着海上风电装机容量的不断增加,其送出与并网技术也面临着越来越多的挑战。
本文旨在对海上风电直流送出与并网技术进行全面综述,分析当前的研究现状和发展趋势,为相关领域的研究和应用提供参考。
文章首先介绍了海上风电的发展背景和现状,指出了直流送出与并网技术在海上风电领域的重要性。
然后,文章重点对海上风电直流送出技术进行了详细的分析,包括直流送出系统的基本构成、工作原理、优势与挑战等方面。
接着,文章对海上风电并网技术进行了综述,包括并网方式的选择、并网控制策略、并网稳定性分析等内容。
文章还对海上风电直流送出与并网技术的未来发展趋势进行了展望,探讨了新技术、新材料、新设备在海上风电送出与并网领域的应用前景。
通过本文的综述,读者可以对海上风电直流送出与并网技术有一个全面、深入的了解,为相关领域的研究和应用提供有益的参考。
本文也希望能够激发更多的学者和工程师关注海上风电送出与并网技术的研究,共同推动海上风电技术的快速发展。
二、海上风电直流送出技术随着全球对可再生能源需求的不断增长,海上风电作为一种清洁、可再生的能源形式,正受到越来越多的关注。
在海上风电的并网技术中,直流送出技术以其独特的优势,逐渐成为了主流选择。
海上风电直流送出技术主要依赖于高压直流输电(HVDC)系统。
与传统的交流输电相比,HVDC系统具有输电容量大、输电距离远、线路损耗小等优点。
特别是在海上风电领域,由于风电场通常远离陆地,使用HVDC系统可以有效减少在长距离输电过程中的能量损失,提高输电效率。
在海上风电直流送出技术中,风电场通过直流输电系统将电能直接输送到陆地上的换流站,然后在换流站将直流电转换为交流电,再接入电网。
2024年柔性直流输电市场发展现状

2024年柔性直流输电市场发展现状引言柔性直流输电(Flexible Direct Current Transmission,简称FDCT)作为一种新型的输电技术,具有多种优势,如高效、低损耗和灵活性等。
随着电力需求的不断增长和可再生能源的迅速发展,柔性直流输电市场正逐渐展现出巨大的潜力。
本文将对柔性直流输电市场的发展现状进行分析和探讨。
主要内容1. 柔性直流输电技术简介柔性直流输电技术是一种将输电线路由传统的交流形式转变为直流形式的技术。
该技术利用高压直流输电(High Voltage Direct Current,简称HVDC)系统,通过转换站将交流电转换为直流电进行输送。
相较于传统的交流输电方式,柔性直流输电可以实现更高效率和更远距离的电能传输。
2. 柔性直流输电市场发展趋势柔性直流输电市场正逐渐蓬勃发展,并且呈现出以下几个主要的发展趋势:•可再生能源促进发展:随着可再生能源的快速发展,如风能和太阳能等,柔性直流输电正成为将这些能源从产地输送到用电地点的理想选择。
柔性直流输电系统可以实现大规模清洁能源的长距离传输。
•输电效率提高:与高压交流输电相比,柔性直流输电系统的输电效率更高。
因为直流电在输送过程中的能量损失较小,可以大幅度降低电力传输过程中的能量损耗,提高输电效率。
•电网稳定性提升:柔性直流输电系统具备快速响应和调节电网负荷等特点,可以提高电网的稳定性。
在能源供需波动较大的情况下,柔性直流输电系统可以有效地平衡能源供给和需求,提高电网的可靠性和稳定性。
3. 柔性直流输电市场的挑战柔性直流输电市场的发展也面临着一些挑战,主要包括以下几个方面:•技术难题:柔性直流输电技术相对较新,还存在一些技术难题,如电能转换效率、电气设备可靠性和环境适应能力等问题,需要进一步解决和改进。
•经济可行性:虽然柔性直流输电具有诸多优势,但是其建设和运营的成本相对较高,需要对投资回报作出准确评估,以确保项目的经济可行性。
智能电网特色技术之一:柔性直流输电

智能电网特色技术之一:柔性直流输电柔性直流输电(以下简称“柔直”)技术于上个世纪90年代提出,但一直是关注者多,而追随者少。
许多跨国企业早早着手该项研究,但大多“流产”。
究其根源,还是因为涉及的专业领域太多,技术难度太大。
中国的柔直技术研究同样艰难。
2006年,当国家电网公司几乎与西门子同步启动柔直研究时,全球只有ABB一家有实际工程应用经验,且其采用的是传统的类似于高压变频器的技术路线,可供借鉴的经验不多,加之我国在该领域技术基础薄弱,技术难度巨大。
随后6年时间里,普瑞工程公司科研团队不言放弃,系统研究了基础理论与前期技术,较终全面掌握了核心技术。
2006年~2008年,主要是打深、打实“地基”阶段,科研团队在国内首次建立了柔直研究的基础理论体系。
2008年~2010年,科研人员着眼于适应高压大容量的新技术路线,全面掌握了较先进的MMC—HVDC(模块化多电平柔性直流)系统的机理、设计和控制方法,并通过样机研制,验证了理论的正确性与技术路线的可行性。
汤广福回忆说,样机研制阶段不但工作繁重,还充满难以想象的危险。
样机研制的关键——IGBT是一种高频率器件,在实际科研中,IGBT发生爆炸的情形很普遍。
IGBT爆炸时,如果碎片射到人体,与中枪无异。
2008年冬天的一个周末,在IGBT驱动短路测试中,突然“轰”的一声巨响,IGBT发生爆炸。
科研人员就在被测设备周围,所幸没有人员受伤。
快速处理后,来不及后怕的科研人员迅速更换了零部件,继续工作。
经历爆炸的极度危险,通过几十次、几百次试验的不断优化、检验,IGBT数字驱动器百炼成金,研制取得成功。
在全面突破关键技术瓶颈并成功研制出样机的基础上,他们经过6版设计,3代样机研制,40余次专家技术评审会,较终成功研制出柔直换流阀、MMC阀基控制器等成套设备,并在上海南汇风电场柔性直流输电示范工程中得到成功应用。
“我们深知其中的艰难。
但是,过去6年一步一个脚印,一步一个跨越,让我们始终充满信心。
基于柔性直流输电技术的相关要点分析

基于柔性直流输电技术的相关要点分析摘要:柔性直流输电(HVDC Light)系统是一种基于电压源型换流器(VSC)和脉宽调制技术(PWM)的新型直流输电技术。
随着风电等新能源发电并网规模的不断扩大,柔性直流输电得到了广泛应用和发展。
柔性直流输电控制和运行方式简单,输出波形好,具有广阔的应用范围和良好的发展前景。
关键词:柔性直流输电;技术;相关要点1、柔性直流技术的概述柔性直流输电技术概念于20世纪80年代提出,特别是在伴随着包括电力电子技术、自动控制技术以及计算机微处理技术等多方面的发展,经过三十多年的发展进化,柔性直流输电技术在当前形势下,演变发展以来产生的诸多关键性问题逐渐得到一一解决,此技术(柔性直流输电技术)在HVDC以及HVAC系统中得到了越来越多的相关人员及专业的重视。
2、柔性直流输电技术的应用探析2.1可再生能源的接入风能和太阳能作为清洁可再生能源,在电力系统中发挥着重要作用,但是风能发电和太阳能发电容易受到自然因素影响,并网电压不稳定,存在很多谐波,这就可以通过柔性直流输电技术减小可再生能源接入电力系统时的电压波动,改善并网后的电能质量。
由于直流输电单回路的输电容量比交流输电要高出很多,这就使得海上风电场发电工程运营更加困难,通过柔性直流输电技术可以有效隔离交流系统故障,提升风电场发电的稳定性,因此受到了各个国家的高度重视,例如哥特兰工程、丹麦风电工程、德国北海风电工程以及我国的三个柔性直流工程,都是将柔性直流输电技术应用于分布式或集中式风电并网。
2.2孤岛供电传统的孤岛供电方式主要是采用柴油或天然气等资源进行发电,不仅成本较高,并且供电质量没有办法保障。
而柔性直流输电技术具有无源供电能力,在海岛、海上钻井平台等孤岛负荷供电方面展现出了良好的技术优势,可以提升柴油和天然气的发电效率,为各项活动提供安全、稳定的电能。
例如,挪威的Troll平台是世界上最大的海上钻井平台,总负荷容量80兆瓦,采用柔性直输电后,每年可减少大量的二氧化碳排放,从而实现经济环保。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
柔性直流输电:风电并网新技术
“通俗地讲,在现有的电网中使用了柔性直流输电系统,相当于在电网中
接入了一个阀门和电源,它不仅可以有效地控制其上面通过的电能,隔离电网故障的扩散,而且还能根据电网需求,自身快速、灵活、可调地发出或者吸收一部分能量。
”中国电科院贺之渊博士介绍道,“这对优化电网的潮流分布,增强电网稳定性,提升电网的智能化和可控性,都具有一定的作用。
”
从技术上来说,柔性直流输电是以电压源换流器为核心的新一代直流输电技术,其采用最先进的电压源型换流器和全控器件,是常规直流输电技术的换代升级。
相比于交流输电和常规直流输电,在传输能量的同时,还能灵活地调节与之相连的交流系统电压。
具有可控性较好、运行方式灵活、适用场合多等显著优点。
交流并网的技术瓶颈
目前,使用交流并网是绝大多数风电场并网的选择。
但是风电场通过交流并网目前普遍存在一些技术瓶颈:
首先,使用交流并网需要风电场和所连接的交流系统必须严格保持频率同步,而风机对并网处交流母线电压波动较为敏感。
现有运行经验表明,交流系统电压波动是风机退网的主要原因之一。
其次,在交流系统发生故障的情况下,风电场的稳定运行往往需要在母线出线端加装无功补偿装置,从而提高风场的故障穿越能力。
但这样一来加大了风电场投资,另外补偿装置对风机的最大风能捕捉及风机控制器本身,都有可能造成不利影响。
最后,对于海上风电场来说,如果使用交流电缆连接,当电缆长度超过一定数值后,需要很大的感性无功补偿装置,尤其是对于距离岸边较远的风电。